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Abstract

G protein coupled receptors (GPCRs) are remarkably versatile signaling molecules. The members of this large family of membrane proteins are
activated by a spectrum of structurally diverse ligands, and have been shown to modulate the activity of different signaling pathways in a ligand
specific manner. In this manuscript I will review what is known about the structure and mechanism of activation of GPCRs focusing primarily on
two model systems, rhodopsin and the 3, adrenoceptor.
© 2006 Elsevier B.V. All rights reserved.

Keywords: GPCR; 7TM; Structure; Conformational change; Efficacy

Contents

. Introduction . . . . . . . . L e 795
2. GPCR Structure . . . . . . . oo e e e e 795
2.1. Common structural features of GPCRs. . . . . . . . . . . . e 795

2.2.  Structural insights from thodopsin . . . . . . . . . .. e 795
2.2.1.  Two-dimensional crystals . . . . . . . . . . L 795

2.2.2.  Three-dimensional crystals . . . . . . . . .. e 795

2.2.3.  Comparison of P4, and P3; rhodopsin structures. . . . . . . . . . . . . . . ... 796

2.3.  Structure of other GPCRS . . . . . . . . . . e 796
2.3.1. Obstacles for obtaining GPCR structures . . . . . . . . . . . . .. L 797

24, GPCR OLHZOMETS . . . . . . o ot e e e e e e e e e e e e 798

3. GPCR aCtivation. . . . . . . . . oot s e e e e 798
3.1, Activation of thodopsin . . . . . . . L L L e e 798

3.2.  Common structural changes among GPCRs . . . . . . . . . . . . . . . . e 799

3.3, Activation by diffusable agonists. . . . . . ... L e e 799

3.4.  P,AR as a model system for studying ligand-induced conformational changes . . . . . . . . . ... ... ... ... ... 799
3.4.1. Ligand-specific conformational states detected by fluorescence lifetime studies . . . . . . . ... ... ... ... 801

3.4.2. Intermediate conformational states detected by kinetic studies . . . . . . . .. ... Lo 801

3.4.3. Relevance of slow conformational changes. . . . . . . . . . . . . . .. 802

3.4.4. Catechol activates of the rotamer toggle switch. . . . . . . . . . . . . . ... ... ... 803

3.4.5. Non-catecholamine partial agonists do not activate the rotamer toggle switch . . . . . . .. ... ... ... ... 803

3.4.6. The inverse agonist ICI118,551 does not inhibit activation of the rotamer toggle switch. . . . . . .. . ... . .. 803

Abbreviations: 3,AR, beta 2 adrenoceptor; GPCR, G protein coupled receptor; TM, transmembrane
* Amino acid numbering: The position of 3,AR residues are followed by the Ballesteros general number [1] in superscript, in the form X.Y'Y, where X refers to the
TM segment and YY to the position relative to the most highly conserved amino acid in the TM segment, which is assigned an arbitrary position of 50.
E-mail address: kobilka@stanford.edu.

0005-2736/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.bbamem.2006.10.021


https://core.ac.uk/display/82324011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kobilka@stanford.edu
http://dx.doi.org/10.1016/j.bbamem.2006.10.021

B.K. Kobilka / Biochimica et Biophysica Acta 1768 (2007) 794-807 795

3.4.7.
3.4.8.

4. Conclusions. . . . . . . . .. ...
References . . . . . . . . . . . ..o

1. Introduction

G protein coupled receptors (GPCRs) represent the largest
family of membrane proteins in the human genome and the
richest source of targets for the pharmaceutical industry. There
has been remarkable progress in the field of GPCR biology
during the past two decades. Notable milestones include the
cloning of the first GPCR genes, and the sequencing of the
human genome revealing the size of the GPCR family and the
number of orphan GPCRs. Moreover, there is a growing
appreciation that GPCR regulation and signaling is much more
complex than originally envisioned, and includes signaling
through G protein independent pathways [2—4]. Consequently,
it has been proposed that the term GPCR be abandoned in favor
of 7 transmembrane or 7TM receptors.

In spite of the remarkable advances in the biology and
pharmacology of GPCRs, progress in the area of protein
structure has been more limited. To date, the only high-
resolution structures of a GPCR have been for bovine
rhodopsin. In this manuscript I will briefly review the
groundbreaking structural work on rhodopsin and discuss the
challenges in obtaining high-resolution structures of other
GPCRs. I will also discuss what we know about the structural
changes associated with receptor activation.

2. GPCR structure
2.1. Common structural features of GPCRs

G protein coupled receptors (GPCRs) represent the single
largest class of membrane proteins in the human genome. A
recent and detailed analysis of the human genome reveals over
800 unique GPCRs, of which approximately 460 are predicted
to be olfactory receptors [5]. Based on sequence similarity
within the 7 TM segments, these receptors can be clustered into
5 families: the rhodopsin family (701 members), the adhesion
family (24 members), the frizzled/taste family (24 members),
the glutamate family (15 members), and the secretin family (15
members) [5]. The physiologic function of a large fraction of
these 800 GPCRs is unknown; these receptors are referred to as
orphan GPCRs. However, deorphanization of non-olfactory
GPCRs is an ongoing process [6], as they are a promising group
of targets for the pharmaceutical industry. Therefore, the actual
number of orphan GPCRs continues to decline.

GPCRs share a common structural signature of seven
hydrophobic transmembrane (TM) segments, with an extra-
cellular amino terminus and an intracellular carboxyl terminus
(Fig. 1). GPCRs share the greatest homology within the TM
segments. The most variable structures among the family of
GPCRs are the carboxyl terminus, the intracellular loop

spanning TM5 and TM6, and the amino terminus. The greatest
diversity is observed in the amino terminus. This sequence is
relatively short (10-50 amino acids) for monoamine and
peptide receptors, and much larger (350—600 amino acids) for
glycoprotein hormone receptors, and the glutamate family
receptors. The largest amino terminal domains are observed in
the adhesion family receptors.

This structural and functional similarity of GPCRs stands in
contrast to the structural diversity of the natural GPCR ligands
[7]. These range from subatomic particles (a photon), to ions
(H" and Ca™), to small organic molecules, to peptides and
proteins. The location of the ligand binding domains for many
GPCRs has been determined [7]. While many small organic
agonists bind within the TM segments, peptide hormones and
proteins often bind to the amino terminus and extracellular
sequences joining the TM domains. However, size of the ligand
alone cannot be used to predict the location of the binding site:
for instance, glycoprotein hormones, glutamate, and Ca®" all
activate their respective receptors by binding to relatively large
amino terminal domains [7,8]. It is interesting to note that it has
been possible to identify small molecular weight allosteric
modulators that bind within the TM domains [9—-14] for many
GPCRs that bind their native agonists on the extracellular loops
or the amino terminus.

2.2. Structural insights from rhodopsin

Our understanding of GPCR structure is based largely on the
high-resolution structures of the inactive state of rhodopsin.
Rhodopsin is better suited for structural studies than most other
GPCRs because it is possible to obtain large quantities of highly
enriched protein from bovine retina. Rhodopsin is also a
remarkably stable GPCR, retaining function under conditions
that denature many other GPCRs.

2.2.1. Two-dimensional crystals

The first structures of rhodopsin came from cryoelectron
microscopy of two-dimensional crystals of bovine rhodopsin
from Gebhard Schertler’s group [15—19]. While the resolution
of these structures was limited (ranging from 5 to 9 A), they
provided the first picture of the orientation of the TM segments
in a lipid environment. These structures, together with the
subsequent computational work from Baldwin [20] provided
the template from which most molecular models for other
GPCRs were generated.

2.2.2. Three-dimensional crystals

More recently, three dimensional crystals structures of
rhodopsin have been obtained by several groups [21-26].
Three-dimensional crystals of bovine rhodopsin have been
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Fig. 1. Cartoons depicting the secondary structure and the location of agonist binding sites for different GPCRs.

grown using at least two different approaches. The first
published crystals of rhodopsin were obtained from rhodopsin
selectively solubilized from rod outer segments using a
combination of alkyl(thio)glucoside detergents and divalent
cations [21,27]. The procedure used no additional purification
steps. The mixture likely contained more rod out segment lipids
than would be expected from protein purified by column
chromatography, and it was speculated that the presence of
these lipids may influence crystal formation [21]. Crystals
grown from this preparation of rhodopsin initially diffracted at
2.8 A [22] and subsequent improvements have led to diffraction
at 2.2 A [25]. All of these crystals have a P4, space group, and
crystal contacts form between hydrophilic domains of the
receptor.

Three-dimensional crystals have also been obtained from
bovine rhodopsin solubilized from rod outer segments using the
detergent lauryldimethylamine-oxide (LDAO) and subjected to
lectin chromatography followed by detergent exchange into n-
octyltetraoxyethylene (C8E4) followed by anion exchange
chromatography [26,28]. This more extensive purification
procedure, which would be expected to remove all but tightly
bound lipid, resulted in crystals diffracting at 2.6 A [26]. These
crystals have a P3; space group and crystal contacts form
primarily within the transmembrane domains and the intracel-
lular and extracellular loop structures point into solvent filled
cavities. As a result, the loop structures may assume a more

native structure in the P3; crystal form compared to the P4,
crystals [29].

2.2.3. Comparison of P4; and P3; rhodopsin structures

The structures obtained from P4, and P3; crystals are very
similar overall, particularly in the transmembrane, and extra-
cellular domains (Fig. 2, for a detailed comparison of these
structures see Schertler [29]). However, there are significant
differences in the cytoplasmic loop linking TM5 and TM6,
which is known to be involved in G protein coupling. These
differences are highlighted in red in Fig. 2. The structure from
the P3; crystals is in agreement with structures obtained from
electron diffraction of two-dimensional crystals and with
electron paramagnetic resonance spectroscopy studies [29].
As discussed above, this loop may assume a more native
structure in the P3; crystals because none of the cytoplasmic
domains are involved in crystal lattice contacts.

2.3. Structure of other GPCRs

Recently the amino terminal ligand binding domain of the
FSH receptor was crystallized in complex with its ligand [30].
This provides important structural insights into glycoprotein
hormone binding; however, the structure does not include the
transmembrane domains. With this exception, there are no other
high-resolution crystal structures of GPCRS. Structure analysis
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Fig. 2. A comparison of the rthodopsin structures determined from the P4, [25] and P3, [26] crystal forms. The loop connecting TM5 and TM6 (shown in red) is the

most divergent sequence.

of other GPCRs has largely been limited to the use of site-
directed mutagenesis and cysteine scanning mutagenesis [31] to
detect receptor—ligand interactions, and the use of engineered
metal ion binding sites to probe intramolecular interactions [32].
While these approaches provide low-resolution structural
information, this information can be used to verify and improve
the accuracy of homology models based on rhodopsin.
Ballesteros and Javitch found that structural insights obtained
from mutagenesis data and substituted cysteine accessibility
studies on monoamine receptors were consistent with the high-
resolution structure of rhodopsin, suggesting that rhodopsin
serves as a good template for homology modeling [33].
However, rhodopsin might not be a good template for models
of more distantly related family rhodopsin family members such
as the cholecystokinin CCK1 receptor [34].

2.3.1. Obstacles for obtaining GPCR structures

The major obstacles to obtaining structures of other GPCRs
include protein production and purification, and protein stability
and homogeneity. In terms of production, it is now possible to
generate sufficient quantities (tens of milligrams) of several
GPCRs for crystal screening using bacterial, yeast, insect cell,

and mammalian cell expression systems [35-40]. The avail-
ability of robotic systems for preparing setups of 100 nl
volumes (or smaller) has enabled large parameter screens with
relatively small amounts of protein. As such, protein production
is no longer the major limitation for crystallography efforts.

Perhaps a greater problem is the stability of purified GPCRs
in detergents compatible with crystallography. For example, the
{3, adrenoceptor (,AR) and many other GPCRs are not stable
in the detergents used to obtain rhodopsin crystals; and thus far
rhodopsin crystals have not been obtained in dodecylmaltoside,
a detergent in which the p,AR is relatively stable. GPCRs tend
to be more stable in non-ionic detergents with relatively long
alkyl chains. These detergents may form larger micelles that
prevent the formation of crystal contacts [41]. Another problem
is the potential for both structural and conformational hetero-
geneity in GPCRs. By structural heterogeneity I mean
heterogeneity in posttranslational modifications such as glyco-
sylation, phosphorylation and palmitoylation. These sources of
heterogeneity can often be eliminated by site directed
mutagenesis of the protein, or enzymatic removal of sugars
and phosphates. This source of heterogeneity is minimized if the
GPCR can be expressed in bacteria.
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The greatest obstacle to the formation of crystals may be
conformational heterogeneity due to the inherent flexibility of
GPCRs. This flexibility may be functionally important,
enabling structural changes associated with agonist binding
and activation of a membrane bound receptor; however, this
property may lead to the existence of different protein con-
formations and to denaturation, particularly in detergent
solutions. There is evidence that the conformational hetero-
geneity due to relative movements of the TM segments can be
reduced by specific ligands [42]. Other sources of conforma-
tional heterogeneity are the amino and carboxyl termini, and the
loops connecting the TM segments. These sequences are often
longer than the homologous segments in rhodopsin and may be
unstructured. In some cases the problem of conformational
heterogeneity can be mitigated by structural modifications;
however, identifying these poorly structured domains can be
challenging. Moreover, removing hydrophilic sequences may
eliminate potential crystal lattice sites.

While the challenges facing GPCR structural biologists are
formidable, I believe structures will begin to appear within the
next several years. The problems outlined above are solvable.
This may require a highly focused effort on a specific target,
where structural modifications and/or associated proteins
(antibodies, arrestins, G proteins) are used to facilitate crystal
formation. Another approach is to screen a large number of
GCPRs to identify those with the best characteristics for struc-
tural studies. This approach has been used by a European
consortium known as the Membrane Protein Network (MEP-
NET, http://www.mepnet.org/) consisting of academic and
industrial groups. This program has made significant progress
in identifying the best GPCR candidates for crystallography
trials.

2.4. GPCR oligomers

There is a growing body of evidence that GPCRs exist as
dimers (or oligomers) and that these dimers may be important
for G protein activation for at least some GPCR families. This
topic has been addressed in several excellent reviews [43—46]
and is the subject of another review in this series. Therefore,
GPCR dimers will be only briefly discussed here. Dimerization
is clearly an important mechanism of receptor activation for the
glutamate family of GPCRs [8,47], where ligand-induced
changes in the dimer interface of the amino terminal ligand
binding domain has been demonstrated by crystallography
[48,49]. However, the role of dimerization in the activation of
rhodopsin family members is less clear. For instance, recent
cryoelectron microscopy images suggest that rhodopsin may
exist as homodimers in rod outer segment membranes [50]. In
addition, neutron scattering studies provide evidence that a
pentameric complex forms when purified leukotriene B(4) is
reconstituted with purified Gi, suggesting that a receptor
homodimer is needed to complex with a heterotrimeric G
protein [51]. Nevertheless, it remains to be seen if a receptor
dimer is required for G protein activation. The effect of agonist
binding on the formation or disruption of dimers is not
consistent among the rhodopsin family members that have

been examined [43]. Moreover, ligands interact with individual
receptor monomers, and there is currently no evidence that
ligands span the interface between receptor dimers. If changes
in dimerization occur, it is likely a secondary consequence of
ligand-induced changes in the arrangement of the TM segments.
Evidence in support of this comes from biophysical studies on
leukotriene B(4) homodimers demonstrating that ligand binding
to one protomer leads to conformational changes in its partner
[52]. While dimers may be important for G protein activation, it
is essential to understand the agonist-induced structural changes
that occur in the context of individual GPCR monomers.

3. GPCR activation
3.1. Activation of rhodopsin

The currently available three-dimensional, high-resolution
structures of rhodopsin correspond to an inactive form of the
receptor. The most detailed information about structural
changes associated with activation of a GPCR comes from
lower-resolution biophysical studies on rhodopsin. Rhodopsin
structure and what is known about its light-induced conforma-
tional changes have been the subject of several excellent
reviews [29,53-56], and some of the main points will be briefly
discussed here. Electron paramagnetic resonance spectroscopy
(EPR) studies provide evidence that photoactivation of
rhodopsin involves a rotation and tilting of TM6 relative to
TM3 [57]. Further support for motion of TM6 during rhodopsin
activation was provided by chemical reactivity measurements
and fluorescence spectroscopy [58], as well as by ultraviolet
absorbance spectroscopy [59] and by zinc crosslinking of
histidines [60]. Light-induced conformational changes have
also been observed in the cytoplasmic domain spanning TM1
and TM2, and the cytoplasmic end of TM7 [61-63].

Obtaining a high-resolution structure of metarhodopsin II,
the active form of rhodopsin has been hindered by the instability
of thodopsin crystals following light activation. However, there
has been some progress towards this goal. Shertler’s group
succeeded in obtaining two dimensional crystals and a low
resolution map of metarhodopsin I [64,29]. Metarhodopsin I is
an intermediate in the process of rhodopsin activation that
occurs after photoisomerization of 11-Cisretinal, but before
structural changes required for transducin activation (metarho-
dopsin II). Electron diffraction studies reveal that the formation
of metarhodopsin I is not accompanied by the large rigid-body
movements in TM segments shown to be involved in rhodopsin
activation [57]. However, a more subtle change, consisting in
the rearrangement in the conformation of the Trp residue of the
highly conserved CWxxP motif in TM6, has been detected in
this intermediate. Thus, it seems that there is no gradual
transformation of the inactive protein into the active form, but
the activation is initiated through small scale changes in the
conformation of some key residues, which will presumably
trigger the larger conformational changes related to the
subsequent stages of the activation process [29]. Recently,
conditions for growing more light stable three-dimensional
crystals of rhodopsin have been identified [65], suggesting that
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a high-resolution structure of metarhodopsin II may be available
in the near future.

3.2. Common structural changes among GPCRs

In spite of the remarkable diversity of ligands and ligand
binding domains in the family of GPCRs, there is also
considerable evidence for a common mechanism of activation.
When comparing sequences, GPCRs are most similar at the
cytoplasmic ends of the transmembrane segments adjacent to
the second and third cytoplasmic domains, the regions known to
interact with cytoplasmic G proteins [66]. Members of the large
family of GPCRs transduce signals by activating one or more
members of the relatively small family of highly homologous
heterotrimeric G proteins. For example, the follicle stimulating
hormone (FSH) receptor is activated by a large glycoprotein
hormone that binds to the amino terminus while the 3,AR is
activated by adrenaline (approximately the size of a single
amino acid) that binds to the TM segments; yet both of these
receptors activate the same G protein (Gs), indicating that the
structural changes in the cytoplasmic domains of these two
receptors must be very similar. Moreover, many GPCRs exhibit
promiscuous coupling to more than one G protein. For example,
rhodopsin preferentially couples to transducin while the p,AR
preferentially couples to Gs; however, both are capable of
activating Gi [67].

Additional evidence that GPCRs undergo similar conforma-
tional changes within TM segments and cytoplasmic domains
comes from biophysical and biochemical studies. Fluorescence
spectroscopic studies of B,AR labeled with florescent probes
demonstrate movement in both TM3 and TM6 upon activation
[68]. More recent studies of 3,AR labeled with fluorescent
probes at the cytoplasmic end of TM6 provide evidence that
agonists induce a rotation or tilting movement of the
cytoplasmic end of TM6 similar to that observed in rhodopsin
[69,70]. A key structural change involving the disruption of an
ionic interaction between the highly conserved D(E)RY
sequence at the cytoplasmic end of TM3 and an acidic residue
at the cytoplasmic end of TM6 is observed upon activation of
both rhodopsin and the p,AR [57,71] Additional support for
movement of TM3 and TM6 in the B,AR comes from zinc
crosslinking studies [72,73], and chemical reactivity measure-
ments in constitutively active 3>,AR mutants [74,75]. Cysteine
crosslinking studies on the M3 muscarinic receptor provide
evidence for the movement of the cytoplasmic ends of TMS5 and
TM6 toward each other upon agonist activation [76—78].

3.3. Activation by diffusable agonists

While the structural changes associated with activation may
be similar for rhodopsin and other GPCRs, the mechanism by
which these changes are brought about is quite different. In
inactive rhodopsin, there is virtually no activity towards the G
protein transducin. Absorption of a photon of light converts
covalently bound 11-Cisretinal (an inverse agonist) to all trans
retinal (a full agonist) within femptoseconds. Rhodopsin then
rapidly undergoes a series of conformational changes that have

been characterized spectroscopically (rhodopsin>bathorhodop-
sin>lumirhodopsin>metarhodopsin [>metarhodopsin II). The
structural changes associated with the formation of metarho-
dopsin 11, the active form of rhodopsin, are observed within
microseconds of photoactivation [79]. Photoisomerization of
bound retinal is extremely efficient in using the energy of the
captured photon to induce protein structure changes. It is
interesting that free trans-retinal is not a very effective agonist
for opsin (the unliganded form of rhodopsin) [80,81], producing
only about 14% of the response observed for light-activated
rhodopsin[80].

For the vast majority of other GPCRs, activation occurs
when an agonist diffuses into an unliganded receptor. In many
cases the unliganded receptor has some basal (constitutive)
activity towards a G protein. The term “efficacy” is used to
describe the effect of a ligand on the functional properties of the
receptor [For a more complete discussion of efficacy refer to
[82]]. Agonists are defined as ligands that fully activate the
receptor. Partial agonists induce submaximal activation of the G
protein even at saturating concentrations. Inverse agonists
inhibit basal activity. Antagonists have no effect on basal
activity, but competitively block access of other ligands. The
efficacy of a given drug may vary depending on the signaling
pathway being examined [83].

A number of kinetic models have been developed to explain
GPCR activation using information derived from indirect
measures of receptor conformation, such as ligand binding
affinity and the activation of G proteins or effector enzymes
[84—87]. The simplest of them, the two-state model proposes
that a receptor exists primarily in two states, the inactive state
(R) and the active state (R*). In the absence of ligands, the level
of basal receptor activity is determined by the equilibrium
between R and R*. The efficacy of ligands reflects their ability
to alter the equilibrium between these two states. Full agonists
bind to and stabilize R*, while inverse agonists bind to and
stabilize R. Partial agonists have some affinity for both R and
R* and are therefore less effective in shifting the equilibrium
towards R*.

The two-state model can describe much of the functional
behavior of GPCRs and explain the spectrum of responses to
ligands of different efficacy in simple experimental systems
consisting of one receptor and one G protein. However, there is
a growing body of experimental evidence for the existence of
multiple conformational states [summarized in [83]]. Within
this framework, each ligand may induce or stabilize a unique
conformational state that can be distinguished by the activity of
that state towards different signaling molecules (G proteins,
kinases, arrestins).

3.4. BAR as a model system for studying ligand-induced
conformational changes

With the exception of rhodopsin, the 3,AR is perhaps the
most extensively characterized member of the GPCR family.
The B,AR is a good model system for studying agonist binding
because much is known about the sites of interactions between
catecholamine ligands and the receptor (Fig. 3). Moreover,
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there is a rich source of structurally similar ligands having a
spectrum of efficacies ranging from inverse agonists to full
agonists (Fig. 3B).

In the case of the B,AR it has been possible to monitor
directly some of these ligand-specific states using fluorescence
spectroscopy [42,70,71,88,89]. These studies reveal that for the
R>AR ligand binding and activation is a kinetically and
conformationally complex process. Based on these studies we
have proposed a working model (Fig. 4) where agonist binding
and conformational changes occur through a sequence of
conformational intermediates. Biophysical support for this
model will be briefly summarized below.

To study ligand induced conformational changes, purified
3-,AR is labeled with relatively small fluorescent probes (less
that 500 Da) at specific sites on the cytoplasmic ends of
transmembrane domains involved in ligand binding and G
protein coupling [42,70,71,88,89]. Selective labeling is accom-
plished using a modified B,AR in which the most reactive

cysteines have been mutated to alanine, valine or serine [71].
The resulting minimal cysteine receptor exhibits normal ligand
binding and G protein coupling behavior. A new reactive
cysteine is introduced into a specific structural domain by site-
directed mutagenesis. The modified 3,AR is expressed in insect
cells, solubilized from insect cell membranes with detergent
(dodecylmaltoside), purified by affinity chromatography, and
labeled with a cysteine reactive fluorescent probe. The
fluorescent probes are sensitive to their local molecular
environment such that changes in the B,AR structure lead to
changes in the fluorescent properties of the fluorophores
(intensity, lifetime, mobility). Therefore it is possible to monitor
ligand-induced conformational changes in different receptor
domains, and to correlate ligand structure with specific
structural changes in the receptor.

Fig. 3 shows the amino acid residues that form the ligand
binding site for the ;AR deduced from mutagenesis studies,
and illustrates the location of Cys 265, one of the labeling sites
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we have used for our spectroscopy studies. An environmentally
sensitive fluorophore covalently bound to Cys265 is well
positioned to detect agonist-induced conformational changes
relevant to G protein activation. Based on homology with
rhodopsin, Cys265 is located in the third intracellular loop (IC3)
at the cytoplasmic end of the TM6. Mutagenesis studies have
shown this region of IC3 to be important for G protein coupling
[90,91]. Moreover, TM6, along with TM3 and TMS5 contain
amino acids that form the agonist binding site.

3.4.1. Ligand-specific conformational states detected by
fluorescence lifetime studies

We examined ligand-dependent changes in fluorescence
lifetime of purified B,AR labeled at Cys265 with fluorescein
maleimide in an effort to identify the existence of agonist-
specific conformational states [42]. Fluorescence lifetime
analysis can detect discrete conformational states in a popula-
tion of molecules, while fluorescence intensity measurements
reflect the weighted average of one or more discrete states.
Fluorescence lifetime, T, refers to the average time that a
fluorophore that has absorbed a photon remains in the excited
state before returning to the ground state. The lifetime of
fluorescein (nanoseconds) is much faster than the predicted off-
rate of the agonists we examined (us—ms), and much shorter

than the half-life of conformational states of bacteriorhodopsin
(1s)[92], rhodopsin (ms) [79,93] or of ion channels (ps—ms)
[94]. Therefore, lifetime analysis of fluorescein bound to
Cys265 is well suited to capture even short-lived, agonist-
induced conformational states. We observed that the full agonist
isoproterenol induced a conformation that was distinct from the
conformations induced by the partial agonists salbutamol and
dobutamine [42]. These studies also revealed the existence of an
intermediate state in equilibrium with the active state for both
full agonists and partial agonists. In contrast, the neutral
antagonist appeared to stabilize a state that was indistinguish-
able from the unliganded receptor.

3.4.2. Intermediate conformational states detected by kinetic
studies

Agonist-induced conformational changes in purified B,AR
lead to an increase in the fluorescence intensity of tetramethylr-
hodamine bound to Cys265 [88,89]. The increase in fluorescence
intensity as a function of time following activation by the agonist
norepinephrine is best fit with a two component exponential
function [88] (Fig. 5A). In contrast, the response to dopamine (a
partial agonist) is adequately fit by a one component exponential
function. Of interest, the rapid component of norepinephrine is
very similar to the response to dopamine (Fig. 5A), which
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Fig. 5. Agonist-induced conformational changes detected by fluorescence spectroscopy in 3,AR labeled at Cys265 with tetramethylrhodamine maleimide (TMR-
R2AR). (A) Change in the intensity of TMR-3,AR in response to norepinephrine and dopamine. The response to norepinephrine is best fit by a two-site exponential
function. The rapid and slow components of the response are illustrated by the dotted lines. (B) Change in the intensity of TMR-B,AR in response to dopamine and
catechol. (C) Catechol and dopamine stimulated [>>S]GTPyS binding to purified $,AR reconstituted with purified Gs. (D) The change in the intensity of TMR-B,AR
in response to the non-catechol partial agonist salbutamol followed by the addition of catechol. Catechol can induce a conformational change in TMR-3,AR bound to a
saturating concentration of salbutamol, indicating that salbutamol and catechol occupy non-overlapping binding sites. (E) The change in the intensity of TMR-3,AR in
response to norepinephrine followed by the addition of catechol. No catechol response is observed in TMR-B,AR bound to a saturating concentration of
norepinephrine indicating that these ligands share a common binding site. (F) There is no significant change in the intensity of TMR-,AR in response to the inverse
agonist ICI118,551. Catechol can induce a conformational change in 3,AR bound to a saturating concentration of ICI118,551, indicating that these ligands do not
occupy the same binding space. (G) [>°S]GTPyS binding to purified B,AR reconstituted with purified Gs. Catechol weakly stimulates [*>S]GTPyS binding and
ICI118,551 inhibits basal [**S]GTP+S binding. Of interest, catechol can stimulate [*>S]JGTPvS binding in 3,AR occupied by a saturating concentration of ICI118,551.

The data presented here are adapted from Swaminath et al. [88,89].

suggested that the dopamine-induced conformation might
represent an intermediate in the conformational response to
norepinephrine (Fig. 4D). A rapid component of fluorescence
change is observed with all ligands containing a catechol ring and
can be observed with catechol alone (Fig. 5B). In fact, catechol is
a weak partial agonist (Fig. 5C). Based on this observation we
proposed that the catechol-induced conformation might represent
an intermediate in the conformational response to dopamine and
norepinephrine (Fig. 4E).

The slow component of the response to norepinephrine (Fig.
5A) is also observed with the full agonists epinephrine and
isoproterenol [88]. The only structural difference between
dopamine and norepinephrine is the p-hydroxyl (Fig. 3B). Thus
conformational changes associated with interactions between
the p-hydroxyl and the B,AR are much slower than those
involving interactions with catechol ring in our experimental
system. Functionally, these slower conformational changes
correlate with efficient agonist-induced B,AR internalization,
most likely due to interactions between the P,AR and G
protein coupled receptor kinases and/or arrestins. While
dopamine is a relatively good partial agonist for G protein
activation (approximately 60% of isoproterenol), it is much

less efficient at inducing internalization (approximately 20% of
isoproterenol) [88].

3.4.3. Relevance of slow conformational changes

The slow component of the agonist-induced change observed
by fluorescence spectroscopy in purified B,AR (Fig. 5A) is
considerably slower than expected from some physiologic
responses to GPCR activation, and slower than the conforma-
tional changes observed in a modified alpha 2 adrenergic
receptor containing a fluorescein arsenical hairpin binder
(F1AsH) site in the third intracellular loop and cyan fluorescent
protein (CFP) fused to the carboxyl terminus [95,96]. This
modified receptor was expressed in HEK293 cells and agonist-
induced conformational changes were detected as changes in
fluorescence resonance energy transfer (FRET) between FIAsH
and CFP. There are several possible explanations for these
observed differences in kinetics. The use of a large fluorescence
reporter such as CFP does not allow one to determine the nature
of the structural change responsible for the change in FRET;
therefore, these FRET experiments may be detecting a different
conformational switch, possibly similar to the rapid response
observed with dopamine and catechol. However, the different
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rates observed could also be due to the fact that the p,AR
experiments use purified receptor in the absence of G protein,
while the FRET experiments were performed on receptor
expressed in cell membranes that contain G proteins. It is
known that receptors form complexes with G proteins in the
plasma membrane (precoupling), and that these complexes have
a higher affinity for agonists than do receptors alone. Other
factors that might contribute to differences between experiments
using purified receptor and those on receptors in cells could be
the influence of the pH and salt gradients across the plasma
membrane in living cells, as well as the asymmetry of plasma
membrane lipids. Nevertheless, while the slow component of the
conformational response to agonists may be attributable to the
use of purified receptor protein, we believe the structural
changes are physiologically relevant because they can be linked
to specific interactions between the ligand and the receptor (e.g.,
the P-hydroxyl of catecholamine agonists interacting with
Asn293 in TM6, Fig. 3), and they correlate with specific
functional behaviors stimulated by the agonists in ,AR
expressed in cells (e.g., agonist-induced internalization [88]).

3.4.4. Catechol activates of the rotamer toggle switch

Based on what is known about the binding site for the
catechol ring of catecholamines (Fig. 3), we proposed that the
rapid component of the conformational response associated
with catecholamine and catechol binding involves changes in
the rotameric position of aromatic amino acids surrounding the
highly conserved proline Pro288%*° in TM6 (Fig. 3C—E). This
conformational change, known as a rotamer toggle switch, has
been proposed to be involved in the activation of amine and
opsin receptor families [97]. Upon binding, the aromatic
catechol ring of catecholamines would interact directly with
the aromatic residues of the rotamer toggle switch, Trp286°*%
and Phe290%°2. Molecular dynamics simulations suggest
that rotamer configurations of Cys285%%7, Trp286°** and
Phe290%%?, the residues that comprise the rotamer toggle
switch, are coupled and modulate the bend angle of TM6
around the highly conserved proline kink at Pro288%°, leading
to the movement of the cytoplasmic end of TM6 upon activation
[97]. This movement could be detected by tetramethylrhoda-
mine bound to Cys265 at the cytoplasmic end of TM6 (Fig. 5B).

3.4.5. Non-catecholamine partial agonists do not activate the
rotamer toggle switch

In the same experimental system, activation of tetramethylr-
hodamine-labeled 3,AR by salbutamol, a noncatechol partial
agonist, produced only a slow monophasic increase in
fluorescence intensity [89] (Fig. 5C). Catechol could induce a
further increase in fluorescence in 3,AR bound to saturating
concentrations of salbutamol, but not in B,AR bound to
norepinephrine (Fig. 5C and D). This suggests that the aromatic
ring of salbutamol does not occupy the same binding space as
catechol and does not activate the rotamer toggle switch [89].
Thus, the active state induced by salbutamol would be different
from that induced by catecholamine agonists [89]. This is in
agreement with fluorescent lifetime experiments discussed
above [42].

3.4.6. The inverse agonist ICI1118,551 does not inhibit
activation of the rotamer toggle switch

The neutral antagonist alprenolol and the inverse agonists
ICI118,551 and timolol do not produce a detectable change in
fluorescence in B,AR labeled with tetramethylrhodamine on
Cys 265 [89], although they do inhibit the response to agonists
and partial agonists with one exception. In tetramethylrhoda-
mine-labeled 3,AR bound to saturating concentrations of these
antagonists there is no effect on the response to catechol. This is
shown in Fig. 5F for ICI118,551. The fluorescence response to
catechol in B,AR bound to ICI118,551 is associated with a
functional response in a G protein activation assay (Fig. 5G).
This suggests that ICI118,551 does not occupy the catechol
binding pocket and does not prevent activation of the rotamer
toggle switch by catechol.

3.4.7. Activation of the ionic lock

We investigated another proposed molecular switch, the
jonic lock between the Aspl130°*°/Argl131°°° pair at the
cytoplasmic end of TM3 and Glu268°° at the cytoplasmic end
of TM6 (Fig. 6A) [71]. We used a modified 3,AR to introduce a
single cysteine labeling site for the cysteine-reactive fluoro-
phore monobromobimane at the cytoplasmic end of TM6
(A271C) adjacent to a Trp introduced at the cytoplasmic end of
TM3 (I135W) (Fig. 6B). We took advantage of the ability of
tryptophan to quench the fluorescence of bimane, with
measurable effects at distances smaller than 15 A [98], and
used bimane fluorescence to monitor structural changes
associated with disruption of the ionic lock between TM3 and
TM6 in purified B,AR. In the three-dimensional model of the
32AR based on rhodopsin, bimane bound to Cys271 would be
separated from Trp135 by the ionic lock. Disruption of the ionic
lock would allow Trp to contact and quench bimane
fluorescence. This is what we observed upon activation of the
modified receptor by isoproterenol, which reduced the intensity
of bimane by approximately 50%(Fig. 6C). Our results
demonstrated that the disruption of the ionic lock is an
obligatory step for maximal receptor activation and is triggered
by nearly all agonists, independent of efficacy (Fig. 6D).
However, we found that disruption of the ionic lock is not
directly coupled to the rotamer toggle switch in TM6 since
catechol, which is capable of activating the rotamer toggle
switch, was not able to activate the ionic lock [71]. Moreover,
salbutamol which does not activate the rotamer toggle switch
[89] is able to fully activate the ionic lock [71] (Fig. 6D).

3.4.8. Binding energy and conformational change

It is interesting to note that catechol and dopamine have
nearly the same binding affinity for purified p,AR [71]. The Ki
of dopamine, as determined by competition binding, is 350 uM,
while the Kd for catechol, determined by a conformational
assay, is 160 pM [71]. This is surprising considering that the
interaction between the primary amine of dopamine and Asp113
makes the strongest contribution to the binding energy. Since
dopamine and catechol bind with the same affinity, but only
dopamine disrupts the ionic lock, part of the binding energy
associated with the interaction between dopamine and Asp113



804 B.K. Kobilka / Biochimica et Biophysica Acta 1768 (2007) 794-807

Asp130°4°

Gluzss® >, .

Glu268%%°

Activation
_

C271-Blinlay

Glu26g®* |

W135

100+

o]
(=3
i

S
=)
n

n
o
1

Isoproterenol

Fluorescence intensity (% basal)
[=2]
o

430 440 450 460 470 480 490 500

Wavelength (nm)

O

1004

Bimane response (% ISQ)

751

504

25

10 9 8 7 6 5 -4 2 -
Ligand concentration (Log)

Fig. 6. Fluorescence spectroscopy to monitor disruption of the ionic lock in the p,AR. (A) Model of TM3 (red) and TM6 (blue) from the 3,AR depicting the amino
acids that comprise the ionic lock at the cytoplasmic end of these TM segments. (B) Close up view of the ionic lock and the modifications made to monitor
conformational changes in this region. Alanine 271 was mutated to cysteine (C271) and isoleucine 135 was mutated to tryptophan (W135). C271 was labeled with
monobromobimane in purified 3,AR. Upon activation, W135 moves closer to bimane on C271 and quenches fluorescence. (C) Emission spectrum of bimane on C271
before and after activation by the agonist isoproterenol. (D) Effect of different ligands on disruption of the ionic lock as determined by bimane fluorescence. The partial
agonists dopamine and salbutamol are as effective at disrupting the ionic lock as the full agonists norepinephrine and isoproterenol. Only catechol has no effect on the

ionic lock. These data are adapted from Yao et al. [71].

may be used to offset by the energetic cost of breaking the ionic
lock.

4. Conclusions
Based on these fluorescence studies we proposed a model

where agonists stabilize partially or fully active states by using
different chemical groups to activate different combinations of

molecular switches, which are not necessarily interdependent.
In the unliganded inactive state of a GPCR, the arrangement of
TM segments is stabilized by non-covalent interactions
between side chains. Structurally distinct ligands are able to
break different combinations of the basal state stabilizing
interactions either directly by binding to amino acids that are
involved in these intramolecular interactions, or indirectly by
stabilizing new intramolecular interactions. These ligand-
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specific conformational changes may be responsible for
differential activation of the signaling cascades of the receptor.
The affinity of a particular ligand will then be dependent on the
energy costs and gains associated with each disrupted and
created interaction, while its efficacy will be dependent on the
ability to trigger the switches associated with activation. These
molecular switches are normally activated by agonist binding,
but will also be revealed in constitutively active mutants, where
single point mutations in virtually any structural domain can
lead to elevated basal activity[99]. A better understanding of the
process by which ligands bind and modify GPCR structure may
ultimately help in the design of more selective drugs with the
appropriate efficacy for the desired physiologic function.
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