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A constitutive model based on the combination of damage mechanics and plasticity is developed to ana-
lyse the failure of concrete structures. The aim is to obtain a model, which describes the important char-
acteristics of the failure process of concrete subjected to multiaxial loading. This is achieved by
combining an effective stress based plasticity model with a damage model based on plastic and elastic
strain measures. The model response in tension, uni-, bi- and triaxial compression is compared to exper-
imental results. The model describes well the increase in strength and displacement capacity for increas-
ing confinement levels. Furthermore, the model is applied to the structural analyses of tensile and
compressive failure.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Concrete is a strongly heterogeneous material, which exhibits a
complex nonlinear mechanical behaviour. Failure in tension and
low confined compression is characterised by softening which is
defined as decreasing stress with increasing deformations. This
softening response is accompanied by a reduction of the unloading
stiffness of concrete, and irreversible (permanent) deformations,
which are localised in narrow zones often called cracks or shear
bands. On the other hand, the behaviour of concrete subjected to
high confined compression is characterised by a ductile hardening
response; that is, increasing stress with increasing deformations.
These phenomena should be considered in a constitutive model
for analysing the multiaxial behaviour of concrete structures.

There are many constitutive models for the nonlinear response
of concrete proposed in the literature. Commonly used frameworks
are plasticity, damage mechanics and combinations of plasticity
and damage mechanics. Stress-based plasticity models are useful
for the modelling of concrete subjected to triaxial stress states,
since the yield surface corresponds at a certain stage of hardening
to the strength envelope of concrete (Leon, 1935; Willam et al.,
1974; Pramono and Willam, 1989; Etse and Willam, 1994;
Menétrey and Willam, 1995; Pivonka, 2001; Grassl et al., 2002;
Papanikolaou and Kappos, 2007; Červenka and Papanikolaou,
2008; Folino and Etse, 2012). Furthermore, the strain split into
elastic and plastic parts represents realistically the observed defor-
mations in confined compression, so that unloading and path-
dependency can be described well. However, plasticity models
are not able to describe the reduction of the unloading stiffness
that is observed in experiments. Conversely, damage mechanics
models are based on the concept of a gradual reduction of the elas-
tic stiffness (Kachanov, 1980; Mazars, 1984; Ortiz, 1985; Resende,
1987; Mazars and Pijaudier-Cabot, 1989; Carol et al., 2001; Tao and
Phillips, 2005; Voyiadjis and Kattan, 2009). For strain-based isotro-
pic damage mechanics models, the stress evaluation procedure is
explicit, which allows for a direct determination of the stress state,
without an iterative calculation procedure. Furthermore, the stiff-
ness degradation in tensile and low confined compressive loading
observed in experiments can be described. However, isotropic
damage mechanics models are often unable to describe irreversible
deformations observed in experiments and are mainly limited to
tensile and low confined compression stress states. On the other
hand, combinations of isotropic damage and plasticity are widely
used for modelling both tensile and compressive failure and many
different models have been proposed in the literature (Ju, 1989;
Lee and Fenves, 1998; Jason et al., 2006; Grassl and Jirásek,
2006a; Nguyen and Houlsby, 2008; Nguyen and Korsunsky,
2008; Voyiadjis et al., 2008; Grassl, 2009; Sánchez et al., 2011;
Valentini and Hofstetter, 2013).

One popular class of damage-plastic models relies on a combi-
nation of stress-based plasticity formulated in the effective
(undamaged) stress space combined with a strain based damage
model. The combined damage-plasticity model recently developed
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by Grassl and Jirásek (2006a,b) belongs to this group. This model,
called here Concrete Damage Plasticity Model 1 (CDPM1), is char-
acterised by a very good agreement with a wide range of experi-
mental results of concrete subjected to multiaxial stress states.
Furthermore, it has been used in structural analysis in combination
with techniques to obtain mesh-independent results and has
shown to be robust (Grassl and Jirásek, 2006b; Valentini and Hof-
stetter, 2013). However, CDPM1 is based on a single damage
parameter for both tension and compression. This is sufficient for
monotonic loading with unloading, but is not suitable for model-
ling the transition from tensile to compressive failure realistically.
When the model was proposed, this limitation was already noted
and a generalisation to isotropic formulations with several damage
parameters was recommended. In the present work, CDPM1 is rev-
isted to address this issue by proposing separate damage variables
for tension and compression. The introduction of two isotropic
damage variables for tension and compression was motivated by
the work of Mazars (1984), Ortiz (1985) and Fichant et al.
(1999). Secondly, in CDPM1, a perfect plastic response in the
nominal post-peak regime is assumed for the plasticity part and
damage is determined by a function of the plastic strain. For the
nonlocal version of CDPM1 presented in Grassl and Jirásek
(2006b), this perfect-plastic response resulted in mesh-dependent
plastic strain profiles, although the overall load–displacement
response was mesh-independent. Already in Grassl and Jirásek
(2006b), it was suggested that the plastic strain profile could be
made mesh-independent by introducing hardening in the plastic-
ity model for the nominal post-peak regime. In the present model,
the damage functions for tension and compression depend on both
plastic and elastic strain components. Furthermore, hardening is
introduced in the nominal post-peak regime. With these exten-
sions, the damage laws can be analytically related to chosen
stress-inelastic strain relations, which simplifies the calibration
procedure. The extension to hardening is based on recent 1D dam-
age-plasticity model developments in Grassl (2009), which are
here for the first time applied to a 3D model. The present dam-
age-plasticity model for concrete failure is an augmentation of
CDPM1. Therefore, the model is called here CDPM2. The aim of this
article is to present in detail the new phenomenological model and
to demonstrate that this model is capable of describing the influ-
ence of confinement on strength and displacement capacity, the
presence of irreversible displacements and the reduction of
unloading stiffness, and the transition from tensile to compressive
failure realistically. Furthermore, it will be shown, by analysing
structural tests, that CDPM2 is able to describe concrete failure
mesh independently.
2. Damage-plasticity constitutive model

2.1. General framework

The damage plasticity constitutive model is based on the fol-
lowing stress–strain relationship:

r ¼ 1�xtð Þ�rt þ 1�xcð Þ�rc ð1Þ

where �rt and �rc are the positive and negative parts of the effective
stress tensor �r, respectively, and xt and xc are two scalar damage
variables, ranging from 0 (undamaged) to 1 (fully damaged). The
effective stress �r is defined as

�r ¼ De : e� ep
� �

ð2Þ

where De is the elastic stiffness tensor based on the elastic Young’s
modulus E and Poisson’s ratio m; e is the strain tensor and ep is the
plastic strain tensor. The positive and negative parts of the effective
stress �r in (1) are determined from the principal effective stress �rp
as �rpt ¼ h�rpiþ and �rpc ¼ h�rpi�, where h iþ and h i� are positive and
negative part operators, respectively, defined as hxiþ ¼max 0; xð Þ
and hxi� ¼ min 0; xð Þ. For instance, for a combined tensile and com-
pressive stress state with principal effective stress components
�rp ¼ ��r;0:2�r;0:1�rð ÞT, the positive and negative principal stresses
are �rpt ¼ 0;0:2�r;0:1�rð ÞT and �rpc ¼ ��r;0;0ð ÞT, respectively.

The plasticity model is based on the effective stress, which is
independent of damage. The model is described by the yield func-
tion, the flow rule, the evolution law for the hardening variable
and the loading–unloading conditions. The form of the yield func-
tion is

fp �r;jp
� �

¼ F �r; qh1; qh2ð Þ ð3Þ

where qh1 jp
� �

and qh2 jp
� �

are dimensionless functions controlling
the evolution of the size and shape of the yield surface. The flow
rule is

_ep ¼ _k
@gp

@�r
�r;jp
� �

ð4Þ

where _ep is the rate of the plastic strain, _k is the rate of the plastic
multiplier and gp is the plastic potential. The rate of the hardening
variable jp is related to the rate of the plastic strain by an evolution
law. The loading–unloading conditions are

fp 6 0; _k P 0; _kfp ¼ 0 ð5Þ

A detailed description of the individual components of the plasticity
part of the model are discussed in Section 2.2.

The damage part of the model is described by the damage load-
ing functions, loading unloading conditions and the evolution laws
for damage variables for tension and compression. For tensile dam-
age, the main equations are

fdt ¼ ~etð�rÞ � jdt ð6Þ

fdt 6 0; _jdt P 0; _jdtfdt ¼ 0 ð7Þ

xt ¼ gdt jdt;jdt1;jdt2ð Þ ð8Þ

For compression, they are

fdc ¼ ac~ecð�rÞ � jdc ð9Þ

fdc 6 0; _jdc P 0; _jdcfdc ¼ 0 ð10Þ

xc ¼ gdc jdc;jdc1;jdc2ð Þ ð11Þ

Here, fdt and fdc are the loading functions, ~etð�rÞ and ~ecð�rÞ are the
equivalent strains and jdt; jdt1; jdt2; jdc; jdc1 and jdc2 are dam-
age history variables. Furthermore, ac is a variable that distin-
guishes between tensile and compressive loading. A detailed
description of the variables is given in Section 2.3.

2.2. Plasticity part

The plasticity part of the model is formulated in a three-dimen-
sional framework with a pressure-sensitive yield surface, harden-
ing and non-associated flow. The main components are the yield
function, the flow rule, the hardening law and the evolution law
for the hardening variable.

2.2.1. Yield function
The yield surface is described in terms of the cylindrical coordi-

nates in the principal effective stress space (Haigh–Westergaard
coordinates), which are the volumetric effective stress

�rV ¼
I1

3
ð12Þ

the norm of the deviatoric effective stress



Fig. 2. The evolution of the deviatoric section of the yield surface during hardening
for a constant volumetric stress of �rV ¼ �fc=3.
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�q ¼
ffiffiffiffiffiffiffi
2J2

p
ð13Þ

and the Lode angle

�h ¼ 1
3

arccos
3
ffiffiffi
3
p

2
J3

J3=2
2

 !
ð14Þ

The foregoing definitions use the first invariant

I1 ¼ �r : d ¼ �rijdij ð15Þ

of the effective stress tensor �r, and the second and third invariants

J2 ¼
1
2

�s : �s ¼ 1
2

�s2 : d ¼ 1
2

�sij�sij ð16Þ

J3 ¼
1
3

�s3 : d ¼ 1
3

�sij�sjk�ski ð17Þ

of the deviatoric effective stress tensor �s ¼ �r� dI1=3.
The yield function

fpð�rV; �q; �h;jpÞ ¼ 1� qh1ðjpÞ
� � �qffiffiffi

6
p

fc
þ

�rV

fc

 !2

þ
ffiffiffi
3
2

r
�q
fc

8<
:

9=
;

2

þm0q2
h1ðjpÞqh2ðjpÞ

�qffiffiffi
6
p

fc
rðcos �hÞ þ

�rV

fc

" #

� q2
h1ðjpÞq2

h2ðjpÞ ð18Þ

depends on the effective stress (which enters in the form of cylin-
drical coordinates) and on the hardening variable jp (which enters
through the dimensionless variables qh1 and qh2). Parameter fc is the
uniaxial compressive strength. For qh2 ¼ 1, the yield function is
identical to the one of CDPM1.

The meridians of the yield surface fp ¼ 0 are parabolic, and the
deviatoric sections change from triangular shapes at low confine-
ment to almost circular shapes at high confinement. The shape of
the deviatoric section is controlled by the function

rðcos �hÞ ¼ 4ð1� e2Þ cos 2�hþ ð2e� 1Þ2

2ð1� e2Þ cos �hþ ð2e� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1� e2Þ cos 2�hþ 5e2 � 4e

q
ð19Þ

proposed by Willam et al. (1974). The calibration of the eccentricity
parameter e is described in Jirásek and Bažant (2002) and in Sec-
tion 5. The friction parameter m0 is given by

m0 ¼
3 f 2

c � f 2
t

� �
fcft

e
eþ 1

ð20Þ

where ft is the tensile strength. The shape and evolution of the yield
surface is controlled by the variables qh1 and qh2 (Figs. 1 and 2). If
Fig. 1. The evolution of the meridional section of the yield surface during
hardening.
the two variables qh1 and qh2 in (18) are set equal to one and the
resulting yield function is set equal to zero, the failure surface

3
2

�q2

f 2
c
þm0

�qffiffiffi
6
p

fc
rðcos �hÞ þ

�rV

fc

" #
� 1 ¼ 0 ð21Þ

is obtained, which was originally proposed by Menétrey and
Willam (1995).

2.2.2. Flow rule
In the present model, the flow rule in (4) is non-associated,

which means that the yield function fp and the plastic potential
gp do not coincide and, therefore, the direction of the plastic flow
@gp=@�r is not normal to the yield surface. The plastic potential is
given as

gpð�rV; �q;jpÞ ¼ 1� qh1ðjpÞ
� � �qffiffiffi

6
p

fc
þ

�rV

fc

 !2

þ
ffiffiffi
3
2

r
�q
fc

8<
:

9=
;

2

þ q2
h1ðjpÞ

m0 �qffiffiffi
6
p

fc
þmgð�rV;jpÞ

fc

 !
ð22Þ

where

mgð�rV;jpÞ ¼ Ag jp
� �

Bg jp
� �

fc exp
�rV � qh2ðjpÞft=3

Bg jp
� �

fc
ð23Þ

is a variable controlling the ratio of volumetric and deviatoric plas-
tic flow. Here, Ag jp

� �
and Bg jp

� �
, which depend on qh2ðjpÞ, are de-

rived from assumptions on the plastic flow in uniaxial tension and
compression in the post-peak regime.

The derivation of these two variables is illustrated in the follow-
ing paragraphs. Here, the notation m � @gp

@�r is introduced. In the
principal stress space, the plastic flow tensor m has three compo-
nents, m1; m2 and m3 associated with the three principal stress
components. The flow rule (4) is split into a volumetric and a devi-
atoric part, i.e., the gradient of the plastic potential is decomposed
as

m ¼ @g
@�r
¼ @g
@�rV

@�rV

@�r
þ @g
@�q

@�q
@�r

ð24Þ

Taking into account that @�rV=@�r ¼ d=3 and @�q=@�r ¼ �s=�q, restricting
attention to the post-peak regime (in which qh1 ¼ 1) and differenti-
ating the plastic potential (22), we rewrite Eq. (24) as

m ¼ @g
@�r
¼ @mg

@�rV

d

3f c
þ 3

fc
þ m0ffiffiffi

6
p

�q

 !
�s
fc

ð25Þ



Fig. 3. The two hardening laws qh1 (solid line) and qh2 (dashed line).
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Experimental results for concrete loaded in uniaxial tension indi-
cate that the strains perpendicular to the loading direction are elas-
tic in the softening regime. Thus, the plastic strain rate in these
directions should be equal to zero (m2 ¼ m3 ¼ 0). Under uniaxial
tension, the effective stress state in the post-peak regime is charac-
terised by �r1 ¼ ftqh2; �r2 ¼ �r3 ¼ 0; �rV ¼ ftqh2=3, �s1 ¼ 2f tqh2=3;
�s2 ¼ �s3 ¼ �ftqh2=3 and �q ¼

ffiffiffiffiffiffiffiffi
2=3

p
ftqh2. Substituting this into (25)

and enforcing the condition m2 ¼ m3 ¼ 0, we obtain an equation
from which

@mg

@�rV

����
�rV¼ftqh2=3

¼ 3f tqh2

fc
þm0

2
ð26Þ

In uniaxial compressive experiments, a volumetric expansion is
observed in the softening regime. Thus, the inelastic lateral strains
are positive while the inelastic axial strain is negative. In the
present approach, a constant ratio Df ¼ �m2=m1 ¼ �m3=m1

between lateral and axial plastic strain rates in the softening regime
is assumed. The effective stress state at the end of hardening under
uniaxial compression is characterised by �r1 ¼ �fcqh2;
�r2 ¼ �r3 ¼ 0; �rV ¼ �fcqh2=3, �s1 ¼ �2f cqh2=3; �s2 ¼ �s3 ¼ fcqh2=3 and
�q ¼

ffiffiffiffiffiffiffiffi
2=3

p
fcqh2. Substituting this into (25) and enforcing the condi-

tion m2 ¼ m3 ¼ �Df m1, we get an equation from which

@mg

@�rV

����
�rV¼�fcqh2=3

¼ 2Df � 1
Df þ 1

3qh2 þ
m0

2

� 	
ð27Þ

Substituting the specific expression for @mg=@�rV constructed by dif-
ferentiation of (23) into (26) and (27), we obtain two equations
from which parameters

Ag ¼
3f tqh2

fc
þm0

2
ð28Þ

Bg ¼
qh2=3ð Þ 1þ ft=fcð Þ

ln Ag � ln 2Df � 1ð Þ � ln 3qh2 þm0=2ð Þ þ ln Df þ 1ð Þ ð29Þ

can be computed. The gradient of the dilation variable mg in (23)
decreases with increasing confinement. The limit �rV ! �1 corre-
sponds to purely deviatoric flow. As in CDPM1, the plastic potential
does not depend on the third Haigh–Westergaard coordinate (Lode
angle �h), which increases the efficiency of the implementation and
the robustness of the model.

2.2.3. Hardening law
The dimensionless variables qh1 and qh2 that appear in (18), (22)

and (23) are functions of the hardening variable jp. They control
the evolution of the size and shape of the yield surface and plastic
potential. The first hardening law qh1 is

qh1ðjpÞ¼
qh0þ 1�qh0ð Þ j3

p�3j2
pþ3jp

� 	
�Hp j3

p�3j2
pþ2jp

� 	
if jp <1

1 if jp P1

(

ð30Þ

The second hardening law qh2 is given by

qh2ðjpÞ ¼
1 if jp < 1
1þ Hpðjp � 1Þ if jp P 1



ð31Þ

The initial inclination of the hardening curve qh1 at jp ¼ 0 is posi-
tive and finite, and the inclinations of qh1 on the left of jp ¼ 1 and
qh2 on the right of jp ¼ 1 are equal to Hp, as depicted in Fig. 3.
For Hp ¼ 0, the hardening law reduces to the one proposed in Grassl
and Jirásek (2006a).

2.2.4. Hardening variable
The evolution law for the hardening variable,

_jp ¼
k _epk

xh �rVð Þ 2 cos �h
� �2 ¼

_kkmk
xh �rVð Þ 2 cos �h

� �2 ð32Þ
sets the rate of the hardening variable equal to the norm of the plas-
tic strain rate scaled by a hardening ductility measure

xh �rVð Þ ¼
Ah � Ah � Bhð Þ exp �Rhð�rVÞ=Chð Þ if Rhð�rVÞP 0
Eh expðRhð�rVÞ=FhÞ þ Dh if Rhð�rVÞ < 0



ð33Þ

For pure volumetric stress states, �h in (32) is set to zero. The depen-
dence of the scaling factor xh on the volumetric stress �rV is con-
structed such that the model response is more ductile under
compression. The variable

Rhð�rVÞ ¼ �
�rV

fc
� 1

3
ð34Þ

is a linear function of the volumetric effective stress. Model param-
eters Ah; Bh; Ch and Dh are calibrated from the values of strain at
peak stress under uniaxial tension, uniaxial compression and triax-
ial compression, whereas the parameters Eh and Fh are determined
from the conditions of a smooth transition between the two parts of
Eq. (33) at Rh ¼ 0:

Eh ¼ Bh � Dh ð35Þ

Fh ¼
Bh � Dhð ÞCh

Ah � Bh
ð36Þ

This definition of the hardening variable is identical to the one in
CDPM1 described in Grassl and Jirásek (2006a), where the calibra-
tion procedure for this part of the model is described.

2.3. Damage part

Damage is initiated when the maximum equivalent strain in the
history of the material reaches the threshold e0 ¼ ft=E. For uniaxial
tension only, the equivalent strain could be chosen as ~e ¼ �rt=E,
where �rt is the effective uniaxial tensile stress. Thus, damage
initiation would be linked to the axial elastic strain. However, for
general triaxial stress states a more advanced equivalent strain
expression is required, which predicts damage initiation when
the strength envelope is reached. This expression is determined
from the yield surface (fp ¼ 0) by setting qh1 ¼ 1 and qh2 ¼ ~e=e0.
From this quadratic equation for ~e, the equivalent strain is
determined as

~e ¼ e0m0

2
�qffiffiffi
6
p

fc
r cos hð Þ þ

�rV

fc

 !

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

0m2
0

4
�qffiffiffi
6
p

fc
r cos hð Þ þ

�rV

fc

 !2

þ 3e2
0
�q2

2f 2
c

vuut ð37Þ



Fig. 4. Geometrical meaning of the inelastic strain ei for the combined damage-
plasticity model. The inelastic strain is composed of reversible xðe� epÞ and
irreversible ep parts. The dashed lines represent elastic unloading with the same
stiffness as the initial elastic loading.
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For uniaxial tension, the effective stress state is defined as
�r1 ¼ �rt; �r2 ¼ �r3 ¼ 0; �rV ¼ �rt=3; �s1 ¼ 2�rt=3; �s2 ¼ �s3 ¼ ��rt=3;
�q ¼

ffiffiffiffiffiffiffiffi
2=3

p
�rt and rðcos hÞ ¼ 1=e. Setting this into (37) and using the

definition of m0 in (20) gives

~e ¼ e0
�rt

ft
¼ �rt=E ð38Þ

which is suitable equivalent strain for modelling tensile failure. For
uniaxial compression, the effective stress state is defined as
�r1 ¼ ��rc; �r2 ¼ �r3 ¼ 0; �rV ¼ ��rc=3; �s1 ¼ �2=3�rc; �s2 ¼ �s3 ¼ 1=3�rc;
�q ¼

ffiffiffiffiffiffiffiffi
2=3

p
�rc, and rðcos hÞ ¼ 1. Here, �rc is the magnitude of the

effective compressive stress. Setting this into (37), the equivalent
strain is

~e ¼
�rce0

fc
¼

�rcft

Efc
ð39Þ

If �rc ¼ ðfc=ftÞ�rt, the equivalent strain is again equal to the axial
elastic strain component in uniaxial tension. Consequently, the
equivalent strain definition in (37) is suitable for both tension and
compression, which is very convenient for relating the damage
variables in tension and compression to stress-inelastic strain
curves.

The damage variables xt and xc in (1) are determined so that a
prescribed stress-inelastic strain relation in uniaxial tension is
obtained. Since, the damage variables are evaluated for general
triaxial stress states, the inelastic strain in uniaxial tension has to
be expressed by suitable scalar history variables, which are
obtained from total and plastic strain components. To illustrate
the choice of these components, a 1D damage-plastic stress–strain
law of the form

r ¼ 1�xð Þ�r ¼ ð1�xÞEðe� epÞ ð40Þ

is considered. Here, x is the damage variable. This law can also be
written as

r ¼ E e� ep þxðe� epÞ
� �� �

¼ Eðe� eiÞ ð41Þ

where ei is the inelastic strain which is subtracted from the total
strain. The geometrical interpretation of the inelastic strain and
its split for monotonic uniaxial tension, linear hardening plasticity
and linear damage evolution are shown in Fig. 4. Furthermore, the
way how the hardening influences damage and plasticity dissipa-
tion has been discussed in Grassl (2009). The part xðe� epÞ is
reversible and ep is irreversible. The damage variable is chosen, so
that a softening law is obtained, which relates the stress to the
inelastic strain, which is written here in generic form as

r ¼ fsðeiÞ ð42Þ

Setting (41) equal with (42) allows for determining the damage var-
iable x.

However, the inelastic strain ei in (41) and (42) needs to be ex-
pressed by history variables, so that the expression for the damage
variable can be used for non-monotonic loading. Furthermore, to
be able to describe also the influence of multiaxial stress states
on the damage evolution, the inelastic strain in (42) is replaced
by different history variables than the inelastic strain in (41). The
choice of the history variables for tension and compression is ex-
plained in Sections 2.3.1 and 2.3.2.

2.3.1. History variables for tension
The tensile damage variable xt in (1) is defined by three history

variables jdt; jdt1 and jdt2. The variable jdt is used in the defini-
tion of the inelastic strain in (41), while jdt1 and jdt2 enter the def-
inition of the inelastic strain in (42). The history variable jdt is
determined from ~et using (6) and (7). Here, ~et is given implicitly
in incremental form by
_~et ¼ _~e ð43Þ

with ~e given in (37). For jdt1, the inelastic strain component related
the plastic strain ep is replaced by

_jdt1 ¼
1
xs
k _epk if _jdt > 0 and jdt > e0

0 if _jdt ¼ 0 or jdt < e0

(
ð44Þ

Here, the pre-peak plastic strains do not contribute to this history
variable, since _jdt1 is only nonzero, if jdt > e0. Finally, the third his-
tory variable is related to jdt as

_jdt2 ¼
_jdt

xs
ð45Þ

In (44) and (45), xs is a ductility measure, which describes the influ-
ence of multiaxial stress states on the softening response, see
Section 2.3.4.

2.3.2. History variables for compression
The compression damage variable xc is also defined by three

history variables jdc; jdc1 and jdc2. Analogous to the tensile case,
the variable jdc is used in the definition of the inelastic strain in
(41), while jdc1 and jdc2 enter the definition of the equivalent
strain in (42). In addition, a variable ac is introduced which distin-
guishes tensile and compressive stresses. It has the form

ac ¼
X3

i¼1

�rpc i �rpt i þ �rpc i
� �
k�rpk2 ð46Þ

where �rpti and �rpci are the components of the compressive and ten-
sile part of the principal effective stresses, respectively, which were
previously used for the general stress strain law in (1). The variable
ac varies from 0 for pure tension to 1 for pure compression. For in-
stance, for the mixed tensile compressive effective stress state
�rp ¼ ��r;0:2�r; 0:1�rf g, considered in Section 2.1, the variable is
ac ¼ 0:95.

The history variable jdc is determined from ~ec using (9) and
(10), where, analogous to the tensile case, the ec is specified implic-
itly by

_~ec ¼ ac
_~e ð47Þ

The other two history variables are



Fig. 5. Bilinear softening.

Fig. 6. Model response for cyclic loading with ft ¼ 1 and fc ¼ 3 for CDPM2 (solid
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_jdc1 ¼
acbc

xs
k _epk if _jdt > 0 ^ jdt > e0

0 if _jdt ¼ 0 _ jdt < e0

(
ð48Þ

and

_jdc2 ¼
_jdc

xs
ð49Þ

In (48), the factor bc is

bc ¼
ftqh2

ffiffiffiffiffiffiffiffi
2=3

p
�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2D2

f

q ð50Þ

This factor provides a smooth transition from pure damage to dam-
age-plasticity softening processes, which can occur during cyclic
loading, as described in Section 2.3.5.

2.3.3. Damage variables for bilinear softening
With the history variables defined in the previous two sections,

the damage variables for tension and compression are deter-
mined. The form of these damage variables depends on the type
of softening law considered. For bilinear softening used in the
present study, the stress versus inelastic strain in the softening
regime is

r ¼
ft � ft�r1

ef1
ei if 0 < ei 6 ef1

r1 � r1
ef�ef1

ei � ef1ð Þ if ef1 < ei 6 ef

0 if ef 6 ei

8>><
>>: ð51Þ

where ef is the inelastic strain threshold at which the uniaxial stress
is equal to zero and ef1 is the threshold where the uniaxial stress is
equal to r1 as shown in Fig. 5. Furthermore, ei is the inelastic strain
in the post-peak regime only. Since damage is irreversible, the
inelastic strain ei in (51) is expressed by irreversible damage history
variables as

ei ¼ jdt1 þxtjdt2 ð52Þ

Furthermore, the term e� ep in (40) is replaced by jdt, which gives

r ¼ 1�xtð ÞEjdt ð53Þ

Setting (51) with (52) equal to (53), and solving for xt gives

xt ¼

ðEjdt � ftÞef1 � ðr1 � ftÞjdt1

Ejdtef1 þ ðr1 � ftÞjdt2
if 0 < ei 6 ef1

Ejdt ef � ef1ð Þ þ r1 jdt1 � efð Þ
Ejdt ef � ef1ð Þ � r1jdt2

if ef1 < ei 6 ef

0 if ef < ei

8>>>>><
>>>>>:

ð54Þ

For the compressive damage variable, an evolution based on an
exponential stress-inelastic strain law is used. The stress versus
inelastic strain in the softening regime in compression is

r ¼ ft exp � ei

efc


 �
if 0 < ei ð55Þ

where efc is an inelastic strain threshold which controls the initial
inclination of the softening curve. The use of different damage evo-
lution for tension and compression is one important improvement
over CDPM1 as it will shown later on when the structural applica-
tions are discussed.

2.3.4. Ductility measure
The history variables jdt1; jdt2; jdc1 and jdc2 in (44), (45), (48)

and (49), respectively, depend on a ductility measure xs, which
takes into account the influence of multiaxial stress states on the
damage evolution. This ductility measure is given by

xs ¼ 1þ As � 1ð ÞRs ð56Þ
where Rs is

Rs ¼
�
ffiffi
6
p

�rV
�q if �rV 6 0

0 if �rV > 0

(
ð57Þ

and As is a model parameter. For uniaxial compression
�rV=�q ¼ �1=

ffiffiffi
6
p

, so that Rs ¼ 1 and xs ¼ As, which simplifies the cal-
ibration of the softening response in this case.

2.3.5. Constitutive response to cyclic loading
The response of the constitutive model is illustrated by a quasi-

static strain cycle (Fig. 6, solid line), before it is compared to a wide
range of experimental results in the next section. The strain is in-
creased from point 0 to point 1, where the tensile strength of the
material is reached. Up to point 1, the material response is elas-
tic–plastic with small plastic strains. With a further increase of
the strain from point 1 to point 2, the effective stress part contin-
ues to increase, since Hp > 0, whereas the nominal stress de-
creases, since the tensile damage variable xt increases. A reverse
of the strain at point 2 results in an reduction of the stress with
an unloading stiffness, which is less than the elastic stiffness of
an elasto-plastic model, but greater than the stiffness of an elas-
to-damage mechanics model, i.e. greater than the secant stiffness.
At point 3, when the stress is equal to zero, a further reduction of
the strain leads to a compressive response following a linear
stress–strain relationship between the points 3 and 4 with the ori-
ginal Young’s modulus E of the undamaged material. This change
of stiffness is obtained by using two damage variables, xt and
xc. At point 3, xt > 0, but xc ¼ 0. Up to point 5, no further plastic
line) and CDPM1 (dashed line).



Fig. 7. Uniaxial tension: Model response compared to experimental results in
Gopalaratnam and Shah (1985).
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strains are generated, since the hardening from point 0 to 2 has in-
creased the elastic domain of the plasticity part, so that the yield
surface is not reached. Thus, the softening from point 4 to 5 is only
described by damage. Only at point 5, the plasticity surface is
reached and a subsequent increase of strain results in hardening
of the plasticity part, which corresponds to an increase of the effec-
tive stress. However, the nominal stress, shown in Fig. 6, decreases,
since xc increases. The continuous slopes of parts 4–5 and 5–6 are
obtained, since the additional factor bc in (48) is introduced. A sec-
ond reversal of the strain direction (point 6) changes the stress
from compression to tension at point 7, which is again associated
with a change of the stiffness. The above response is very different
from the one obtained with CDPM1 with only one damage param-
eter, which is also shown in Fig. 6 by a dashed line. With CDPM1,
the compressive response after point 3 is characterised by both a
reduced stiffness and strength which would depend on the amount
of damage accumulated in tension. For the case of damage equal to
1 in tension, both the strength and stiffness in compression would
be zero, which is not realistic for the tension–compression transi-
tion in concrete.

3. Mesh adjusted softening modulus

If the constitutive model described in the previous sections is
straightaway used within the finite element method, the amount
of dissipated energy might be strongly mesh-dependent. This
mesh-dependence is caused by localisation of deformations in
mesh-size dependent zones. The finer the mesh, the less energy
would be dissipated. This is a well known limitation of constitutive
laws with strain softening. One way to overcome this mesh-depen-
dence is to adjust the softening modulus with respect to the ele-
ment size. For the present model, this approach is applied for the
tensile damage variable by replacing in the tensile damage law
in (54) the strain thresholds ef1 and ef with wf1=h and wf=h, respec-
tively. Here, wf1 and wf are displacement thresholds and h is the
finite element size. Thus, with this approach the damage variables
for bilinear softening are

xt ¼

ðEjdt � ftÞwf1 � ðr1 � ftÞjdt1h
Ejdtwf1 þ ðr1 � ftÞjdt2h

if 0 < hei 6 wf1h

Ejdt wf �wf1ð Þ þ r1 jdt1h�wfð Þ
Ejdt wf �wf1ð Þ � r1jdt2h

if wf1 < hei 6 wf

0 if wf < hei

8>>>>><
>>>>>:

ð58Þ

These expressions are used when the constitutive model is com-
pared to experimental results in the next section. However, the evo-
lution law for compressive damage is kept to be independent of the
element size, as compressive failure is often accompanied by mesh-
independent zones of localised displacements.

4. Implementation

The present constitutive model has been implemented within
the framework of the nonlinear finite element method, where
the continuous loading process is replaced by incremental time
steps. In each step the boundary value problem (global level) and
the integration of the constitutive laws (local level) are solved.

For the boundary value problem on the global level, the usual
incremental-iterative solution strategy is used, in the form of a
modified Newton–Raphson iteration method. For the local prob-
lem, the updated values �ð Þðnþ1Þ of the stress and the internal vari-
ables at the end of the step are obtained by a fully implicit
(backward Euler) integration of the rate form of the constitutive
equations, starting from their known values �ð ÞðnÞ at the beginning
of the step and applying the given strain increment De ¼ eðnþ1Þ�
eðnÞ. The integration scheme is divided into two sequential steps,
corresponding to the plastic and damage parts of the model. In
the plastic part, the plastic strain ep and the effective stress �r at
the end of the step are determined. In the damage part, the damage
variables xt and xc, and the nominal stress r at the end of the step
are obtained. The implementation strategy for the local problem,
described in detail in Grassl and Jirásek (2006a) for CDPM1, applies
to the present model as well. To improve the robustness of the
model, a subincrementation scheme is employed for the integra-
tion of the plasticity part.
5. Comparison with experimental results

In this section, the model response is compared to five groups of
experiments reported in the literature. For each group of experi-
ments, the physical constants Young’s modulus E, Poisson’s ratio
m, tensile strength ft, compressive strength fc and tensile fracture
energy GFt are adjusted to obtain a fit for the different types of con-
crete used in the experiments. The first four constants are model
parameters. The last physical constant, GFt, is directly related to
model parameters. For the bilinear softening law in Section 2.3.3,
the tensile fracture energy is

GFt ¼ ftwf1=2þ r1wf=2 ð59Þ

For r1=ft ¼ 0:3 and wf1=wf ¼ 0:15 (shown by Jirásek and Zimmer-
mann, 1998 to result in a good fit for concrete failure), the expres-
sion for the fracture energy reduces to GFt ¼ ftwf=4:444. The
compressive energy is GFc ¼ fcefclcAs, where lc is the length in which
the compressive displacement are assumed to localise and As is the
ductility measure in Section 2.3.4. If no experimental results are
available, the five constants can be determined using, for instance,
the CEB-FIP Model Code (CEB, 1991).

The other model parameters are set to their default values for
all groups. The eccentricity constant e that controls the shape of
the deviatoric section is evaluated using the formula in Jirásek
and Bažant (2002), p. 365:

e ¼ 1þ �
2� � ; where � ¼ ft

fbc

f 2
bc � f 2

c

f 2
c � f 2

t
ð60Þ

where fbc is the strength in equibiaxial compression, which is esti-
mated as fbc ¼ 1:16f c according to the experimental results reported
in Kupfer et al. (1969). Parameter qh0 is the dimensionless ratio
qh0 ¼ �f c0=fc, where fc0 is the compressive stress at which the initial
yield limit is reached in the plasticity model for uniaxial compres-
sion. Its default value is qh0 ¼ 0:3. For the hardening modulus the
default value is Hp ¼ 0:01. Furthermore, the default value of the
parameter of the flow rule is chosen as Df ¼ 0:85, which yields a
good agreement with experimental results in uniaxial compression.
The determination of parameters Ah; Bh; Ch and Dh that influence
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the hardening ductility measure is more difficult. The effective
stress varies within the hardening regime, even for monotonic load-
ing, so that the ratio of axial and lateral plastic strain rate is not con-
stant. Thus, an exact relation of all four model parameters to
measurable material properties cannot be constructed. In Grassl
and Jirásek (2006a), it has been shown that a reasonable response
is obtained with parameters Ah ¼ 0:08; Bh ¼ 0:003; Ch ¼ 2 and
Dh ¼ 1� 10�6. These values were also used in the present study.
Fig. 10. Confined compression: Model response compared to experiments used in
Caner and Bažant (2000).

Fig. 9. Uniaxial and biaxial compression: Model response compared to experimen-
tal results reported in Kupfer et al. (1969).

Fig. 8. Uniaxial compression: Model response compared to experimental results
reported in Karsan and Jirsa (1969).
Furthermore, the element size h in the damage laws in Section 3
was chosen as h ¼ 0:1 m.

The first analysis is a uniaxial tensile setup with unloading. The
model response is compared to the experimental results reported
in Gopalaratnam and Shah (1985) (Fig. 7). The relevant model
parameters for this experiment are E ¼ 28 GPa, m ¼ 0:2; f c ¼
40 MPa, ft ¼ 3:5 MPa, GFt ¼ 55 J/m2.

The next example is an uniaxial compression test with unload-
ing, for which the model response is compared to experimental
results reported in Karsan and Jirsa (1969) (Fig. 8). The model
parameters are E ¼ 30 GPa, m ¼ 0:2; f c ¼ 28 MPa, ft ¼ 2:8 MPa.
Furthermore, the model constants for compression are As ¼ 5 and
efc ¼ 0:0001. The value of the tensile fracture energy GFt does not
influence the model response in compression, which also applies
Fig. 11. Confined compression: Model response compared to experiments reported
in Imran and Pantazopoulou (1996).

Fig. 12. Hydrostatic compression: Model response compared to experiments
reported in Caner and Bažant (2000).

Fig. 13. Three point bending test: Geometry and loading setup. The out-of-plane
thickness is 0.1 m. The notch thickness is 5 mm.



Fig. 14. Load-CMOD curves of analyses with three mesh sizes compared to the
experimental bounds reported in Kormeling and Reinhardt (1982).

Fig. 17. Load-CMSD curves of analyses with three mesh sizes compared to the
experimental bounds reported in Arrea and Ingraffea (1982).

Fig. 16. Four point shear test: Geometry and loading setup. The out-of-plane
thickness is 0.15 m. A zero notch thickness is assumed.
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to all other compression tests considered in the following para-
graphs. Therefore, only the compressive fracture energy is stated.

Next, the model is compared to uniaxial and biaxial compres-
sion tests reported in Kupfer et al. (1969). For these experiments,
the model parameters are set to E ¼ 32 GPa,
m ¼ 0:2; f c ¼ 32:8 MPa, ft ¼ 3:3 MPa. Furthermore, the model con-
stants for compression are As ¼ 1:5 and efc ¼ 0:0001. The compar-
ison with experimental results is shown in Fig. 9 for uniaxial,
equibiaxial and biaxial compression. For the biaxial compression
case, the stress ratio of the two compressive stress components
is r1=r2 ¼ �1=� 0:5.

Furthermore, the performance of the model is evaluated for tri-
axial tests reported in Caner and Bažant (2000). The material
parameters for this test are E ¼ 25 GPa, m ¼ 0:2; f c ¼ 45:7 MPa,
ft ¼ 4:57 MPa. Furthermore, the model constants for compression
are As ¼ 15 and efc ¼ 0:0001. The model response is compared to
experimental results presented in Fig. 10.

Next, the model response in triaxial compression is compared
to the experimental results reported in Imran and Pantazopoulou
(1996) (Fig. 11). The material parameters for this test are
E ¼ 30 GPa, m ¼ 0:2; f c ¼ 47:4 MPa, ft ¼ 4:74 MPa. Furthermore,
the model constants for compression are As ¼ 15 and efc ¼ 0:0001.

Finally, the model response in hydrostatic compression is com-
pared to the experimental results reported in Caner and Bažant
(2000) (Fig. 12). The material parameters are the same as for the
triaxial test shown in Fig. 10.

Overall, the agreement of the model response with the experi-
mental results is very good. The model is able to represent the
strength of concrete in tension and multiaxial compression. In
addition, the strains at maximum stress in tension and compres-
sion agree well with the experimental results. The bilinear stress-
crack opening curve that was used results in a good approximation
of the softening curve in uniaxial tension and compression. With
the above comparisons, it is demonstrated that CDPM2, provides,
Fig. 15. Tensile damage patterns for the coarse, medium and fine mesh for th
very similar to CDPM1, a very good agreement with experimental
results.

6. Structural analysis

The performance of the proposed constitutive model is further
evaluated by structural analysis of three fracture tests. The main
objective of this part of the study is to demonstrate that the struc-
tural response obtained with the model is mesh-independent. This
is achieved by adjusting the softening modulus with respect to the
element size (Section 3).

6.1. Three point bending test

The first structural example is a three-point bending test of a
single-edge notched beam reported by Kormeling and Reinhardt
(1982). The experiment is modelled by triangular plane strain fi-
nite elements with three mesh sizes. The geometry and loading
set up is shown in Fig. 13. The input parameters are chosen as
E ¼ 20 GPa, m ¼ 0:2; f t ¼ 2:4 MPa, Gft ¼ 100 N/m, fc ¼ 24 MPa
(Grassl and Jirásek, 2006b). All other parameters are set to their
e three point bending test. Black indicates a tensile damage variable of 1.



Fig. 19. (a) Geometry and loading setup of the eccentric compression test. (b) The
coarse finite element mesh.

Fig. 20. Comparison of the analysis of the eccentric compression test with the
experiment.

Fig. 18. Four point shear test: Tensile damage patterns for the coarse, medium and fine mesh compared to the experimental crack patterns reported in Arrea and Ingraffea
(1982). Black indicates a tensile damage variable of 1.
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default values described in Section 5. For this type of analysis, local
stress–strain relations with strain softening are known to result in
mesh-dependent load–displacement curves. The capability of the
adjustment of the softening modulus approach presented in Sec-
tion 3 to overcome this mesh-dependence is assessed with this
test. The global response in the form of load-Crack Mouth Opening
Displacement (CMOD) is shown in Fig. 14. The local response in the
form of tensile damage patterns at loading stages marked in Fig. 14
for the three meshes is shown in Fig. 15.

Overall, the load-CMOD curves in Fig. 14 are in good agreement
with the experimental results and almost mesh independent. On
the other hand, the damage zones in Fig. 15 depend on the mesh
size.
6.2. Four point shear test

The second structural example is a four point shear test of a sin-
gle-edge notched beam reported in Arrea and Ingraffea (1982).
Again, the experiment is modelled by triangular plane strain finite
elements with three different mesh sizes. The geometry and load-
ing setup are shown in Fig. 16. The input parameters are chosen as
E ¼ 30 GPa, m ¼ 0:18; f t ¼ 3:5 MPa, Gft ¼ 140 N/m, fc ¼ 35 MPa
(Jirásek and Grassl, 2008). All other parameters are set to their
default values described in Section 5. The global responses of
analyses and experimental results are compared in the form of
load-Crack Mouth Sliding Displacement (CMSD) curves in Fig. 17.
Furthermore, the damage patterns for the three meshes at loading
stages marked in Fig. 17 are compared to the experimental crack
patterns in Fig. 18.

The load-CMSD curves obtained with the three meshes are in
good agreement with the experimental results. The coarse mesh
overestimates the load levels obtained with the medium and fine
mesh. However, the two finer meshes are in good agreement.
Again, the width of the damaged zone depends on the element size.
Furthermore, the damage zones are influenced by the mesh orien-
tation. In particular, for the fine mesh the damage zone follows the
regular element arrangement, so that the crack is less curved than
reported in the experiments. This is a well known behaviour of
models using the adjustment of the softening modulus approach,
which has been studied in more detail in Jirásek and Grassl
(2008) and Grassl and Rempling (2007).

6.3. Eccentric compression test

The third structural example studies the failure of a concrete
prism subjected to eccentric compression, tested by Debernardi
and Taliano (2001). The geometry and loading setup are shown
in Fig. 19(a). The specimen with a relatively great eccentricity of
36.8 mm is modelled by a thin layer of linear 3D elements to re-
duce the computational time compared to a full 3D analysis. Three



Fig. 21. Contour plots of the damage variable for the (a) coarse, (b) medium and (c)
fine mesh of the eccentric compression test.
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different mesh sizes with element lengths of 7.5, 5 and 2.5 mm
were chosen (see Fig. 19(b) for the coarse mesh).

The model parameters were set to E ¼ 30 GPa, m ¼ 0:2; f t ¼
4 MPa, fc ¼ 46 MPa, GFt ¼ 100 N/m, As ¼ 10 and efc ¼ 0:0001. The
model response in terms of the overall load versus the mean
compressive strain of the compressed side obtained on the fine
mesh is compared to the experimental result in Fig. 20. The load
capacity and the strain at peak are underestimated by the model.
The overall behaviour, however, is captured well. The comparison
of the load-compressive strain relations for the analyses on meshes
of different sizes indicates that the description of this type of
compressive failure is nearly mesh-independent. The evolution of
the damage zone for the analysis on the coarse mesh is depicted
in Fig. 21 for the final stage of the analyses in Fig. 20. On the tensile
side several zones of localised damage form, whereas the failure on
the compressive side is described by a diffuse damage zone.

7. Conclusions

The present damage plasticity model CDPM2, which combines a
stress-based plasticity part with a strain based damage mechanics
model, is based on an enhancement of an already exisiting dam-
age-plasticity model called CDPM1 (Grassl and Jirásek, 2006a).
Based on the work presented in this manuscript, the following con-
clusions can be drawn on the improvements that this constitutive
model provides:

1. The model is able to describe realistically the transition from
tensile to compressive failure. This is achieved by the introduc-
tion of two separate isotropic damage variables for tension and
compression.

2. The model is able to reproduce stress inelastic strain relations
with varying ratios of reversible and irreversible strain compo-
nents. The ratio can be controlled by the hardening modulus of
the plasticity part.

3. The model gives meshindependent load–displacement curves
for both tensile and compressive failure.

In addition, the model response is in good agreement with
experimental results for a wide range of loading from uniaxial ten-
sion to confined compression.
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