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a b s t r a c t

In this paper, we propose a family of derivative-free conjugate gradient methods for
large-scale nonlinear systems of equations. They come from two modified conjugate
gradient methods [W.Y. Cheng, A two term PRP based descent Method, Numer. Funct.
Anal. Optim. 28 (2007) 1217–1230; L. Zhang, W.J. Zhou, D.H. Li, A descent modified
Polak–Ribiére–Polyak conjugate gradient method and its global convergence, IMA J.
Numer. Anal. 26 (2006) 629–640] recently proposed for unconstrained optimization
problems. Under appropriate conditions, the global convergence of the proposed method is
established. Preliminary numerical results show that the proposed method is promising.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider nonlinear systems of equations

g(x) = 0, x ∈ Rn, (1.1)

where g(x) is a continuously differentiable mapping from Rn into itself. We are interested in the large-scale case for which
the Jacobian of g(x) is either not available or requires a low amount of storage.

Many methods for solving (1.1) fall into the Newton and quasi-Newton strategy [2–5,10,11,13,16,17,19,20]. These
methods are attractive because they converge rapidly from a sufficiently good initial guess. They are typically unattractive
for large-scale nonlinear systems of equations because they need to solve a linear system using the Jacobian matrix or an
approximation of it.

Recently, the spectral gradient method [1] has been extended to solve large-scale nonlinear systems of equations [7,
9,24]. La Cruz and Raydan [7] introduced a spectral algorithm (SANE). Global convergence is guaranteed by means of a
variation of the nonmonotone line search in [12]. La Cruz, Martínez and Raydan [9] proposed a new derivative-free line
search and developed the DF-SANE algorithm. Numerical experiments show that DF-SANE is very effective. Zhang and
Zhou [24] combined the spectral gradient method [1] and project method [23] to solve nonlinear monotone equations.
We refer to review papers [18,20] for a summary of nonlinear systems of equations.

The conjugate gradient methods are welcome methods for unconstrained optimization problems. They are particularly
efficient for large-scale problems due to their simplicity and low storage [14]. However, the study of conjugate gradient
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methods for large-scale nonlinear systems of equations is rare. This motivated the paper. Quite recently Zhang, Zhou and
Li [25] proposed a three-term modified PRP method (TTPRP) and Cheng [6] proposed a two-term modified PRP method
(TMPRP). The reported numerical results show they are competitive with the CG_DESCENT method [15]. As an attempt, we
extend the two modified conjugate gradient methods to solve (1.1). An attractive feature of the algorithm is that the Jacobian
of g is not fully used. Moreover, preliminary numerical results indicate that the proposed method is promising.

The paper is organized as follows. In the next section, we briefly recall conjugate gradient methods for unconstrained
optimization problems and propose the algorithm. In Section 3, the global convergence of the algorithm is established. We
report the numerical results in the last section.

Throughout the paper, we use J(x) to denote the Jacobian matrix of g at x. We use ‖ · ‖ to denote the Euclidean norm of
vectors. We denote by N the natural numbers.

2. Algorithm

In this section, we first focus on conjugate gradient methods for the unconstrained optimization problem

min{f (x) : x ∈ Rn
},

where f : Rn
− R is a continuously differentiable function and its gradient ∇f (x) is available. Nonlinear conjugate gradient

methods generate a sequence {xk} by

xk+1 = xk + αkdk, k = 0, 1, . . .

where the steplength αk is determined by a line search rule and the search direction dk is generated by

d0 = −∇f (x0), dk = −∇f (xk)+ βkdk−1, ∀ k ≥ 1,

where βk is a scalar.
Recently, Zhang, Zhou and Li [25] proposed the TTPRP method and the search direction has the form

d0 = −∇f (x0), dk = −∇f (xk)+ β
PRP
k dk−1 − η

∗

ky
∗

k−1, ∀ k ≥ 1, (2.1)

where

βPRP
k =

∇f (xk)Ty
∗

k−1

‖∇f (xk−1)‖2 , η∗k =
∇f (xk)Tdk−1

‖∇f (xk−1)‖2 and y∗k−1 = ∇f (xk)−∇f (xk−1).

It is clear to see that the search direction (2.1) satisfies

∇f (xk)
Tdk = −‖∇f (xk)‖

2. (2.2)

Consequently, dk is a sufficient descent direction of f at xk. Cheng [6] proposed the TMPRP method. The search direction of
the TMPRP method has the form

d0 = −∇f (x0), dk = −(1+ θ∗k)∇f (xk)+ β
PRP
k dk−1, ∀ k ≥ 1, (2.3)

where

θ∗k = β
PRP
k

∇f (xk)Tdk−1

‖∇f (xk)‖2 .

It is clear that the search direction (2.3) satisfies (2.2). The reported numerical results show that the two modified conjugate
gradient methods perform better than the PRP method [21,22] and are competitive with the CG_DESCENT method [15].

As an attempt, we extend them to solve (1.1). We consider the search direction d1
k (denotes dk determined by (2.1)) and

the search direction d2
k (denotes dk determined by (2.3)), a line combination

dk = (1− λk)d
1
k + λkd

2
k , (2.4)

where {λk} is a bounded sequence. The direction (2.4) can be rewritten as

dk =

{
−∇f (x0), if k = 0,

−(1+ λkθ
∗

k)∇f (xk)+ β
PRP
k dk−1 − (1− λk)η

∗

ky
∗

k−1, if k ≥ 1.
(2.5)

We construct the search direction with the form (2.5) only from theoretical point of view. Observe that if we set λk = 0,
then we get the TTPRP method, while λk = 1 yields the TMPRP method.

From now on, we pay attention to solving (1.1). Our method has the iterative form

xk+1 = xk + αkdk, k = 0, 1, . . .

where αk is the steplength that is determined by a nonmonotone line search which will be defined later and the search
direction dk has the following form

dk =

{
−gk, if k = 0,

−(1+ λkθk)gk + β
PRP
k dk−1 − (1− λk)ηkyk−1, if k ≥ 1,

(2.6)
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where

βPRP
k =

gTkyk−1

‖gk−1‖
2 , θk = β

PRP
k

gTkdk−1

‖gk‖2 , ηk =
gTkdk−1

‖gk−1‖
2 and yk−1 = gk − gk−1.

Now we are ready to state the steps of our method for nonlinear systems of equations.

Algorithm 2.1 (DF-SDCG).

Step1. Given an initial point x0 ∈ Rn and a positive integer M. Let 0 < ρmin < ρmax < 1, 0 < σmin < σmax and γ1, γ2 > 0
be given positive constants. Select a bounded sequence {λk} and a positive sequence {εk} that satisfies

∑
∞

k=0 εk <∞.
Set d0 = −g(x0) and k = 0.

Step2. Chose an initial steplength σk such that |σk| ∈ [σmin,σmax]. Set α+ = 1 and α− = 1.
Step3. Nonmonotone line search.

If

‖g(xk + α+σkdk)‖
2
≤ max

0≤j≤min{k, M−1}
‖g(xk−j)‖

2
− γ1‖α+σkgk‖

2
− γ2‖α+σkdk‖

2
+ εk, (2.7)

then define αk = α+|σk|, dk = sgn(σk)dk and update xk+1 = xk + αkdk.
Else if

‖g(xk − α−σkdk)‖
2
≤ max

0≤j≤min{k, M−1}
‖g(xk−j)‖

2
− γ1‖α−σkgk‖

2
− γ2‖α−σkdk‖

2
+ εk,

then define αk = α−|σk|, dk = −sgn(σk)dk and update xk+1 = xk + αkdk.
else choose α+new ∈ [ρminα+,ρmaxα+], α−new ∈ [ρminα−,ρmaxα−]. Replace α+ = α+new, α− = α−new and go to Step
3.
End if

Step4. Convergence check.
Step5. Update dk+1 by (2.6), set k = k+ 1 and go to step 2.

Remark. (1) We can see that the line search (2.7) is a modified form that was used in [9]. (2) Since εk > 0, after a finite
number of reductions of α+ the condition (2.7) necessarily holds. So the line search process, i.e., Step 3 of Algorithm 2.1, is
well defined.

3. Convergence analysis

This section is devoted to the global convergence of Algorithm 2.1. We first make some assumptions.

Assumption 3.1. (i) The level set Ω = {x| ‖g(x)‖ ≤
√
‖g(x0)‖2 + η} is bounded, where η is a positive constant such that∑

∞

k=0 εk ≤ η.
(ii) In some neighborhood Γ of Ω , the nonlinear mapping g(x) has continuous partial derivatives and is Lipschitz continuous,

namely, there exists a constant L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Γ . (3.1)

The assumption indicates that there exists a positive constant γ such that

‖g(x)‖ ≤ γ, ∀ x ∈ Ω . (3.2)

Before we proceed with the convergence analysis, we firstly state some preliminary definitions. Define V0 = ‖g(x0)‖
2

and

Vk = max{‖g(x(k−1)M+1)‖
2, . . . , ‖g(xkM)‖2

}, ∀ k = 1, 2, . . . .

Let ν(k) ∈ {(k− 1)M + 1, . . . , kM} be such that for all k = 1, 2, . . . ,

‖g(xν(k))‖
2
= Vk.

Proceeding similarly as in the proofs of Proposition 2 and Proposition 3 in [9], we get the following two lemmas.

Lemma 3.1. For all k, l ∈ N , we have

‖g(xkM+l)‖
2
≤ ‖g(xν(k))‖

2
+ η.
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Lemma 3.2. Suppose that Assumption 3.1 holds. Let {xk} be generated by Algorithm 2.1. Then we have

lim
k→∞
‖αν(k)−1dν(k)−1‖ = 0 (3.3)

and

lim
k→∞
‖αν(k)−1gν(k)−1‖ = 0. (3.4)

From now on we define K = {ν(1)− 1, ν(2)− 1, ν(3)− 1, . . .}. The following lemma shows that the search direction dk

is bounded if the current point xk is not the solution of (1.1).

Lemma 3.3. Suppose that Assumption 3.1 holds and dk is determined by (2.6). If there exists a constant ε > 0 such that

‖gk‖ ≥ ε, ∀ k ∈ K, (3.5)

then there exists a positive constant M such that

‖dk‖ ≤ M, ∀ k ∈ K. (3.6)

Proof. From the definition of dk in (2.6), (3.5) and Assumption 3.1, we have

‖dk‖ ≤ ‖gk‖ + |λk||θk|‖gk‖ + |(λk + 1− λk)β
PRP
k |‖dk−1‖ + |1− λk|‖ηkyk−1‖

≤ ‖gk‖ + |λk||β
PRP
k |
‖gk‖‖dk−1‖

‖gk‖2 ‖gk‖ + |λk||β
PRP
k |‖dk−1‖ + |1− λk|

(
|βPRP

k |‖dk−1‖ +
‖gTkdk−1‖‖yk−1‖

‖gk−1‖
2

)

≤ ‖gk‖ + 2|λk||β
PRP
k |‖dk−1‖ + 2|1− λk|

‖gk‖ ‖yk−1‖

‖gk−1‖
2 ‖dk−1‖

≤ ‖gk‖ + 2(|λk| + |1− λk|)
‖yk−1‖‖gk‖

‖gk−1‖
2 ‖dk−1‖

≤ γ + 2(|λk| + |1− λk|)
γLαk−1‖dk−1‖

ε2 ‖dk−1‖.

Since {λk} is a bounded sequence, we get from (3.3) that there exist a constant q ∈ (0, 1) and an integer n0 such that for all
k > n0 with k ∈ K

2(|λk| + |1− λk|)
γLαk−1‖dk−1‖

ε2 < q.

Hence for any k > n0 with k ∈ K, we have

‖dk‖ ≤ γ + q‖dk−1‖

≤ γ(1+ q+ q2
+ · · · + qk−n0+1)+ qk−n0‖dn0‖

≤
γ

1− q
+ ‖dn0‖.

Setting M = max{‖d1‖, ‖d2‖, . . . , ‖dn0‖,
γ

1−q + ‖dn0‖}, we deduce (3.6). �

Lemma 3.4. Suppose that Assumption 3.1 holds and dk is determined by (2.6). If there exists a constant ε > 0 such that for all
k ∈ K

‖gk‖ ≥ ε, (3.7)

then we have

lim
k→∞

βPRP
k ‖dk−1‖ = 0 (3.8)

and

lim
k→∞

λkθkgk + (1− λk)ηkyk = 0. (3.9)

Proof. First, by (3.1)–(3.3), (3.6) and (3.7), we have

|βPRP
k |‖dk−1‖ =

|gTk(gk − gk−1)|

‖gk−1‖
2 ‖dk−1‖ ≤

‖gk‖Lαk−1‖dk−1‖
2

‖gk−1‖
2 → 0 as k→∞,

which shows (3.8).
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Second, from (3.1)–(3.3), (3.6) and (3.7), we have

λkθkgk = λkβ
PRP
k

gTkdk−1

‖gk‖2 gk = λk
gTkyk−1

‖gk−1‖
2

gTkdk−1

‖gk‖2 gk ≤ λk
Lαk−1‖dk−1‖

2

‖gk−1‖
2 → 0 as k→∞ (3.10)

and

(1− λk)ηkyk = (1− λk)
gTkdk−1

‖gk−1‖
2 yk ≤ (1− λk)

‖gk‖Lαk−1‖dk−1‖
2

‖gk−1‖
2 → 0 as k→∞. (3.11)

Hence, (3.10) and (3.11) imply (3.9). �

The following theorem establishes the global convergence of Algorithm 2.1. It is similar to Theorem 1 of [9].

Theorem 3.1. Suppose that Assumption 3.1 holds. Let {xk} be generated by Algorithm 2.1. Then we have

lim inf
k→∞

‖gk‖ = 0, (3.12)

or every limit point x∗ of {xk}K satisfies

g(x∗)T J(x∗)g(x∗) = 0. (3.13)

In particular, if g is strict, namely, g or −g is strictly monotone, then the whole sequence {xk} converges to the unique solution of
equation of (1.1).

Proof. Let x∗ be any limit point of {xk}K and let K1 ⊂ K be an infinite index set such that limk∈K1 xk = x∗. By (3.4), we have
limk∈K1 ‖αkgk‖ = 0.
Case I: If limk∈K1 supαk 6= 0, then there exists an infinite index set K2 ⊂ K1 such that {αk}K2 is bounded away from zero.
By (3.4), we have limk∈K2 ‖g(xk)‖ = 0. Since g is continuous and limk∈K2 xk = x∗, we have (3.12).
Case II: If

lim
k∈K1

αk = 0. (3.14)

From (3.14), we can suppose that in Algorithm 2.1 step k (i.e., the step which generates xk+1) α+ and α− were adapted mk

(mk > 1) times in the line search process. Let α+k and α−k be the values of α+ and α− respectively in the last unsuccessful
steplength. By the choice of α+new and α−new in Step 3 of Algorithm 2.1, we have that

αk ≥ ρ
mk
min

for all k > k0 with k ∈ K1. By (3.14), we have limk∈K1 mk = ∞. From the choice of α+new and α−new, we have

α+k ≤ ρ
mk−1
max

and

α−k ≤ ρ
mk−1
max .

Since ρmax < 1 and limk∈K1 mk = ∞, we get

lim
k∈K1

α+k = lim
k∈K1

α−k = 0.

By the line search rule, we have

‖g(xk + α
+

k σkdk)‖
2
− ‖gk‖

2
≥ ‖g(xk + α

+

k σkdk)‖
2
− max

0≤j≤min{k, M−1}
‖gk‖

2

> −γ1‖α
+

k σkgk‖
2
− γ2‖α

+

k σkdk‖
2
+ εk

> −γ1‖α
+

k σkgk‖
2
− γ2‖α

+

k σkdk‖
2

and

‖g(xk − α
−

k σkdk)‖
2
− ‖gk‖

2
≥ ‖g(xk − α

−

k σkdk)‖
2
− max

0≤j≤min{k, M−1}
‖gk‖

2

> −γ1‖α
−

k σkgk‖
2
− γ2‖α

−

k σkdk‖
2
+ εk

> −γ1‖α
−

k σkgk‖
2
− γ2‖α

−

k σkdk‖
2.

By using (3.2) and (3.6), we have

‖g(xk + α
+

k σkdk)‖
2
− ‖gk‖

2 > −C(α+k )2 (3.15)
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Table 4.1
Numerical results

Problem(dim) Method Iter Nfunc Time Dim Iter Nfunc Time

expo1 dfsane 5 5 0.0000 expo1 2 2 0.0000
(1000) dfsdcg1 4 8 0.0000 (10000) 1 2 0.0000

dfsdcg2 3 6 0.0000 1 2 0.0000
dfsdcg3 4 8 0.0000 1 2 0.0000

lin1 dfsane 1 2 0.0000 lin1 1 2 0.0156
(1000) dfsdcg1 1 2 0.0000 (10000) 1 2 0.0156

dfsdcg2 1 2 0.0000 1 2 0.0156
dfsdcg3 1 2 0.0000 1 2 0.0156

expo3 dfsane 13 18 0.0000 expo3 16 22 0.0156
(100) dfsdcg1 15 34 0.0000 (1000) 33 86 0.0313

dfsdcg2 33 77 0.0156 52 142 0.0468
dfsdcg3 35 94 0.0156 22 62 0.0156

fdtvf dfsane 183 726 0.0000 fdtvf 150 544 0.0000
(99) dfsdcg1 513 2877 1.6876 (200) 279 791 0.0313

dfsdcg2 215 777 0.0156 250 1155 0.0798
dfsdcg3 147 451 0.0000 – – –

fukushima dfsane 42 68 0.0000 fukushima 524 2062 0.0156
(9) dfsdcg1 5 10 0.0000 (49) 22 44 0.0000

dfsdcg2 5 10 0.0000 22 44 0.0000
dfsdcg3 5 10 0.0000 22 44 0.0000

rosen dfsane 3 3 0.0000 rosen 3 3 0.0156
(100) dfsdcg1 1 2 0.0000 (10000) 1 2 0.0000

dfsdcg2 1 2 0.0000 1 2 0.0000
dfsdcg3 1 2 0.0000 1 2 0.0000

arosen dfsane 1 1 0.0000 arosen 1 1 0.0000
(1000) dfsdcg1 2 4 0.0000 (10000) 2 4 0.0000

dfsdcg2 2 4 0.0000 2 4 0.0000
dfsdcg3 2 4 0.0000 2 4 0.0000

chandra dfsane 6 6 0.0000 chandra 6 6 7.0156
(100) dfsdcg1 6 12 0.0000 (5000) 8 16 19.2500

dfsdcg2 2 4 0.0000 4 8 9.5938
dfsdcg3 5 10 0.0000 7 14 17.1560

powell dfsane 2 12 0.0000 powell 2 12 0.0313
(1000) dfsdcg1 1 2 0.0000 (10000) 1 2 0.0156

dfsdcg2 1 2 0.0000 1 2 0.0156
dfsdcg3 1 2 0.0000 1 2 0.0156

powella dfsane 17 49 0.0313 powella 17 49 0.0625
(1000) dfsdcg1 6 16 0.0000 (5000) 6 16 0.0156

dfsdcg2 6 17 0.0156 6 18 0.0313
dfsdcg3 6 16 0.0000 7 19 0.0313

and

‖g(xk − α
−

k σkdk)‖
2
− ‖gk‖

2 > −C(α−k )2, (3.16)

where C = (γ1γ
2
+ γ2M2)σ2

max. From (3.15), we obtain

‖g(xk + α
+

k σkdk)‖
2
− ‖gk‖2

α+k
> −Cα+k . (3.17)

By the mean-value theorem and (3.17), there exists a ξk ∈ (0, 1) such that

σk〈2J(xk + ξkα+k σkdk)
Tg(xk + ξkα

+

k σkdk), dk〉 > −Cα
+

k .

By Step 2 of the algorithm we have that σk > 0 for infinitely many indices or σk < 0 for infinitely many indices. If σk > 0
for many indices k ∈ K3 ⊂ K1, the last inequality implies, for k ∈ K3 with k ≥ k0,

〈2J(xk + ξkα+k σkdk)
Tg(xk + ξkα

+

k σkdk), g(xk)+ λkθkg(xk)− (1− λk)ηkyk−1 − β
PRP
k dk−1〉 < C

α+k
σmin

. (3.18)

Using (3.3), (3.8) and (3.9), taking limits in (3.18), we obtain

g(x∗)T J(x∗)g(x∗) ≤ 0.
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Table 4.2
Numerical results

Problem(dim) Method Iter Nfunc Time Dim Iter Nfunc Time

trig dfsane 30 62 0.0469 trig 14 32 0.0625
(1000) dfsdcg1 7 18 0.0000 (5000) 6 12 0.0313

dfsdcg2 5 10 0.0000 5 18 0.0469
dfsdcg3 6 12 0.0000 2 6 0.0313

trigs dfsane 4 8 0.0000 trigs 6 12 0.0156
(1000) dfsdcg1 5 14 0.0000 (5000) 5 15 0.0156

dfsdcg2 5 14 0.0000 5 15 0.0313
dfsdcg3 5 14 0.0000 5 15 0.0313

sing dfsane 11 17 0.0000 sing 12 20 0.0313
(1000) dfsdcg1 11 22 0.0000 (10000) 11 22 0.0469

dfsdcg2 9 18 0.0000 9 18 0.0313
dfsdcg2 8 16 0.0000 8 16 0.0156

loga dfsane 5 5 0.0000 loga 5 5 0.0156
(1000) dfsdcg1 4 8 0.0000 (10000) 4 8 0.0313

dfsdcg2 4 8 0.0000 4 8 0.0156
dfsdcg3 4 8 0.0000 4 8 0.0156

broydt dfsane 14 16 0.0000 broydt 17 17 0.0000
(500) dfsdcg1 14 28 0.0000 (5000) 15 30 0.0313

dfsdcg2 14 28 0.0000 15 30 0.0313
dfsdcg3 14 28 0.0000 15 30 0.0313

trigexp dfsane 9 11 0.0000 trigexp 7 9 0.0000
(100) dfsdcg1 9 24 0.0000 (10000) 11 26 0.0156

dfsdcg2 9 24 0.0000 7 18 0.0000
dfsdcg3 9 24 0.0000 9 22 0.0000

fun15 dfsane – – – fun15 – – –
(1000) dfsdcg1 – – – (5000) – – –

dfsdcg2 – – – – – –
dfsdcg3 – – – – – –

econvex1 dfsane 5 5 0.0000 econvex1 5 5 0.0156
(100) dfsdcg1 6 12 0.0000 (10000) 6 12 0.0469

dfsdcg2 4 8 0.0000 4 8 0.0313
dfsdcg3 5 10 0.0000 5 10 0.0313

econvex2 dfsane 40 42 0.0156 econvex2 68 132 0.2188
(1000) dfsdcg1 47 94 0.0313 (5000) 48 96 0.1719

dfsdcg2 49 98 0.0313 50 100 0.1719
dfsdcg3 47 94 0.0313 48 96 0.1456

fun18 dfsane 5 7 0.0000 fun18 5 7 0.0156
(399) dfsdcg1 3 6 0.0000 (9000) 3 6 0.0156

dfsdcg2 2 4 0.0000 3 6 0.0156
dfsdcg3 2 4 0.0000 3 6 0.0156

Using (3.16) and proceeding in the same way, we obtain

g(x∗)T J(x∗)g(x∗) ≥ 0.

The last two inequalities imply (3.13). If σk < 0 for infinitely many indices, proceeding in an analogous way, we also deduce
(3.13). �

4. Numerical experiments

In this section, we tested DF-SDCG and compared it with DF-SANE in [9]. We tested 20 nonlinear monotone equations
that were described in [8]. The DF-SDCG code was written in Fortran77 and in double precision arithmetic. The DF-SANE
code was provided by Professor Raydan. The programs were carried out on a PC (CPU 1.6GHz, 256M memory) with the
Windows operation system.

We implemented DF-SDCG with the following parameters: M = 1, ρmin = 0.1, ρmax = 0.5, σmin = 10−10, σmax = 1010,
γ1 = γ2 = 10−4 and εk = ‖g(x0)‖

(1+k)2 for all k. We choose α+new and α−new in the same way as those in [9]. We choose σk in the

same way as that in [25]. To be more precise, the initial steplength in Step 2 of DF-SDCG is σk =
−gTk dk
dTk zk

, where

zk =
g(xk + εdk)− g(xk)

ε
, ε = 10−8.
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Table 4.3
Number of problems for which each method is a winner

Method Iter Nfunc Time

dfsane 12 21 29
dfsdcg1 19 13 27
dfsdcg2 26 13 28
dfsdcg3 23 17 30

If |σk| 6∈ [σmin,σmax], we set σk = 1. In both DF-SANE and DF-SDCG we stop the process when the following inequality is
satisfied

‖g(xk)‖
√
n
≤ ea + er

‖g(x0)‖
√
n

,

where ea = 10−5 and er = 10−4. For each test problem, we perform the following four algorithms:

• dfsane: DF-SANE in [9];
• dfsdcg1: DF-SDCG with λk = 1;
• dfsdcg2: DF-SDCG with λk = 0;
• dfsdcg3: DF-SDCG with λk = 0.5.

We implemented DF-SANE with the following parameters: nexp = 2, σmin = 10−10, σmax = 1010, σ0 = 1, τmin = 0.1,
τmax = 0.5, γ = 10−4, M = 10, ηk =

‖g(x0)‖

(1+k)2 for all k. In Tables 4.1 and 4.2, we report the name of the problem (problem),
the dimension of the problem (dim), the number of iterations (iter), the number of function evaluations (including the
additional functional evaluations that DF-SDCG uses for approximating initial steplength σk) (Nfunc) and the CPU time in
seconds (time). We claim that the method fails, and use the symbol ’-’, when some of the following options hold:

(a) the number of iterations is greater than or equal to 1000; or
(b) the number of backtracking at some line search is greater than or equal to 50.

In addition, the results from Tables 4.1 and 4.2 are summarized in Table 4.3. In Table 4.3 we report the number of problems
for which each method is a winner with respect to the number of iterations, number of function evaluations and CPU time.

From Table 4.3, we observe that DF-SDCG requires less iterations and more function evaluations than DF-SANE. We also
observe from Tables 4.1 and 4.2 that in most cases the number of function evaluations is twice the number of iterations.
This implies that the initial steplength σk has the advantage of being accepted often, but has the disadvantage of needing an
additional function evaluation at each iteration. This leads to more function evaluations for DF-SDCG. However, as far as the
CPU time is concerned, DF-SDCG has almost the same performance as DF-SANE, which is important for solving large-scale
problems. To sum up, the results from Tables 4.1–4.3 show that DF-SDCG provides an efficient method for solving large-scale
nonlinear systems of equations. Looking for a proper steplength to improve the efficiency of DF-SDCG will be a future topic
for us.
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