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Abstract 

Intuitionistic proofs can be segmented into scopes which describe when assumptions can be 
used. In standard descriptions of intuitionistic logic, these scopes occupy contiguous regions of 
proofs. This leads to an explosion in the search space for automated deduction, because of the 

difficulty of planning to apply a rule inside a particular scoped region of the proof. This paper 
investigates an alternative representation which assigns scope explicitly to formulas, and which 
is inspired in part by semantics-based translation methods for modal deduction. This calculus is 
simple and is justified by direct proof-theoretic arguments that transform proofs in the calculus so 
that scopes match standard descriptions. A Herbrand theorem, established straightforwardly, lifts 
this calculus to incorporate unification. The resulting system has no impermutabilities whatsoever 
_ rules of inference may be used equivalently anywhere in the proof. Nevertheless, a natural 
specification describes how L-terms are to be extracted from its deductions. @ 1999-Elsevier 

Science B.V. All rights reserved 
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1. Background 

This paper is an exploration of the relationship between scope, proof structure and 

proof search in intuitionistic logic, The links between these notions can be framed in 

an intuitive way. 

1.1. Scope and structure 

In intuitionistic proofs, information that is assumed as part of proving some statement 

can only be used in proving that statement. Intuitionistic proofs derive their discipline of 

scope from this constraint. The scope of an assumed formula identifies the statements to 

whose proof the assumption may contribute. The scope of an assumed value identifies 

the statements which may be instantiated to refer to this value. Conversely, the scope 

of a formula to be proved identifies the assumed values at which it may be instantiated 

and the assumed formulas that may contribute to its proof. Both the initial steps that 

link assumptions and conclusions and the logical rules that combine proofs must be 

formulated to enforce this discipline of scope. 

The intuitionistic discipline of scope underlies the Curry-Howard isomorphism, which 

allows functional programs to be extracted from intuitionistic logic deductions [24]. 

Assumptions in intuitionistic proofs correspond to variables in functional programs. 

The fact that an assumption in a proof has a scope that determines where it may be 

used corresponds to the fact that a variable in a program has a syntactic scope in which 

it is bound. 

The same constraint can be applied in logic programming to implement modules 

using intuitionistic implication and to create local variables using intuitionistic quanti- 

fiers [31]. The discipline of scope restricts the use of these assumed facts and values 

to the appropriate locality. 

To exploit these features for practical program synthesis (as in [9,30]) or logic 

programming (as in [34]), it is not enough merely to be able to infer automatically if a 

given formula is an intuitionistic theorem. These tasks call for the automatic derivation 

of intuitionistic proofs and the analysis of automatic intuitionistic proof search. 

In intuitionistic proof theory, we are used to inference rules that enforce this dis- 

cipline of scope by a discipline of structure. This is what happens for example in 

the usual sequent calculi for intuitionistic logic, such as that in Fig. 1. Each sequent 
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Fig. 1. A cut-free sequent calculus for intuitionistic logic, LJ. t For ( + V) and (3 -), a must not appear 

in the conclusion. 

contains on the right a single statement C to be proved and on the left a multiset of 

assumptions r that may be used to prove it. Transitions between scope arise when 

there is a difference in assumptions between the premise sequents of a rule and its 

result sequent. For example, the (-1) rule describes the derivation of A > B from 

assumptions r in terms of a derivation with different assumptions: 

r,A---+B 

r---tA>B 
-+I 

In the premise of this inference rule, we have a new scope in which the assumption A 

may be used, as encoded by the addition of A on the left; but this new combination of 

assumptions is available only to prove B, as encoded by the lone B on the right. Other 

rules simply describe inferences that may be performed within particular scopes; the 

assumptions made available in the premise sequents are the same as those available 

for the result sequent, (-+ A) is an example: 

T--+A r-B 

r--,AAB 
-+A 

In this method of assigning scope, the position of a rule-application in a proof deter- 

mines the scope of any new assumptions or new goals for proof that the rule-application 

introduces. Viewing the proof as a tree, the path from the root to the site of the rule- 

application contains blocks of inferences performed in a common scope punctuated by 

inferences that change scope. The sequence of rules that change scope on this path 

establishes the scope in force when the rule applies. We can therefore refer to systems 

like that of Fig. 1 as structurally scoped sequent calculi. 

Sometimes, a rule application must take narrow scope in a proof, to respect the scope 

of assumptions in which it depends. When the proof is presented in a structurally scoped 

calculus, the rule application must appear above the rules that introduce that scope. For 

example, consider a proof of (C > B VA) > (C > A V B); the disjunction B VA depends 
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on the assumption of C. The proof is shown in (1); ellipsis (. . .) in sequents indicates 

that certain assumed formulas have been suppressed for compactness and clarity. 

We identify three scopes in this proof, corresponding to a sequent in which no 

assumptions are available (the root), a sequent in which the assumption of C > B VA 

is available (inside the outer brace), and a sequent in which assumptions of C and 

C > B VA are available (inside the inner brace). (In not regarding (V -) as a change 

of scope, we anticipate the results of Section 3.2.) In the innermost scope, the proof 

proceeds by case analysis, by applying (I+) and (V -) rules to the assumption 

C 2 B VA. We could attempt to apply these two rules in either of the scopes that 

make that assumption available, but no proof could be built if the rules were applied 

in the outer scope. In the outer scope, C is not available, so the leftmost subproof 

would involve the impossible goal of showing C > B VA + C. 

In other cases, a rule application must take wide scope, because the indefinite infor- 

mation it encodes must be resolved before nested assumptions can be made. Again, in 

the structurally scoped calculus, this constrains the position in the proof tree at which 

the rule application occurs. For example, in proving B VA > (C > A) V (C > B), the 

alternatives for the disjunction B v A determine which implication should be proved, 

C > A or C > B. The proof appears in (2). 

/ {BvA,B,C -B 
+> 

{BvA,A,C-A 

BvA,B + C>B BvA,A - CIA+’ 

’ BvA,B - (C>A)v(C>B)- v2 BVA,A - (C>A)v(C>B)+ “’ 

BVA ----) (C>A)v(C>B) 
V-+ 

\ 
d BVA>(C>A)v(C>B) -+’ (2) 

We identify four scopes in this proof. There is the root where no assumptions are 

available, an inner scope in which B VA is available, and two further scopes, where 

C is available, once in conjunction with the B case, and once with the A case. Con- 

sider the left C scope. Once C is assumed, the structural discipline of scope forces 

all subsequent reasoning to contribute to the proof of B. Now, we might have at- 

tempted to apply the (V -) rule here, instead of lower, since the assumption of 

B VA remains available here. Since the disjunction B VA must contribute not only 

to that proof but to the proof of C > A (and A), the proof could not be completed in 

this case. 
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1.2. Search and structure 

Sequent calculus can be seen as a method for formalizing the process of proof search 

in natural deduction. Natural deduction systems express the Curry-Howard isomorphism 

most concisely: natural deduction proofs correspond to A-terms both in syntax and in 

normalization [38]. However, natural deduction raises difficulties for describing proof 

search strategies. Natural deduction involves two kinds of rules, introduction and elimi- 

nation rules, that should be used in different circumstances in proof search. Elimination 

rules should be used to decompose assumptions, introduction rules to assemble conclu- 

sions. To use them otherwise requires the interpreter to guess a needed formula from 

among all possible formulas of the logic. This distinction is made explicit in sequent 

systems, which separate assumptions and conclusions on different sides of the sequent 

--+, and use different rules to decompose the logical connectives on either side. 

Sequent systems therefore provide a straightforward framework for proof search. In 

this framework, the structure of a proof corresponds to the order in which rules should 

be applied during proof search. The algorithm to search for proofs is simply to build 

sequent proofs from the root up, repeatedly extending an unfinished branch of the proof 

by applying a sequent rule that extends the branch. The choice of which rule to apply 

is nondeterministic; we might apply some finite lookahead to help identify rules that 

make progress toward completing the proof, but in general we must backtrack among 

alternative choices for extending the proof. This algorithm for sequent search serves as 

a jumping off point for further optimizations, including tableau [41] and matrix proof 

methods [3,5]. 

1.3. Scope, search and structure: a conjict 

Following these two intuitions, position in a sequent calculus proof identifies both the 

scope of a rule application and the time at which the rule application must be considered 

in proof search. The dual roles of position are in conflict. From the perspective of 

proof search, we would like to apply a rule only when we recognize that it is needed. 

However, as examples (1) and (2) show, we must consider applying a rule in each of 

the scopes possible for it. In the structurally scoped calculus, such scopes correspond 

to positions in the proof - positions that may represent earlier stages in proof search 

than the stage when the need for the rule is recognized. 

For example, consider a variant of the theorem of (2): 

BVA,BAC>F,AAC>E -(C>E)v(C>F) 

Again, to prove this it is necessary to apply (V -) at wide scope, before any assump- 

tion of C, because B and A contribute to the proofs of different implications. But now 

these contributions are indirect and can be identified only on the basis of a chain of 

inferences performed in the nested scope. For example, B combines with C to establish 

the conclusion F by (~4). Recognizing such indirect connections can be as hard as 

constructing the proof itself. In first-order intuitionistic logic in particular, there is no 

bound on the length of inference chain in a nested scope that may be required to link the 
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result of rule applied in a wide scope to a needed conclusion. In general then, automated 

methods must be prepared to apply a rule before they know whether the application 

will even be needed! The regime for imposing scope on proofs means that proofs can 

no longer be constructed in a goal-directed manner. This is a severe problem in prac- 

tice, where policies for avoiding or guessing rule orderings in particular situations are 

typically required [45]. 

The difficulty is exacerbated because it is impossible in general to apply all possible 

rules in an outer scope before moving in to a nested scope. The decision to apply the 

rule to change scope must be undertaken when other possible inferences in the outer 

scope remain. Should proof search fail subsequent to this decision, we must reconsider 

applying some of these possible inferences. This means backtracking to a stage when 

the proof contained an open branch in this scope - so it means discarding (then perhaps 

repeating) all search attempted since changing scope. 

2. Overview 

Considerations of search invite us to decouple scope in intuitionistic proofs from 

position. We shall see in this paper how we can accomplish this by making the disci- 

pline of scope explicit, so that the scopes of terms, formulas, and rule applications are 

represented overtly by terms in the proof. We can refer to proof systems so obtained 

as explicitly scoped sequent calculi for intuitionistic logic. 

By allowing a rule to be applied in a given scope at any point in proof search, 

explicitly scoped calculi eliminate the difficulties observed above. Explicit scoping al- 

lows rules at wide-scope to be selected locally on the basis of an immediate con- 

tribution to the proof (possibly at nested scope) and to be added to the proof with- 

out revising deductions at nested scope that have been performed already. However, 

despite the potentially unorthodox order in which they are built, explicitly scoped 
proofs correspond directly to ordinary natural deduction proofs. Explicitly scoped 

sequent calculi therefore offer a framework for automatically deriving A-terms and 

for regulating the combination of modular information in logic programming proof 

search. 

The central results of this paper substantiate these observations. First, in Section 3, 

we present simple and direct arguments based on permutabilities of inferences that 

establish a constructive correspondence between proofs in an explicitly scoped system 

and proofs in the structurally scoped one. We obtain a lifted version of this calculus 

in Section 5.1 using a standard construction [29]; unification in the lifted calculus 

constrains the scope of rule applications dynamically in the course of proof search. 

Then, we outline in Section 5.2, how A-terms can be extracted from the lifted, explicitly 

scoped sequent deductions by adapting the techniques proposed by [15]. 

These results strengthen existing semantic techniques by giving them a constructive, 

proof-theoretic foundation. In this overview, we motivate the distinction in two ways: 

by contrasting the intuitions underlying semantic and proof-theoretic derivations of 
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explicitly scoped calculi, and by reviewing a parallel distinction in first-order classical 

logic between Herbrand’s theorem and the Skolem-Herbrand-Godel theorem. 

We have found this alternative syntactic representation of scope extremely useful in 

practice, in part because of the further results it enables and for its applications to logic 

programming and program synthesis. For example, invariants of the sequent calculus 

can be used to devise efficient algorithms for constraining scopes [43]. Moreover, 

new logical fragments can be shown to have uniform proofs in this system, giving 

a logical and syntactic characterization of logic programming languages with modules 

and indefinite information; see Section 5.1. (Further work along these lines is currently 

in progress.) 

2.1. Semantic vs. proof-theoretic intuitions 

Any semantics for intuitionistic logic allows us to reason classically about intuition- 

istic provability, as follows. The semantics specifies a class of models, where each 

model contains some set of points at which objects exist and at which relations hold. 

The semantics also describes how formulas are evaluated for truth and falsehood with 

respect to these points according to compositional rules that can be expressed using 

classical formulas. (For a survey of intuitionistic semantics see [46, ch. 2; 47, Ch. 131.) 

Given the semantics, a demonstration that a formula is valid can proceed by trans- 

lation: each formula is labeled with a term that represents its point of evaluation and 

is decomposed in keeping with the rules for its semantic evaluation according to the 

inference rules of classical logic. In classical logic, propositional rules can be applied 

in any order with the same effect. Thus by labeling formulas and using classical in- 

ferences, we can eliminate the interdependence of scope and structure that complicates 

proof search for structurally scoped systems like LJ. 

In particular, in a Kripke model for intuitionistic logic [28], the points of evaluation 

are called possible worlds. Conjunction, disjunction and existential quantification are 

interpreted classically at the world of evaluation. Implication and universal quantifica- 

tion must hold not only at the world of evaluation but for all worlds accessible from 

the world of evaluation under a transitive, reflexive accessibility relation. 

In Kripke semantics, each world can be identified by a sequence of transitions of 

accessibility required to reach that world. This suggests using terms representing such 

sequences as labels in translation theorem proving. In the earliest such system, Fitting 

represents transitions of accessibility as integers and paths of accessibility as integer 

strings [16, 171. Smullyan uses variables instead of integers to represent transitions and 

thus obtains a closer correspondence with classical deduction [42]. Wallen shows how 

theorem-proving techniques for classical logic, such as matrix proof methods [3,5] 

and structure sharing [8], can be applied to Smullyan’s system [50]. After further 

study, these systems can now be regarded as instances of more general techniques of 

semantics-based translation [35] and labeled deductive systems [ 111. 

These works provide new inference systems and semantic demonstrations that these 

systems allow the same theorems to be proved as a structurally scoped intuitionistic 
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sequent calculus. But they leave open the question of how to extract a proof in the 

structurally scoped system from a theorem derived in the new system. One aspect of 

this problem has been addressed independently in [51], which describes an algorithm 

for unfolding the matrix proofs of [50] directly into more standard sequent proofs. This 

procedure is outlined informally with pseudo-code in [52] and extended to related logics 

in [53]. Indeed, the standard interpretation of I, as a formula true in no world of any 

Kripke model, could make this extraction genuinely problematic (see Section 3.3.1). 

Our results provide constructive correspondences between path-based explicitly 

scoped proofs and structurally scoped proofs. In addressing this question, the present 

result provides a proof-theoretic strengthening of existing work. In fact, together with 

the soundness and completeness theorems for classical logic, the present result con- 

stitutes an alternative demonstration of the soundness and completeness of LJ proofs 

under a variant of Kripke semantics: the fallible semantics, where I may be true at 

selective worlds in a model, provided all other atomic formulas are true there [48]. 

The strengthening of results corresponds to a strengthening in the interpretation of 

the labels of formulas. In path-based translation, the elements of a term ~1 correspond 

to transitions between possible worlds, and the association between a term p and a 

statement p means that p is to be evaluated in the semantics at a world represented 

by p. In virtue of our new constructive correspondence, the elements of a term ,LL corre- 

spond directly to rule applications that effect a change of scope in structurally scoped 

proof. As a sequence, p describes the sequence of scope-changing rule applications 

that apply along some path in the proof tree. Labeling p with p indicates that the rule 

that introduces p should appear in the structurally scoped proof at the scoped location 

identified by p. By rearranging a labeled proof so that the position of inferences in 

the tree matches the positions named by their labels, we can transform an explicitly 

scoped proof into a structurally scoped proof. Thus, instead of appealing to semantic 

intuitions, we can see that the labeling terms are a purely syntactic notation that allows 

intuitionistic deductions to be built in an incremental way. 

2.2. Herbrand’s theorem as a parallel 

A parallel with these results can be found in Herbrand’s theorem for classical logic, 

which offers a device for reasoning about the right scope for applications of quanti- 

fier rules independent of the order in which those rules appear in the proof. Lincoln 

and Shankar [29] offer a demonstration of the generality of this way of looking at 

Herbrand’s theorem. 

The problem is similar to the one just described: The quantifier rules in Fig. 1 

involve a link between structure and scope in deductions. The (+ V) and (3 -) rules 

impose a requirement that the eigenvariable substituted for the bound variable must 

not occur elsewhere in the sequent to which the rule applies: 

r, ilxA,A[a/x] - C 

T,3xA - C 
3+. 
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Because of this condition, we may regard the subproof above the rule as representing 

the scope of the eigenvariable. Above this rule, the other quantifier rules (‘J-) and 

(-+ 3) may perform substitutions into formulas so as to include the new variable a. 

Such rules then cannot be permuted below the introduction of a, without violating the 

eigenvariable condition. 

As extended in [29,40], Herbrand’s theorem describes alternative sequent rules for 

quantifiers that substitute complex terms for bound variables instead of eigenvariables. 

These terms, called Skolem or Herbrand terms, are representations of eigenvariables; 

they have the form f (t,, . . , t,,) where f is a symbol associated with an occurrence 

of a quantifier and tl ,. . . , t, is a sequence of terms specified by the logic. This se- 

quence is designed to include as subterms representations of all the eigenvariables that 

would have to appear in the sequent when the quantifier rule applied - no matter what 

rearrangements to the proof were performed. In classical logic, the only obstacle to 

such rearrangement is the impossibility of applying a rule to a subformula lower than 

any inference involving the formula that contains it. The sequence tl, . . . , tn therefore 

lists the instantiations made as part of deriving the quantified formula to which the 

rule applies. In structurally scoped calculi for intuitionistic and linear logic, additional 

terms are required to reflect the different scopes of quantifiers at different positions in 

the proof. 

The structure of Herbrand terms induces a partial ordering on rules. If a variable is 

instantiated to t at rule L and a variable is instantiated to a term that properly contains 

t at rule H, then L should occur lower than H. And among rules that instantiate a 

variable with a term t, the rule that constructs t as a representation of an eigenvariable 

should occur lowest. The proof of the theorem shows how to rearrange the proof so 

that the position of quantifier rules respects this ordering. At this point, the Herbrand 

terms can be replaced by variables that satisfy eigenvariable conditions when necessary. 

This result links instantiations of variables and the possibility of reordering infer- 

ences: it chooses instantiations in a way that eliminates the need for backtracking 

among orderings of quantifier inferences. It therefore offers a greater potential for cut- 

ting down proof search than a result describing correct instantiations to skeletons of 

proofs in which the order of rules is fixed, as in [49]. Herbrand’s theorem can also be 

contrasted with a weaker result, the Skolem-Herbrand-Giidel theorem. The latter theo- 

rem shows how a problem of first-order provability can be related to a set of problems 

of propositional provability by using instantiations with functional terms. This theorem 

has been extended beyond classical logic in [ 181, using an extension to the logical 

syntax. Again, while this result offers a way to derive theorems, it does not directly 

offer a way to obtain proofs. 

3. Scoping by position: A sequent presentation 

This section describes and verifies a first explicitly scoped sequent calculus for intu- 

itionistic logic. The calculus is based on two intuitions: first, that the scope transitions 
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of structurally scoped intuitionistic proofs are associated precisely with the rules for 

implication and universal quantification; and second, that the scope of a rule applica- 

tion is given by the sequence of scope-changing rules that occur on the path from the 

root of the proof to the site of the rule application. Our strategy is simply to name 

each rule application that creates a scope, using a fresh variable (following to the first 

intuition), and to label each formula in the proof with a string of names recording the 

scope of the rule that introduced it (following the second). 

For example, suppose the (--+I) rule applies to a formula A 2 B labeled by n. 

In the structurally scoped proof, this rule makes a transition from the scope where 

A 3 B is introduced, namely p, the scope where to a new, nested scope, which we 

name pcl. So the rule makes available an assumption of A labeled PU and a conclusion 

of B, also labeled par. Because scope in this rule is made explicit, there is no need for 

a further structural mechanism to enforce the intuitionistic connection of A and B. 

Dually, suppose the (>-+) rule applies to a formula A > B labeled by p. The as- 

sumption of A > B is made at a scope named by p, but this assumption once made 

can persist into nested scopes. So if we derive A with a label v that has p as a prefix 
_ corresponding in any scope nested within p - we can conclude B in scope v. For 

similar reasons, at leaves of the proof, where we match an assumption with an identical 

conclusion, the label of the assumption must be a prefix of the label of the conclusion. 

The structure of the section is as follows. In Section 3.1, we make some observations 

about the sequent calculi we will be studying. We adopt a treatment of structure in 

sequents that makes permutation of inference particularly easy to describe. Then, in 

Section 3.2, we substantiate the claim that the scopes of intuitionistic logic proofs are 

associated with exactly the rules for implication and universal quantifiers. The section 

introduces a sequent calculus in which the right of a sequent is a multiset of formulas 

and the sequent rules for disjunction and existential quantifiers match those for classical 

logic. The new calculus offers a simple opportunity to introduce the technique of using 

permutations of inference to establish the correspondence between proofs in different 

systems. 

Section 3.3 formally describes this explicitly scoped sequent calculi for intuitionistic 

logic. Section 3.4 gives transformations between proofs in this system and proofs in 

the structurally scoped system. These transformations exploit the intuitions behind the 

annotations in a straightforward way. In particular, to transform a structurally scoped 

proof to an explicitly scoped proof, we simply label the occurrences of formulas in it 

according to the scoped positions specified by the structure of the proof. Meanwhile, 

to transform an explicitly scoped proof into a structurally scoped proof, we rearrange 

the inferences in the explicitly scoped proof so that the positions of rule applications 

match the labels of their formulas. 

3.1. Preliminaries 

In the system of Fig. 1, a sequent is written r -A, where r is a finite multiset 

of formulas and A is a single formula. A derivation is a tree of sequents derived from 
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initial (or axiom) sequents according to the rules of Fig. 1. We will also call derivations 

proofs, provided no confusion with meta-level argumentation about derivations (another 

kind of proof) might result. The root of a derivation is called its end sequent. If a rule 

applies to a formula A occurrence in the end sequent of derivation 9, we call A the 

principal formula of the rule application, and we call the designated occurrences of the 

immediate subformulas of A in the immediate subderivations of 9 the side formulas of 

the rule application. For quantifier rules, the variable a introduced is the eigenvariable 

of the rule. 

The sequent calculus of Fig. 1 is given as G3a in [27] and as ?3Xx>3 A ‘” ,‘,‘,’ in 

[20]. It reflects a particular approach to the treatment of structure in sequents, which we 

will adopt throughout this paper. The calculus dispenses with the rule of contraction: 

T,A,A - A 
T,A --) A 

c 

in favor of the preservation of principal formulas of rules in subderivations. This auto- 

matic duplication of formulas streamlines and localizes the representation of reuse of 

premises (without this, in converting sequent proofs to natural deductions, intermediate 

results will first be weakened, then contracted); and in fact, duplication falls out of 

a natural logical specification of the sequent system (as in [15]). The calculus also 

dispenses with weakening: 

because the axiom rule allows any finite multiset of formulas on the left in addition to 

the formula that agrees. Instead of repeatedly weakening the end sequent of a derivation 

9 by formulas ,4 using a structural rule, we can define a derivation ,4 + 9 obtained 

from 9 by replacing the left multiset r of every sequent in 53 by the multiset union of 

n and r. As long as no eigenvariable of 9 occurs free in ,4, ,4 + 9 is also a correct 

derivation. 

Because the sequent calculus avoids structural rules, it is simple to describe inter- 

changes of logical rules in this calculus. Adjacent logical inferences are applied in 

succession, so that a higher inference H is applied at the root of the immediate sub- 

derivation of a lower inference L. (No structural rules intervene.) If a side formula of L 

is not the principal formula of H, we may attempt to replace the derivation of the end 

sequent of L by a new derivation of the same end sequent with H at the root, followed 

immediately by L, capped by subderivations copied from the original derivation (but 

possibly weakened). Performing such a replacement constitutes an interchange of rules 

L and H and demonstrates the permutability of L and H; see [26]. Such replacement 

is not always possible because of structural conditions L and H impose; in that case 

the inferences are impermutable. 

Since structure is treated implicitly, it is also possible to think of the left of a sequent 

as a set rather than a multiset of formulas. While simpler now, a set-based formulation 

complicates the translation from sequent proofs to natural deduction proofs, because 
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T.A - A,A 

r,AhB,A,B--A r---A,AAB,A 
r,AAB-A 

h- 
lr-BB,AhB,A_r\ 

r-AAB,A 

r-A,B,AvB,A 
f-+AVB,A 

_” r,AvB,A-A r,AvB,B-Av_ 
r,AvE--A 

T,A- R 
I’-tA>B,A 

-3 
l-,A3 Bi A,A T,A> B,BiA 

r,A3B-A 
>- 

;,%A, A[t/z] * A 
i-,VxA -f A 

v- 
I? - A[a/z] 
I- -VzA,A-‘+ 

l?; %A, A[a/z] - A 
r,31A - A 

3 -t 
f - A[t/z],3zA, A_ 3 

I? - &A, A 

Fig. 2. A cut free sequent calculus for minimal logic, LMM. j For f- V) and (3 -), u must not appear 

in the conclusion. 

the translation calls for several occurrences of the same formula to appear, labeled with 

distinct proof terms. 

3.2. Rejining the structural discipline of scope 

In justifying explicitly scoped calculi, we will use not LJ but a somewhat less 

familiar sequent system, LMM, given in Fig. 2. The use of LMM instead of LJ is 

a convenience which makes transparent the way that scoped regions are created in 

intuitionistic sequent proofs, exactly at (+I) and (-+ V) rules. This transparency makes 

the correctness of the system presented in Fig. 2 easier to see and to show. 

LMM is a sequent calculus presentation of minimal logic - the fragment of intuition- 

istic logic without negation or an absurdity rule. ’ Following [16], this formalization 

localizes the specifically intuitionistic character of the system in the (-3) and (+V) 

rules. (The particular presentation above restricts the system C~G~?Y->,~~“~~*~‘~ of [20] 

to minimal logic.) In LMM, unlike in LJ, the right of a sequent is a multiset of formu- 

las, and the same structural conventions apply on the right and the left. In particular, as 

before, weakening is built into initial sequents, while contraction is built into inference 

figures. 

LMM exploits these multiple conclusions to give the same sequent rules for most 

connectives that the connectives have in classical logic. (The sequent calculus for 

classical logic, LK, also has multiple formulas on the right in sequents.) For example, 

instead of LJ’s two right rules for disjunction, LMM has a single (--+ V) rule: 

r + A,B,AVB,A 
r---+AvB,A 

--+V 

’ Minimal logic shares with intuitionistic logic the properties of scope relevant for logic programming and 

program synthesis. Intuitionistic negation can be simulated in minimal logic by translating all goal subfor- 

mulas A into A V 1. In fact, as discussed in more detail in Section 3.3.1, other treatments of intuitionistic 

negation are problematic for the representation of scope in proofs - in translation methods, these treatments 

may open up the possibility of reasoning about intuitionistic semantics in an essentially classical way. 
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This rule leaves both disjuncts available and thereby allows the choice of which disjunct 

is to be proved to be delayed. 

The difference with classical sequent calculus lies in the (-+>) and (- V) rules, 

which apply to deductions where only their side formula appears on the right in the 

end sequent, for example: 

These are the rules where assumptions are made; discarding the right formulas isolates 

the subderivation in which the assumption is used, and thereby ensures that the use 

of any assumption respects its scope. Alternatively, this restriction introduces imper- 

mutabilities into the logic by eliminating the possibility of delaying the resolution of 

disjunctive possibilities until above these rules. Note that since formulas are discarded, 

to construct a derivation from 9 that weakens by ,4 on the right (written 9 + A), we 

must add A to the right of just those sequents in 9 that do not lie above an application 

of (- 3) or (-V). 

The correctness of LMM is typically shown by a simple argument that shows how 

LMM proofs can be recursively translated to proofs in LJ in which cuts may appear. 

Then, the cut-elimination theorem can be used to reduce these proofs to cut-free proofs 

(cf. [20]). We can also show the correctness of LMM by permuting inferences. 

Lemma 1. Every LMMproof 9 with end-sequent r -A (for a single right formula 

A) can be transformed into an LJ proof by permuting inferences and then “cleaning 
up” the right sequents. 

Proof. First we describe the cleaning up. Let 9’ be an LMM proof, and suppose that 

every subproof with end sequent r - A that ends in a left rule involves a singleton 

A. Then 9’ can be transformed to LJ by the following translation. 

At the axiom, we translate T,A -A, A by T,A -A. Now, consider a subproof 

ending with an inference R of (+ A), (- V), (- 3) and (34). Each immediate 

subderivation ends in r - A, and translation gives an LJ proof with end-sequent 

r -A for some A E A. If A is not a side formula of R - in any subderivation for right 

rules, or in the left subderivation for (I-), which establishes the antecedent - omit R 
from the translation: The translation of the subderivation is the needed result. Otherwise 

construct the translation of the derivation by applying R to the translated subderivations, 

replacing occurrences of (- V) with either (+ V 1) or (+ V 2) as appropriate. 

Proofs ending in any of the remaining rules are composed of immediate subderiva- 

tions r *A - where the subderivations derive a single formula on the left (common 

to both subderivations, if applicable). Thus, we can obtain an overall translation by 

translating these subderivations and applying the corresponding LJ rule to the results. 

Now, suppose inferences are ordered in 9’ in the following way. If a left rule occurs 

immediately above a right rule R, R it is either (42) or (- V); and if a left rule L 

occurs immediately above a (I-) inference R, L is in the right subderivation of R. 
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Given this ordering, if the end sequent of 9’ has a singleton on the right (or ends in 

a right rule), then every subderivation of 9’ that ends by deriving r - A by a left 

rule, has a singleton A. 

We permute the inferences in 9 so that they are ordered this way in two steps. First, 

we reorder left rules that occur above problematic right inferences; then we reorder 

left rules that occur on the wrong side above (I--+) inferences. 

In the first step, we observe that inferences other than (+x) and (-+ V) fall into 

connected blocks in 9 in which (-3) and (-V) do not occur. Whenever a left 

inference L occurs above a right inference R within a common block, there are no 

obstacles to interchanging the inferences, cf. [26]. Observe that the principal formula 

of L cannot be a side formula of R: otherwise R is (-+I) and L and R are not in a 

common block. Moreover, R does not impose a novelty condition on an eigenvariable 

substituted at L. Otherwise R is (- V) and L and R are not in a common block. 

The interchanged derivations are constructed in one of four patterns, depending on the 

number of premises of R and L. We exemplify each pattern. 

As an example where R and L each have one premise, we have the transformation 

below. 

T,AAB,A,B - C,D,CVD,A T,AAB,A,B --+ C,D,CvD,A 

T,A/\B - C,D,CvD,A A -+ + T,AAB,A,B - CvD,A -+ ’ 

F,AAB - CvD,A 
+V 

T,Ar\B - CvD,A 
A--t 

A case where L has two premises and R one is this: 

T,AVB,A - C,D,CvD,A T,AVB,B - C,D,CvD,A 

T,AvB - C,D,CVD,A 
V-i 

=+ 

T,AVB - CvD,A 
+V 

T,AvB,A - C,D,CVD,A T,AvB,B - C,D,CVD,A 

T,AVB,A - CvD,A *’ T,AvB,B - CvD,A -’ 

T,AVB - CvD,A 
Vd 

The other cases require weakening of derivations. If L has one premise and R two, we 

have for example: 

T,A AB,A,B - C,C AD,A 53 

T,AAB - C,CAD,A ‘- T,AAB - D,CAD,A 

T,AAB - CAD,A 
+A 

* 

A,B+9 

T,AAB,A,B - C,CAD,A T,AAB,A,B - D,CAD,A 

r.AAB,A,B -+ CAD,A 
+A 

‘T,AiB’ ---+ CAD,A 
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Finally, if L and R both have two premises, we have for example: 

T,AVB,A + C,CAD,A l-,AVB,B+ C,CAD,A .G@ 
I-,AVB + C,CAD,A ‘+ l-,AVB --+ D,CAD,A 

l-,AVB--tCAD,A 
-+A 

(3) 

We transform it to: 

3 92 

T,AvB - C/\D,A ‘+ 

where 

A+9 

9, = T,AvB,A - C,CAD,A T,AVB,A - D,CAD,A 

T,AVB,A - CAD,A 
-+A 

B+9 

T,AVB,B - C,CAD,A T,AVB,B - D,CAD,A 

T,AVB,B - CAD,A 
-+A 

These permutations can be repeated so that in each block all applications of left rules 

appear closer to the root than any application of a right rule. Because of the possible 

duplication of subderivations at interchanges, we must perform the permutations in the 

right order to prove termination, As in [26], we induct on degree, the number of right 

rules with a left rule above them in the same block. We can always decrease the 

degree by one as follows: we find the highest such right rule R and permute it above 

all higher left rules. This sequence of permutations proceeds by induction on grade, 

the number of let? rules above R in the same block. Find the lowest such left rule (it 

must be adjacent to R). Permute it down, decreasing the grade by one in each sub- 

derivation. 

In the second step, we apply further permutations to this proof, so that whenever 

(I-) applies, it is never the case that a left rule is applied at the conclusion of the left 

subderivation. The structure of this argument is analogous to the previous one. Again, 

we can reduce by one the number of (2 -) inferences in the proof with left rules 

concluding their left subderivation (bad (3 -) inferences) by fixing any bad (> -+) 

inference R which has no other bad (3 -) inferences above it. The fix replaces the 

subderivation ending with the bad inference by another in which no inferences are 

bad. It is constructed by induction on the number of left rules applied consecutively 

above R. We reduce this by one at each step by permuting the lowest rule L down. 

L cannot apply to the side formula of R, which is on the right, nor will it introduce 

an eigenvariable violation, since R does not introduce an eigenvariable. So the only 

potentially problematic case is when L is also (I+): permuting L down cannot make 

L bad. But we know that L itself is not a bad inference, because R was chosen highest. 
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That means the left subderivation of L ends in an axiom or a right rule, and all higher 

left rules are good. We can therefore observe that the subderivation of L is equivalent 

to an LJ derivation 8 ending 

We can adapt d to construct a new proof 

&+A r,D -A,A r,D,B - A 

r-C,A r,D - A 
R 

T-A 
L 

in which R appears only above the right subderivation of L. 

In constructing this final derivation, we only interchange left rules (within common 

blocks), so we keep all the rules in good order. We thus obtain a permuted proof 9’ 

corresponding to an LJ proof. 0 

LMM eliminates impermutabilities associated with the requirement that (- V) select 

one of the two disjuncts to be proven once and for all. For example, the LJ proof (4) 

requires the (V -) rule to apply lower than the (- V) rule. 

BvA,B -B BvA,A -A 

BvA,B -AVB -’ BvA,A -AvB-V 

BVA - AVB 
V-+ 

(4) 

These rules may be applied in any order in LMM, as the derivation in (5) witnesses. 

BVA,B - A,B BvA,A - A,B 

BvA - A,B 

BVA-AVB (5) 

However, not all impermutabilities of LJ are gone. Recasting the proof (2) in LMM 

yields the proof (6): 

---+ BVA>(C>A)V(C>B) 

Exploiting the new permutability, we can delay (V +) until after (+ V). Neverthe- 

less, because the (43) rules discard the alternative formulas on the right, it re- 

mains impossible to permute the application of (V +) above the (-1) rules in 

LMM. 

These remaining LMM impermutabilities establish the scopes in the proof which 

isolate the consequences of assumptions. Since these scopes are an essential feature of 

intuitionistic logic, a different tack is required to devise a proof system without these 

impermutabilities. It is to this problem that we now turn. 
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3.3. Path annotations 

Having isolated the intuitionistic discipline of scope in the structure of (-+I) and 

(+ V) rule, we will now make that discipline of scope explicit. 

To represent scopes, we use strings built from a distinguished infinite alphabet of 

annotations to label terms and formulas. By convention, letters from the beginning of 

the Greek alphabet (a, p, etc.) represent eigenvariables that may appear in annotations; 

letters from the middle (p,v, etc.) represent strings of such eigenvariables. 

We adapt sequents to describe the scope of first-order terms and formulas as follows. 

Each sequent has the form 

Each formula occurrence in r and A is labeled with an annotation term that specifies 

the scope of the formula. (These terms are written with superscripts.) The scope of 

first-order terms is specified by the indexing context C. C is a list of pairs x : ,D assigning 

an annotation to each first-order variable that appears free in the sequent. The scope 

of a compound term is determined by this assignment to free variables: 

Definition 1. t is a C-term of index ,LL if and only if for every free variable x that 

occurs in t, C assigns x : v and v is a prefix of p. 

By imposing appropriate manipulations to these annotations, we obtain a proof sys- 

tem that creates and matches scopes without discarding formulas from sequents. For 

example, (-3) creates a new scope by introducing a new annotation variable c( that 

cannot appear in the end sequent; the antecedent is made and the consequent derived 

in the new scope. 

In contrast to LMM, the rule preserves all the right formulas from the end sequent in 

the subderivation. Likewise, (4 ‘d) introduces a new scope by a transition CC, assumes 

a new first-order eigenvariable a restricted to the new scope, and puts its side-formula 

there: 

C,a:pubr-A[a/x]p”,VxAp,A 

CbT -+VxAp,A 
-+v 

The corresponding left rules offer the possibility of a change in scope. At (II -), 

given the scope p of the principal formula, we may consider deriving the antecedent 

and introducing the consequent at any longer string pv: 

Zbt>,A>BP -Apv,A CDr,A>B",B'""- A 

CbT,A>Bp -A 
>+ 
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CD~,A’ - A'",A 

CDI?-+A”,AAB~,A Cbr+ B@,AhB@,A 

CD~-+AAB~,A 
-A 

CpT,AVB”,A - A CoF,AVBP,W d A 
CoI’,AvL?‘-+A 

V- 

cDr- A’ BP AVB”,A 
CD~-'A;B~,A 

--rV 

C~F,AJB“-A@“,A CDI’,AxBP,L+‘+A 
Cor,AIB”-+A 

31 

Z:IY,A’“- , , _,+ BP” A > B” A 
cDr -A 3 B",A 

CD T,VzA”, A[t/+‘” + A, _: 
CDr,VzAA'--+ A 

s.a:paDr - A[Q/+‘~‘,VZA”,A + 
CDr--tVxA',A 

+V 

Y, n : p D r, %A’, A[a/z]“ - A 3 ,+ 
CDr,3?2Y-+A 

Fig. 3. Explicitly scoped, cut-free sequent calculus for minimal logic, LMP. f For (-+V), (3 +) and (- II), 

a and a must not appear in the conclusion. $ For (V-1), there is a proviso that t be a Z-term of index pv; 

for (+ 3) that t be a C-term of index p. 

Recall that this is in keeping with the structural discipline on the left in LJ and LMM, 

which preserve formulas on the left across transitions into nested scopes. For (V -+), the 

transition to a nested scope may make available the first-order term which instantiates 

the bound variable. 

ZD f,VxAp,A[t,‘x]ltv - At/+ 

CrzT,VxAp d A 

The rule has a proviso that the term t substituted for the variable x must be a C-term of 

index pv, to ensure that variables are only instantiated to appropriately defined terms. 

(The (- 3) rule imposes an analogous constraint.) 

The rule for initial sequents is now: 

C D T,A’ --t APY, A 

The remaining rules mirror their classical and LMM counterparts. The full system is 

given in Fig. 3 as a calculus named LMP because the annotations denote paths to 

positions in the proof. 
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Consider the proofs of (1) and (2) in LMP. Making the scopes of the LMM proof 

(6) explicit with annotations gives the proof (7): 

’ {DBvA~,B~,C” -B’*,... 

DBVA’,B@ - C>A’,C>B’,... +’ 

{DBvA~,A~,C@ --+ A@,... 

DBVA~,A~ - C>A’,C>B” ,... +’ 
< 

r>BVAa - (CXA)“,(C>B)~,... 
V+ 

DBVA’ - (CIA)V(C>B)“,... 
+V 

< 
t>-BvA3(C3A)V(C3B) 

43 

(7) 

This proof has the same structure as (6), and the same scopes are created. Now these 

scopes are also named: c( names the scope introduced by the lower (+ 3) rule, a/3 

and a6 name the scopes introduced by the different assumptions of C. 

As indicated by the ellipses, there is no dereliction of formulas on the right in (7). 

This allows rules to be permuted above ( --j 3) and (+ Y). Eq. (8) illustrates this by 

moving the (-+ 3) rules down below the application of (- V). 

DB v Aa B’ cab c”’ - B’” 32, )... DB v Aa A’ CUB C”’ - A”fi Y,? )... 

DB VAa @ 
V* 

DB v Ah, Cab 

C”” - A@ Ba6 > ,... 

- A@, (C > B)a 
+> 

DBVA’ - (CIA)~,(C>B)“,... 
+> 

DBVA’ -(C>A)v(C>B)‘,... 
+V 

D -BVA>(CIIA)V(CIB) j3 (8) 

Because of these permutations, we can no longer isolate subproofs of (8) as recording 

all and only the inferences performed in a particular scope. 

Meanwhile, an LMP proof corresponding to the LJ proof (1) appears in (9). 

D . ..) A@ - Aab D . ..) Bab - B’S 

D . ..) A@ - AVB@‘V D...,BaB -AvBuB-” 

CUB - c@ D...,BVA@ -AvB@ 
V+ 

D . . . . 

r>C>BVA’,C@ --+AvBalr 
>+ 

r>c3BVAa - C>AVBa 
+> 

D-(C>BVA)>(C>AVB) 
-3 

(9) 

Note that the (3 -) rule application involves a change of scope. The antecedent C 

of the conditional can only be established at scope extending c$, because the axiom 

that establishes it uses the assumption of C at c@. Thus, the conclusion B V A of 

the conditional is established only at scope crp. Because the (3 -+) rule refers to the 

annotation j?, the (I-) rule cannot be permuted below the preceding (- 1) rule. 

When the (+ 3) rule applies, p cannot appear on the sequent. 
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There is thus an asymmetry in LMP. It is possible to permute rules higher in the 

proof, even though the rules do not make use of the assumptions introduced there. But 

it is impossible to permute rules lower in the proof than the introduction of assumptions 

that they do use. This asymmetry will be eliminated by adapting Herbrand’s theorem 

to LMP, in Section 5.1. 

This asymmetry is the basis of the syntactic proof of soundness for LMP. Among 

the rules that occur above an (3 -) or (V -) rule in an LMP proof, there will be 

all the rules that do depend on the assumption being made - those that should be 

there according to the structural regime of scope - as well as some that do not belong 

because they do not depend on the assumption being made. All those that do not 

belong can simply be permuted down to the scope where they do belong. The proof 

resulting from these permutations essentially matches LMM figures. 

3.3.1. Labels, semantics, and negation 
The annotations of LMP reflect dual intuitions. We have emphasized how annota- 

tions represent of the introduction of formulas and terms at different syntactic scopes 

in an LMM proof. The other intuition derives from the semantic interpretation of min- 

imal logic formulas in Kripke models for modal logics [28]. For minimal logic these 

intuitions coincide, but for negation there is a possible discrepancy. 

According to the semantic intuition, the labels corresponds to the points in the model 

at which formulas are true or false and at which individuals exist. In Kripke models, 

these points are worlds related by a transitive and reflexive binary relation R of acces- 

sibility, Each annotation represents a path of accessibility from the real world, reached 

by the empty path, to some other possible world. Paths of accessibility are a natural 

alternative to accessibility relations. Given R, we can construct a set of transitions such 

that whenever wRw’, there is a transition M such that WCI = w’, and vice versa; see 1351. 

Here, the paths are strings because accessibility is transitive and reflexive: there is a 

single step of accessibility corresponding to each pair of steps, or to no step at all. 

A further constraint on intuitionistic Kripke models is that atomic formulas true at a 

world w remain true at all worlds accessible from w. Similarly, an individual that exists 

at world w continues to exist at all worlds accessible from w. These constraints account 

for why the left annotation on initial sequents is to be a prefix of the right annotation, 

and for why the index of a substituted term is to be a prefix of the annotation of the 

formula into which it is substituted. 

The remaining sequent rules implement classical reasoning over the recursive clauses 

defining truth of formulas. Implication is a good example. A > B is true at a world p 

exactly when for all transitions x to a world accessible from p, if A is true at px then 

B is true at ,ux. Regarding Co as an abbreviation of C is true at world 0, the classical 

inferences governing this definition are: 

1-,Ap” - BP’, AP’” > BP’“, Vx(AFLX > BP’“), A 
l- - APu > BP’, VX(A~‘” > BGx), A 

r - Vx(A “x>BP”),A 
1; 
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The (-)I) inference rule of LMP imitates this exactly, replacing Kx’X(A~~ > BpX) by its 

equivalent A > BP and harmlessly omitting the intermediate step and the intermediate 

side formula. 

The use of semantics for intuitionistic and modal deduction has been explored ex- 

tensively, but has rarely been investigated from a purely proof-theoretic point of view. 

Inference rules for intuitionistic logic inspired by classical inferences are first given in 

[42]; except for negation the rules are analogous to those here - apart from Smullyan’s 

use of the condensed format of tableaux with uniform notation. (Smullyan’s system is, 

in turn, a refinement of Fitting’s use of integer prefixes in tableau deduction [ 16, 171.) 

Wallen studies translation deduction in [50]; although the underlying mechanism mir- 

rors Smullyan’s, Wallen’s presentation of it incorporates not only uniform notation 

and translation, but also matrix method search, unification, and structure-sharing. This 

complicates the task of applying Wallen’s methods to other strategies for representation 

and proof search (for example the uniform proof search needed in abstract logic pro- 

gramming languages [32]). Both authors relate their systems directly to Kripke models, 

leaving open how similar systems might be used for proof construction and program 

synthesis. Subsequent research [l, 4, 13,25,35,36] has explored the general use of sim- 

ilar techniques across a variety of modal systems, but has continued to present semantic 

proofs of correctness and to emphasize the use of particular theorem-proving techniques 

for first-order classical logic, particularly resolution. 

Negation offers a venue in which to distinguish proof-theoretic intuitions from these 

semantic ones. In LMM, sequent rules for intuitionistic negation can be given directly, 

as below: 

r-+A,A T,A ---+ 

T,-A - A 
-lh 

r - -A,A-1 

Alternatively, -A can be rendered A > I, where I is a distinguished proposition with 

the following behavior: 

r,l- A 
I 

Wallen [50] uses the first formulation. His translation corresponds to the use of the 

two sequent rules below. 

C D r - ApLV, A CDr,ApLa ---+ A 

zDr,7Ab + A7+ zDr - 7Ap,d-*1 

These rules correspond to the usual truth conditions for _L in Kripke models: at no 

world is I true. 

In the presence of these rules, the only proof of some sequent 

cpr,r* -A 
may come from proving A and 1A from formulas in r*. The same problem arises if 

the I rule is realized with the formulation: 
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These possibilities disrupt the proof-theoretic invariants which we will use to estab- 

lish the correspondence between LMP and LMM. 

One way to describe what goes wrong is this. These two presentations of negation 

are constructed so as to avoid making the decision of which formula in a sequent is 

being derived by contradiction. Such lack of commitment is generally advantageous in 

search - this paper in fact is concerned with delaying the similar choice of the scope in 

which rules are used. For reasoning about scope, however, this treatment of negation is 

problematic because a complete proof need never resolve this ambiguity. Such proofs 

lack a crucial piece of information necessary to reconstruct 

deduction. For example, consider the proof below: 

A” ----+ AOLB, C’, B@ 

A”, TA@ + C”,B@ -+ 

Aa --f Ca,lA>Ba 
---I 

A@ - (Cv(lA,B))“+” 

-+A>Cv(1A>B) -+’ 

an intuitionistic natural 

From root up, we first decompose formulas on the right, and then obtain an initial 

sequent by applying (- + ); the inference extends the annotation a/I of the principal 

formula by the empty string (but any other extension would also give a proof). This 

can only correspond to a natural deduction in which the contradiction of A and -A is 

used to infer B. But nothing about the sequent proof indicates this: for all this proof 

says, the contradiction could be used to show C. 

From a proof-theoretic perspective, the rule below is more appropriate: 

cDr,l’ ---+ A”“,A 
I 

It maintains scope in negation. It corresponds not to ordinary Kripke semantics but 

to fallible Kripke semantics [48]. This semantics allows I to be true at some worlds, 

provided that every other atomic formula is also true at those worlds. Fallible semantics 

was developed to enable constructive completeness proofs for intuitionistic logic; so it 

is not surprising that it comes up again here where constructive reasoning about proofs 

is also required. 

This proof theory and its fallible semantics is quite close to minimal logic, which 

treats I as an ordinary proposition. For example, the rule can be simulated straight- 

forwardly by recursively translating each goal formula A (i.e. any positive subformula 

of a formula on the right of the sequent, or any negative subformula on the left) into 

the disjunction J_ VA, and thereafter treating I as an ordinary proposition. In view 

of this translation, the analysis in the remainder of this paper will be concerned with 

minimal logic only. 

3.4. Proof-theoretic results 

This section provides a direct, proof-theoretic justification of LMP: We establish that 

the annotations are nothing more than a proof-theoretic device for indicating scope in 

an intuitionistic deduction. Labels on formulas ensure syntactically that a classical proof 
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system - with arbitrary permutabilities of rules, subject only to eigenvariable conditions 
_ respects intuitionistic information-flow: that facts assumed as part of proving some 

formula only contribute to establishing that formula. 

3.4.1. Some basic results 
We begin with some invariants on the form and function of annotations in LMP 

proofs. The main point is to validate the basic properties of the design of LMP - 

that annotation variables may be regarded as naming individual inferences that change 

scope (Lemma 3) and that all the scopes of inferences in the proof lie in a tree whose 

nodes are uniquely labeled by these names (Lemma 4). 

As a preliminary, we obtain a first result that suggests intuitively how annotations 

restrict information-flow in proofs. Recall that a left formula can only be used in the 

axiom rule of LMP when it is annotated with a prefix of some right formula. In fact, 

induction shows that a left formula cannot be used anywhere in an LMP proof unless it 

is annotated with a prefix of some right formula in the end sequent. Thus, when nested 

scopes are represented by longer annotations, annotations will ensure that assumptions 

introduced inside a nested scope cannot be used outside. 

Lemma 2 (Irrelevance). Let 9 be an LMP proof of height h of 

Cr>r,l+-+A 

where for every formula Ap in r*, there is no formula B” in A such that p is a prefix 
of v. Then 9 can be transformed into a proof with height no more than h of 

Proof. By induction on the structure of proofs. At axiom links, the labels on r* will 

not match those of the key right formula A p” of the axiom, so the left formula Ap must 

be from r. 

Supposing the claim true for proofs of height n or less, consider proofs of height 

n + 1. The rules (V -+), (A -+), (3 -+), (- V), (- A), and (- 3) do not alter annota- 

tions, so extending the induction hypothesis is straightforward. For example, suppose 9 

ends in 

Cr>r,r*,AnB’“,Ap,Bp-A 
* Cor,r ,AABp-A 

A-+ 

Applying the induction hypothesis gives a proof with one of the following two conclu- 

sions, depending on whether ~1 is a prefix of the annotation of any formula 

in A: 

Ci>T--+A or Cr>T,AAB’L,A~,B”--+A. 

In the first case this derivation suffices; in the second, the needed derivation is con- 

structed by finally applying (A -) again. 
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Even though they may extend annotations, (V +), (- V) and (+I) are not much 

harder. Thus, suppose 9 ends in 

C, a : pet b r, r* - A[a/xlp’“, VXA~‘, A 
* 

cbr,r -VxA”,A 

Observe that if no formula in r* is annotated with a prefix of /J, no formula in r* is 

annotated with a prefix of pa: by the eigenvariable condition, CI does not occur in r*. 

Accordingly, the induction hypothesis applies to the immediate subderivation to give a 

derivation of 

Z, a : p-la b r - A[a/x]““,VxA@, A. 

Apply (- V) to this. 

Finally, suppose GS ends in 

zbr,r*,A>~~-A~‘,~ Cr>r,T*,A>B~,BPV-A 

ZPr,I’*,A>Bp-A 
34 

If pv is not a prefix of any A annotation, then the induction hypothesis applies to the 

right subderivation to give a proof of 

ct>r’-A. 

where r’ includes r and, if appropriate, A 3 BP. This suffices. Otherwise, ,uv is a prefix 

of some annotation of A, so if no formula in r* is annotated with a prefix of any A 

annotation, then the same is true of Ati”, A. Thus, induction gives proofs: 

Cr>T,A>B”,Bpv-A and Cbr,A>Bfi-Apv,A. 

Combine these by (2 -+). 0 

As in other sequent systems, we can rename eigenvariables in a proof so that no 

two rules in a proof introduce the same one. 

Definition 2 (Pure variable proof ). A proof tree in LMP is a pure-variable proof tree 

if and only for every symbol a occurring as the eigenvariable in an application of the 

rules (+ V), (+ 2) or (3 -+), a does not occur both free and bound in any formula 

in the proof tree, and a only occurs in the subtree rooted at the sequent constituting 

the premise of the rule. (Note: Here a ranges over eigenvariables introduced in terms 

or on annotations.) 

Lemma 3 (Pure variable proofs). Any LMP deduction with end sequent C D r + A 

can be converted to a pure-variable proof of the same sequent, simply by replacing 

occurrences of variables with new variables (cf [ 19, p. 3121). 

Proof (sketch). The proof can be adapted from that for other sequent systems (see for 

example [19, pp. 274-276, 312, 3131). One first shows that given an LMP derivation 
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9 with end sequent C D r --f A in which the variable b does not occur bound and the 

variable a does not occur at all, the derivation 9[a/b] obtained by substituting a for 

every occurrence of b in 9 is an LMP derivation of Z[a/b] D T[a/b] --+ A[a/b]. This is 

a straightforward induction on the height of proofs, in which the indexing contexts and 

annotations add no additional complexity. The main result is established by induction on 

the number of applications of (+ V), (4 I), and (3 -+) in the derivation. One applies 

the induction hypothesis to obtain pure variable proofs corresponding to subderivations 

above the applications of these rules closest to the root, then exploits the substitution 

property to ensure that the eigenvariables in different subderivations are distinct. 0 

According to renaming, any eigenvariable is introduced exactly once onto a right 

formula, and according to irrelevance, annotations on left formulas can match the an- 

notations of right formulas without loss of generality. Together, this means that each 

annotation eigenvariable always appears after the same sequence of other eigenvari- 

ables: it is always used the same way, to represent the same scope. 

Definition 3 (Unique prejx property). A set of annotations has the unique prefix prop- 

erty if and only if for any pair pclv and p’av’ in the set, p = ~1’. 

Lemma 4 (Tree annotations). For any LA4P derivation 9 of height h with end sequent 

where the annotations in the end sequent have the unique prejix property, there is u 
derivation 9’ of height no larger than h with end sequent 

CD~‘-A 

where the formulas in S are a subset of those that occur in r and the annotations 

appearing throughout 9’ have the unique prejx property. 

Proof. By Lemma 3, we may assume 9 is a pure variable proof. By Lemma 2, we 

can obtain a shorter derivation 9’ from 9 in which the annotation of left formulas are 

always prefixes of the annotations of right formulas. By induction, we can show that 

any derivation 9’ so constructed, whose end sequent has the unique prefix property, 

has the unique prefix property. For initial sequents, this is immediate. So suppose 

some rule application results in a sequent with the unique prefix property. If it is 

a left rule, the unique prefix property must extend to the immediate subderivations: 

left rules will not result in new prefixes because they would be irrelevant. Likewise, 

although immediate subderivations for right rules may incorporate additional prefixes, 

these prefixes must involve fresh symbols. Thus, the unique prefix property also extends 

to immediate subderivations of right rules. Hence, the induction hypothesis applies to 

show that subderivations have the unique prefix property in their entirety. Then the fact 

that the proof is a pure variable proof means eigenvariables are introduced once only, 
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so that no different prefixes are introduced for the same eigenvariable in the separate 

subderivations. Thus the whole proof has the unique prefix property. 0 

The fact that eigenvariables on annotations in deductions have unique prefixes is 

significant both for demonstrating that the annotation mechanism is correct and for 

constructing algorithms to work on annotations. As we shall see presently, it allows the 

annotations in LMP proofs to be put in correspondence with positions in LMM proofs. 

In [4,13,37], the unique prefix property is used to construct specialized equational 

unification algorithms for equations in translation theorem-proving; in [43] it plays a 

role in deriving constraint algorithms for translation theorem-proving. 

3.4.2. LMP is complete 
We first consider how any LMM proof can be converted into an LMP proof, by 

adding appropriate annotations throughout. The crux of the argument is how annota- 

tions are extended by instantiation with appropriate terms in applications of (I-+) and 

(V+). Here is the idea. In LMM, the logical scope of a rule application R is given 

by its position in the proof. This position is identified by the sequence of (-3) and 

(-V) rules that occur on the path from the root to R. In particular, all rule applica- 

tions above an application of (-1) or (-+ V) in LMM fall into its scope. In LMP, 

scope is given by the annotation that labels a formula - but the eigenvariables in this 

annotation correspond one-to-one with the rule applications in the LMM proof. Thus, 

in translating applications of (x-) and (V’-) from the LMM proof, the annotations 

will be extended to the full LMP annotation that corresponds to their scoped location 

in the LMM deduction. 

Some notation describing the addition describing the addition of annotations to se- 

quents will facilitate the presentation of this result. For any annotation string p and any 

multiset of formulas A, A” will denote the sequent consisting of a formula occurrence 

Ap for each formula occurrence A of A. If A is the right hand of a sequent in the LMM 

proof, in the scope in the proof associated with the LMP annotation p, Ap will be the 

right hand of the corresponding sequent in the LMP proof. Meanwhile, for any map g 

associating a (possibly different) annotation string with each formula occurrence in a se- 

quent r, V will denote the sequent containing a formula occurrence AqcA) for each for- 

mula occurrence A of r. A left side of a sequent r in an LMM proof may correspond to 

any rq in the corresponding LMP proof. The alternatives reflect ways of adding formu- 

las on the left in the different scopes in which the ,u scope is nested in the LMM proof. 

Completeness is now stated as follows: 

Theorem 1 (Completeness). Let us be given any LMM deduction with end sequent 
r - A. Then for any annotation string ,u, any function q assigning prejixes of p 
to formulas in r, and any indexing context C assigning prejxes of ,u to the free 
variables of r and A, there is an LMP deduction of 
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Proof. By induction on the structure of derivations in LMM. For LMM axioms, an 

LMP axiom can be constructed using the fact that q assigns to A on the left some 

prefix o of the annotation of A on the right, p. 

The cases for V , A and (3 -+) are straightforward. Given an LMM derivation ending 

in the application of one of these rules, apply the induction hypothesis to the imme- 

diate subderivations: this gives LMP deductions to which the corresponding LMP rule 

applies. For example, for (-+ V) the LMM derivation ends: 

r---+A,B,AvB,A 

r-AVB,A 
-+V 

The corresponding LMP proof ends: 

The subderivation is obtained by the induction hypothesis from the subderivation of 

the LMM derivation. 

For the rules (1-t) and (‘v’-+), we ensure that the annotation of right formulas p 

appears as the annotation of side formulas in applications of these rules in constructing 

the LMP proof. Thus, suppose 9 ends in (34), as follows: 

T,A>B-A,A T,A>B,B-+A 

T.A>B--+A 
>--, 

Apply the induction hypothesis to the first subderivation with p and q, and to the 

second derivation with p and a function q’ exactly like q except that v]‘(B) = p. This 

gives derivations of 

Since r(A > B) is a prefix of p, these two derivations can be combined by LMP (~4 ) 

to yield the needed overall derivation. 

Similarly, suppose 9 ends in (V-), as follows: 

l-, VxA, A[t/x] - A 

I-,VxA -A 
v+ 

Apply the induction hypothesis to the subderivation, with p and the function q’ exactly 

like q except that $(A[t/x]) = p. This gives a derivation of: 

C D r’l, ‘v’xAScvxA), A[t/x]” - Ap. 

Because every free variable in C is decorated with a prefix of p, any term t must 

be a C-term of index p. So the side condition on substitutions for (V’-) in LMP is 

satisfied; applying the rule gives the needed derivation. 

Likewise, for the case of an LMM derivation 9 ending in (-+ 3), free variables are 

all associated with prefixes of p by C, so any term t is a C-term of index p. But as 
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right formulas, both 3~4 and A[t/x] are to be annotated with p. Thus the LMP (t 3) 

rule applies to the derivation obtained by the induction hypothesis from the immediate 

subderivation of 3. The resulting derivation ends: 

C D r’l --A[t/x]“, 3xAp, Ap 

CD F’ - 3xAp, A“ 
13 

Finally, for the rules (+I) and (- V), observe that A is eliminated when the anno- 

tation of the principal formula is extended. (This is why it suffices to consider trans- 

lations in which all right formulas receive the same annotation.) Specifically, suppose 

the LMM deduction ends in 

Apply the induction hypothesis to the immediate subderivation, with ,u’ = PE for some 

new CI, and I]’ like q except q’(A) = p’. This gives a derivation 9 ending in: 

This can be weakened by the formulas in A@, so as then to derive the needed: 

Likewise, if the LMM deduction ends in 

r --A[dxl iv 
r-VxA,A 

apply the induction hypothesis to the immediate subderivation, with ~1’ = pa for some 

new LX, and Z’ extending C by the assignment a : ,m. This gives a derivation 9. Con- 

struct in LMP the needed derivation: 

9+ Al’ 

.X7, a : pm D rq - A[t/xlp”, Ap 

Cv D r” - VxAp’, Ap 

_ v 

0 

3.4.3. LMP is sound 

Inversely, every LMP proof can be transformed into an LMM proof. Because of the 

different ways scopes are represented in the two systems, the transformation involves 

reorganizing the proof so that right formulas with compatible annotations end up to- 

gether in the same scoped region of the proof. In particular, the transformation gives a 

way of reordering applications of proof rules so that only what must appear above any 

application of (-3) and (4 V) actually does appear there. When applications appear in 

this order, an invariant of annotations can be exploited to demonstrate that the subproof 

above each (-1) and (- V) rule constitutes a proof of its right-side formula. Thus 
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the transformed proof instantiates only LMM inference figures. Overall, the method 

recalls Schellinx’s proof-theoretic justification of the embedding of intuitionistic logic 

into linear logic [39]. 

In considering just a single application P of (-+I) or (-+ V), there is a simple 

characterization of which other rule applications permute below P. 

Lemma 5 (Permutability). Let 9 be an LMP derivation containing an application 
P of (-2) or (- V), which introduces the eigenvariable cz in the annotation. Let 

R denote any other rule application in 9 above P, and let p be the annotation 

of the side formula of R. Then R permutes with P if and only if ~1 does not 
contain sl. 

Proof. If p contains a, then permuting R below P will violate the eigenvariable con- 

dition for (x. This takes care of the only if case. 

For the if’ case, consider first which pairs of rules might fail to permute. There are 

only five possibilities: (>-+)/(+x), (I-)/(-_), (V+)/(-+\J), (V-+)/(3 -+) and 

(+ 3)/(3 4). They arise only when eigenvariable conditions will be violated by the 

permuting of rules. (The proof transformations needed to achieve the permutation in all 

other cases are just the transformations from [26] illustrated in the proof of Lemma 1.) 

For each of these nonpermuting examples, it can be shown that the annotation intro- 

duced by the lower rule is a prefix of the annotation introduced by the higher rule. 

For impermutabilities (I-)/(-+x) and (I-)/(-V), the appearance in the annotation 

of the symbol CI introduced lower is the source of the impermutability. For quantifier 

impermutabilities, the source of the impermutability might be the appearance of the 

lower eigenvariable, a, in the substitution term, t. Nevertheless, in these cases, the 

side condition that the term t be a C-term of appropriate index applies. This ensures 

that the annotation of the lower rule appears on the annotation of the higher rule, in 

virtue of its association with the eigenvariable in the indexing context. Incidentally, 

also as a result of this side condition, the configuration that would give rise to a 

(- 3)/(-t V) impermutability (which would otherwise be expected) cannot be given a 

legal annotation. 

Given these observations, the claim can be established by an induction on the struc- 

ture of LMP derivations. The measure for the induction is the number of applications 

of rules above P and below R. The base case we have just shown. Assume that when 

an application is no more than n steps above P, it permutes below P just in case the 

annotations of its side formulas do not contain a. Consider the case of a rule appli- 

cation, R, n + 1 steps above P. Let Q be the rule application immediately below R. 
If R permutes below Q do so: this reduces by one the distance between R and P, 
and permits the application of the induction hypothesis. If R does not permute below 

Q, consider whether Q permutes below P. If not, by the induction hypothesis the side 

formulas of Q must contain c(. But then, by the observations of the preceding paragraph 

show that R, which does not permute below Q, must contain a as well. Otherwise, the 

induction hypothesis applies to Q and P, to give a deduction in which R is only n rule 
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applications above P (because Q has been permuted below P). Apply the induction 

hypothesis to this derivation. 0 

The following consequence of the permutability lemma is at the heart of the sound- 

ness of LMP. 

Lemma 6. Let 9 be a deduction in LMP of 

such that C is of the form ‘dxA or A > B; C is the principal formula of the lowest 
rule application P in 9 where the eigenvariable CI is introduced on annotations; and 

no higher rule application in 9 permutes below P. Then either 

is an axiom or we can construct a deduction 9’ from 9 which shows 

CDr-C. 

Proof. Right rules change annotations only by adding eigenvariables. Because eigen- 

variables may be considered distinct (by obtaining a pure variable proof as in 

Lemma 3), and because addition of another eigenvariable to an annotation indicates 

incompatibility with CI (by the unique prefix property, as in Lemma 4), we may as- 

sume that no descendants of A are labeled with annotations that contain a in 9. Now, 

consider an axiom link in 9 

c’ D r’, Afi - AflY, A’ 

where pv does not contain CI. Then neither Afi nor AP” is a side formula of any rule 

in 9. Such a rule by Lemma 5 on permutability could permute below P. Therefore, 

A” must be already in r and A cl” in A: we start from an axiom. 

Otherwise, every application of an axiom in 9 involves a right formula annotated 

with a string containing CI. So each right formula is a descendant of C, not of any 

formula in A. Meanwhile, each left formula in an axiom is either annotated with a 

string that contains CI - in which case it too is a descendant of C - or with one that 

does not - in which case it is in fact a formula in r. Accordingly, we can obtain a 

proof of C by erasing all descendants of A everywhere in 9. 0 

In order to turn this result into a method of converting LMP proofs into LMM proofs, 

we need to show that we can permute the rules in the proof so that all implications 

and universals in the proof lie simultaneously under only the necessary rules. This will 

ensure that each such rule involves a proof of its side formula, and hence that the 

proof can be described by LMM rules. 

Theorem 2 (Soundness). From any LMP deduction 23 a deduction 9’ can be con- 
structed with the following property. For any subderivation 9” of 9’ ending in (-3) 
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or (-+ Q), no rule applied above in 9” can be permuted below. By applying Lemma 6 
recursively to 9, we obtain an LA4M proof 

Proof. The proof is by induction on the number of times rule applications of (-+x ) 

and (- Q) occur on any path from a leaf of the derivation to the conclusion. The base 

case, when the derivation contains no such formulas, is immediate. 

Suppose the claim holds for proofs where ( --+ Q) or (+ 3) formulas occur at most 

n times from a leaf to the root. In any derivation where these rules occur at most 

n + 1 times, it suffices to replace the subderivations ending in (-+>) and (+ Q) with 

appropriately reordered variants. Accordingly, we consider a derivation 93 ending in a 

rule application R with principal formula C at 

with C a universal or an implication with depth n + 1. Let c( be the annotation eigen- 

variable introduced. 

Let 9, denote the derivation obtained by first applying the induction hypothesis to 

the immediate subderivation, and then permuting below R all rules that permute below 

every application of (+x) and (- V) in the proof. The possibility of such permutations 

can be established as in Lemma 1 by a double induction first on the degree - the 

number of inferences which refer to an annotation eigenvariable introduced at a (--+x ) 

or (+ Q) rule in the proof but with a rule above them that does not - and then 

considering the highest inference with something above it that should be below it, on 

the number of such inferences above it (the grade). 

In 91, R may be applied to C several times with modified end sequents, because of 

these permutations: 

c, Dr, -+C,A, 

We can eliminate each as follows. Suppose there is some subproof of $3, above it, 

with Q and > depth n, that looks like this: 

with D a universal or implication, where ,u does not contain CI. Applying Lemma 6 and 

Lemma 2 of irrelevance gives a proof where r’ is restricted only to formulas containing 

p only - not ~1. Permutability dictates that all these formulas are therefore elements of 

rl. Likewise, D” is an element of Al. Accordingly, we can use (a weakened version 

of) this shorter proof instead of the proof involving C in 91. 

Otherwise, in every such formula D” above R, 1-1 contains a. This entails that the 

rule applications above R are precisely those that cannot be permuted below R. The 

preceding result now applies to show that either 

zi Drl -+A1 or Cl or, -C. 

Substituting whichever proof exists into 91 gives the needed derivation. 0 
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4. A broader view of deduction and explicit scope 

This section puts LMP in context with alternative theorem-proving work. As dis- 

cussed in Section 4.4, the use of LMP seems generally compatible with a variety of 

complementary techniques for improving proof search based on observations about size 

and branching of proofs [12, 14,231; some effort is required to state these observations 

in a common language. 

The bulk of this section, Sections 4.1-4.3, is devoted to contrasting LMP with 

other labeled systems from a proof-theoretic point of view. LMP offers an explicit 

representation of scope in intuitionistic proofs based on the position of rules in the 

proof. Another strategy is to adopt an explicit representation of scope based on the 

content of sequents. With scoping based on content, labels represent the packets of 

assumptions from which a formula in the proof must be derived. The idea has been 

explored semantically in [l l] and proof theoretically in [6,7]. 

For example, the labeling of (+I) by content goes as follows. According to the 

labeling scheme, assume that the principal formula (A > B) already depends on some 

packet of assumptions cr. The rule introduces a new assumption A, which therefore 

gets a new atomic label, say M. A new conclusion B must then be derived using the 

combination of cr and 01, written o o CX. This labeling is implemented by using the 

following sequent rule (with an eigenvariable condition for CY): 

C D I-,A’ --f Baol,A > B”, A 

CD~+A~B~,A -’ 

Systems based on position and systems based on content have very different intu- 

itions behind them. It might therefore be suspected that the systems have very different 

behavior - and that labeling by content might be easier to prove correct because of its 

closer correspondence with the ordinary sequent rules. The reality is more subtle. In 

fact, some compromise of intuitions is required to turn scoping by content into an eIX- 

cient theorem-proving method. These compromises leave the method in a surprisingly 

close formal correspondence to scoping by position. Scoping by position may even be 

regarded as the basic method on which others are variants. 

To back this up, we observe first in Section 4.1 that our encoding of positions as 

strings with LMP was not the only possibility. The same inference rules and proof 

techniques apply if we encode positions using sets. We then show in Section 4.2 how 

the labels of [ 1 l] can be justified by interpreting them as abbreviations of these sets. 

The labels of [6,7] offer a different kind of abbreviation for these sets, as outlined in 

Section 4.3. 

4.1. Set structure for annotations 

In this section, we adapt the rules of LMP by treating annotations as sets or mul- 

tisets rather than strings. Like the string labels in LMP, these labels name the rules 

applied on a path to a particular scoped position in a structurally scoped proof. Unlike 
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string labels, however, these labels provide only partial descriptions of positions in 

structurally scoped proofs. They do not specify the order in which rules are to apply. 

These new labelings are possible because this order can be reconstructed from the 

labeling of rules. Rules that change labels represent points of transition in the struc- 

turally scoped proof, between the position represented by one set and the position 

represented by an augmentation of it. We shall see that labels obtained by sequences 

of such augmentations in an explicitly scoped proof continue to correspond uniquely 

to a tree of (structurally scoped) rule applications. 

To describe the modification to use sets or multisets is straightforward. To fore- 

shadow the connection with [ll], we introduce the notation p o v to represent the 

combination of scopes p and v. To define string labels, we take o to be an associative 

concatenation with identity E: 

/.loe=cop=p po(vop)=(pov)op 

To obtain multisets, we add commutativity to these equations: 

pov=vop 

Sets are also governed by the equation of idempotence: 

povov=pov 

Once we have written out the system using this o notation, as in Fig. 4, we can use 

the same rules to describe labeled deduction for different equational theories. (V-+) 

illustrates this. The rule is: 

.I? D r,‘dxAp,A[t/x]po” - Av_ 

CDT,VXA~-A 

Depending on the equational theory in force, the extended scope p o v represents either 

concatenation of p and v, with string labels; or the multiset union of p and v, with 

multiset labels; or the set union of ,U and v, with set labels, The side condition that t 

respect the scope /J o v is also rephrased in neutral language: 

Definition 4. t is a C-term of index p if and only if for every free variable x that 

occurs in t, C assigns x : p’ and for some p, p’ o p = p. 

We will refer to the system in Fig. 4 with set or multiset labels as LMS. 

Like string annotations, set and multiset annotations can be motivated both from 

the syntax of intuitionistic proofs and as an encoding of intuitionistic semantics. In 

particular, set annotations implement the topological semantics of intuitionistic logic, 

where formulas are evaluated with respect to the open sets of a topological space; see 

[47, Ch. 131. To account for set annotations, we interpret annotations as representing 

open sets in these models and interpret o as set intersection. 
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c>r - A’,AA B”,A 
c!Jr 

Cd’-B”,A/\B“,A_/\ 
-.AAP.A 

Cbr,AvB’,A’-+A CoT,AvBP,B”-A 
Cbr,AvB”-A 

v-. 

C*r-A”,B,AvBP,A 
CD~--+,~VB~,A 

-+V 

CDT,A> BP - A’=‘“,A C D r, A 3 B“, B”‘” - A 
CDI?,A3BP-+A 

3- 

CD r, A’“” --.+ B+=, A 3 BP, A 
c0r -AxB”,A -I’ 

CD I‘,VzA’, A[t/rj““” - A 
Cor,(VxA)‘- A 

V-J 

C, D : p o a b I? - A[~/x]“~,VZA’, A_ v+ 
CD~--+VZA~,A 

Fig. 4. A more general explicitly scoped cut-free sequent calculus for minimal logic, LJLS. t For (+V), 

(3--t) and (+3), a and G( must not appear in the conclusion. $ For (V’-), there is a proviso that t be a 

Z-term of index /I o v; for (+ 3) that t be a Z-term of index p. 

The labeling of initial sequents matches the truth conditions of atomic formulas in 

topological models, as follows. Each atomic formula A is assigned an open set [A] as 

its semantic value. A is true in a topological model at an open set q exactly when 

q c [,4J An assumption that A is true at q thus allows the conclusion that A is true at 

any qnr, as given in the rule for initial sequents. 

A > B is true in a topological model at q exactly when B is true at all open subsets of 

q where A is true. This condition is equivalent to the condition that for any open set Y, 

if A is true at q fl Y then so is B. This corresponds to the proof rule for implication. 

Topological semantics gives classical semantics to conjunction, as reflected in the 

LMS proof rule. The general definition for the semantics of disjunction in topological 

models is complicated, and involves decomposing a set of evaluation into a union of 

other sets. Rather than encoding this definition explicitly, LMS uses the classical proof 

rule for disjunction to simulate it. 
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A direct proof of correctness for LMS can be constructed exactly along the lines 

of Sections 3.4.1-3.4.3. An outline of this argument follows. The key difference is the 

statement and proof of the tree annotation lemma, since the unique prefix property 

cannot be defined in LMS (and a “unique subset property” would be false). 

As before, we get an irrelevance result for LMS; it is shown by the same induction 

given in Section 3.4.1, with subset substituted for prefix. We also get a theorem that 

supplies pure variable proofs for LMS. 

The tree annotation result must now go as follows. 

Lemma 7 (Tree annotations). Let 9 be an LMS derivation of height h with end 
sequent 

and suppose there is a pair of symbols c( and p such that no annotation in the end 
sequent contains both a and /I. Then there is a derivation 9’ of height no larger than 
h with end sequent 

where the formulas in S are a subset of those that occur in T and no annotation in 
9’ contains both CI and 8. 

Proof. We assume 9 is a pure variable proof. By irrelevance, we can obtain a shorter 

derivation 9’ from 9 in which the annotation of left formulas are always subsets of 

the annotations of right formulas. By induction, we can show that, in any $9’ with 

this property, no annotation contains both M and j3 unless the annotation of some for- 

mula in the end sequent does. This is immediate at axioms. Suppose the claim is true 

of derivations of height n, and consider a derivation of height n + 1 in whose end 

sequent no annotation contains both c1 and b. If the derivation ends in a left rule, 

no annotation will contain both M. and fi in the end sequent of its immediate sub- 

derivations: these combinations could not occur on the right, so a left rule introducing 

such combinations would be irrelevant. Likewise, although immediate subderivations 

for right rules may include larger sets of annotations, these sets will extend existing 

sets by fresh symbols different from a and fl by the pure variable property. Thus, 

the absence of annotations combining CI and B extends to the end sequents of imme- 

diate subderivations of right rules. Hence, the induction hypothesis applies to show 

that CI and /? never occur as elements of the same annotation throughout the whole 

proof. 0 

The proof of completeness given in Section 3.4.2 now carries over directly to LMS: 

here, too, the scoped geometry of LMM proofs determines what scope is needed in 

rule applications that extend annotations. In LMS, right formulas can be annotated with 

any set I*, and left formulas with arbitrary subsets of ,u: 
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Theorem 3 (Completeness). Let D be an LMM deduction with end sequent T - A. 
Then for any set annotation p, any function n assigning subsets of n to formulas in 
T, and any indexing context C ussigning subsets of p to the free term variables of 

r and A, there is an LMS deduction of 

Likewise, a proof of soundness for LMS can be formulated in terms of two lemmas 

as in Section 3.4.3. As with LMP, we use the C-term condition which relates substituted 

terms and formula annotations - formulated in terms of subsets not prefixes - to give 

a permutability lemma for LMS: 

Lemma 8 (Per-mutability). Let 9 be an LMS derivation containing an application P 
of (-+I) or (-V), which introduces the eigenvariable c1 in the annotation. Let R 

denote any other rule application in 9 above P, and let u be the annotation of the 
side formula of R. Then R permutes with P tf and only tf u does not contain ~1. 

This result extends to an intermediate lemma: 

Lemma 9. Let 9 be a deduction in LMS of 

such that C is of the form VxA or A > B; C is the principal formula of the lowest 
rule application P in 9 where the eigenvariable a is introduced on annotations; and 

no higher rule application in 9 permutes below P. Then either 

Cr>T-A is an axiom 

or we can construct an LMS deduction 9’ from 9 which shows 

cd-c. 

This is because LMS shares the three critical properties used before to constrain ax- 

iom links in the deduction 9. First, the right sequent rules are formulated to change 

annotations by only adding eigenvariables. Second, separate variables must be distinct 

(by the pure variable proof lemma). Third, no formulas derived from A formulas in 

9 are labeled with annotations that contain LX. This third property is now an indirect 

consequence of the new Lemma 7 on tree annotations. Consider any rule application 

R whose principal formula is a descendant of a A formula with its original annotation, 

and which causes the addition of another eigenvariable /I to this annotation on its side 

formulas (with A on the right, this is the only way annotations of descendants of A 
might change). Because of the eigenvariable condition, no annotation in the end se- 

quent of the immediate subderivations of R contains both a and /?: Lemma 7 applies 

to show that no formula in the entire deduction is labeled with both c1 and /I. 

Applying this result recursively, as earlier, demonstrates the completeness of LMS. 
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4.2. Abbreviating set annotations 

Consider a labeled system with set annotations, just as in the previous subsection, 

except with the following revised rules for > and ‘d: 

CD~,A~-B~~~,A~B’,A 

ZD~-AXB~,A +’ 

CDT,AIB~-A”,A CDT,A~B~,B~~~-A 

Ct>r,A>Bj’-A 
>+ 

C, a : CI D r - A[a/xlpoa, ‘dxAp, A i ~ a oL new 
Cr>r-vxAp”,A > > 

CD ~,~xA”AlxlpoV - Av_, tC_term of index v 
CD r,‘dxAb - A 

This calculus also describes intuitionistic proofs. Because the new (-II) and (--+ V) 

rules encode a transition from scope c to scope c o cx on their right-side formulas, the 

rules continue to describe the scoped location at which a is introduced. This allows 

the representation of this scope to be abbreviated to a on the left-side formula of the 

(-+I) rule, and in the indexing of the new term a of the (+ V) rule. Because of this 

abbreviation, we call this system LMA. 

The arguments presented previously can be easily adapted to establish that LMA is 

a correct calculus for the syntactic representation of scope in intuitionistic proofs. We 

can show LMA complete by the argument of Theorems 1 and 3. For, LMA retains 

the (1-t) and (V -+) rules that allow formulas to be labeled with the current scope as 

structural scope is made explicit; as the argument requires, the labels of left formulas 

remain subsets of the labels of right formulas, even with the new right rules. 

We can show LMA sound by transforming its labels to match the labels of LMS. 

This transformation simply folds out the abbreviation undertaken at (-3) and (+ V) 

rules. 

Theorem 4. Every LMA derivation can be transformed into an LMS derivation, by 

a change in labeling. 

Proof. The transformation involves a partial mapping 6 taking atomic annotation sym- 

bols CI to sets of annotation symbols 6(a). The translation 6(p) of an LMA annotation 

term ,u will be (the o-concatenation of) the union of 6(a) for all a in p. We ensure 

that 6(c() =6(6(m)) and CI E 6(a). 

We translate an LMA sequent using such a map 6 to relabel left formulas and 

indexing contexts; r” abbreviates the multiset of formulas with an occurrence of A”;(P) 

for each occurrence of Ap in r, and similarly C’. We use a function v to relabel right 

formulas: For each occurrence Ap on the right q(A”) is a formula A” with &,u) C v; 

A7 denotes the action of q on the formulas in A. Given any such 6 and ye, and an 

LMA derivation with end sequent C D r - A, we can construct an LMS derivation 

of C” D r” + Aq. The proof is by induction on the structure of LMA derivations. 
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The conditions on n and 6 preserve the correctness of axiom and substitution rules 

because if p & v then r(p) C q(v) and if also &A”) = A”’ then ?(,u) C v’. The remainder 

of the construction is to derive a labeling of the side formulas of the inference rules 

so as to satisfy LMS figures and allow the induction hypothesis to be applied. 

For (-13) and (+ V), this goes as follows. The inference introduces an annotation 

eigenvariable CI on a principal formula whose revised annotation is p. We relabel the 

subderivation by q’ where $(a) = p o c( and otherwise q’ agrees with q (assuming 

without loss of generality because a is new that ~(a) is undefined). For the new right- 

side formula AYoa we set &A”“) = A pox The result instantiates LMS figures. . 

For (I++) and (‘v’ -), the inference involves annotations p, v and p o v. In both 

cases, we extend 6 to relabel the side formula BpoY as Bdfi”). To complete the re- 

labeling, for (>-+) we can extend 6 to 6’ in the left subderivation so that the side 

formula A” gets 6’(AY)=Aq(~““) . m place of v. Meanwhile, for (V+), we simply ob- 

serve that a C-term of index v must be a U-term of index n(v) and hence index 

yI(P O v). 
The correspondence for remaining inference rules is immediate. 0 

LMA represents another take on topological semantics. The LMA implication rule 

corresponds to the model-theoretic condition that A > B is true at an open set q exactly 

when B is true at q fl r for any open set r where A is true. This is yet another equivalent 

to the conditions on implication presented earlier. 

D’Agostino and Gabbay [1 1] describe a labeled deductive system for propositional 

intuitionistic logic without disjunction whose labeling matches LMA. They motivate 

this system neither as an abbreviated representations of paths through proofs nor 

as a translation method for topological models, but rather as a direct encoding of 

intuitionistic sequent rules. For example, in (--+I), ,u represents the sequent from 

which A > B is to be proved, and then n o a represents the sequent from which B 

is to be proved. The assumption of A at CI indicates that CI represents the formula 

A. In fact, d’Agostino and Gabbay observe that this intuition allows the eigenvari- 

able condition on (+z) to be simplified. All assumptions of A are identical, so 

it suffices to have a single A-characteristic atomic label tx used exactly when A is 

assumed. 

We have just seen one way to extend the labeling of [ 1 l] to capture full intuitionistic 

logic and to obtain a proof system with the advantages for proof search of classical 

logic. Such an extension does not seem compatible with the intuition d’Agostino and 

Gabbay propose, however. Consider applying d’Agostino and Gabbay’s intuition to 

disjunction. Encoding the basic LJ (V +) sequent rule directly might give something 

like this: 

CDF,AVB”,A~ - Cpox,CcI,A EDT,AVB’,B B --+ C pop, C”, A 

CDT,AVB” - Cp,A 
V--t 

Its application would be subject to conditions that v be a subset of ,u, that CI be 

A-characteristic, and that fi be B-characteristic. Because the rule affects multiple 
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formulas in the end sequent simultaneously, it is obviously a significant departure 

from ordinary sequent-calculus with an uncertain impact on proof search. 

On the other hand, we might attempt to exploit classical reasoning for disjunction, 

as in LMM (and LMA): 

CI>T,AVB”,A” -A CP~,AVB”,B” - A 

Cr>T,AvB’+ A 
V+ 

This actually yields incorrect results if we only require atomic labels of assump- 

tions to be characteristic of those assumptions. For example, A > B V C does not entail 

(A I B) V (A I C) intuitionistically. Yet we have the following labeled proof in which 

c1 is A-characteristic: 

. ..) B’ - B’,C’,... . . . . C” - B’,C” ,... 

APL -A’,... 
V+ 

. . . ) . . . , B V C’ - B’, C’, . . . 

A”,A’,A>BvC - B”,Ca ,... 
I-+ 

A’,A>BvC - B’,A>C,... 
-+I 

A>BvC -A>B,A>C,... 
+> 

A>BvC-(A>B)v(A>C) 
+V 

(10) 

Thus, it is crucial for extending the proposal of [ 1 l] that assumptions have fresh 

labels regardless of the content of those assumptions. This underscores that the proof- 

theoretic meaning of labels is to record the identity of the inferences at which assump- 

tions are made. This proof-theoretic meaning underlies the simple syntactic proof of 

correctness for LMA building on those for LMS and LMP. This contrasts with the in- 

finitary and nonconstructive proof of correctness in [ 111, which is ultimately semantic 

in nature. 

4.3. l-terms as set annotations 

Bittel [6,7] defines a proof-theoretic method for eliminating impermutabilities in 

intuitionistic logic which uses labels inspired by A-terms. Bittel’s proposal encodes 

assumptions from which a conclusion is derived by the free variables in the l-term 

that labels the conclusion. Thus, for example, Bittel’s rule for (43) can be written as 

the following sequent rule: 

T,x:A dM:B,A 

r - kM:A>B,A-t’ 

The rule has a side condition that x not appear free in the end sequent. 

We can distill the mechanism behind Bittel’s system by representing only the free 

variables and discarding the remainder of the A-term. This reveals quite a close comrec- 

tion with LMA. If the set of free variables of k.M is p, and the set of free variables 

of x is CI, then the set of free variables of M is p o o! - provided x occurs in M. More 
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precisely, if the set of free variables of M is some set v, then the set of free variables 

of E.&f is v - a. So Bittel’s (--+I) rule can be reconstructed: 

r,A’ - B”,A 

r - A>B”-‘,A 
- 3, a new 

The difference between Bittel’s system and LMA lies in the fact that Bittel’s system 

is designed to represent exactly the assumptions from which a conclusion is derived. 

LMA allows a formula to be labeled with the names of assumptions that do not directly 

contribute to its proof. This difference is visible already in the (+I) rule; it recurs 

in Bittel’s axiom rule and in the other right rules of Bittel’s system. Bittel’s axiom 

identifies the labels of assumption and conclusion: 

Cbr,A” -----) Ap,A 

Other right rules are modified to label their principal formula with the union of the 

annotations of their side formulas. For example, for (-+A), we need: 

Zr>T ---+ Ap,AABpoV,A ct>r + BRA AB~“~,A 

Cr>l- -----) AABpoY,A 
-+A 

For technical reasons, an explicit rule of contraction on the right is also required. 

(In the &calculus, this rule corresponds to a new term constructor for implicit case 

analysis.) Let LMT denote the system with the left rules of LMA plus right and axiom 

rules modified in this way; the T records the original status of annotations as terms. 

To show LMT sound, we can give an inductive construction. We start with an LMM 

proof with end sequent r - A, a function r] labeling formula occurrences in r, and 

an indexing context C. The construction produces a labeling $ of formula occurrences 

in A and a proof in LMT of CD P - A’J’. At axioms, $ sends the right linked 

formula A to the q image of its left match, and sends the remaining formulas to the 

empty set. The case of (+A) is representative of inductive steps in this construction: 

we apply the induction hypothesis to obtain proofs of 

Cor’l d Ap,AABpi,A” and CDr’? - A”,AAB”‘,A*’ 

By weakening these derivations and applying the contraction rule as necessary, we can 

obtain derivations of 

.z D rq + A~‘,A A Bpoy, Aq’ and zDrq -+ A”,Ar\B~““,A~’ 

where q’(C) = 6(C) o 6’(C) except for the principal and side formulas of the (+A) 

inference. These derivations can be composed using the LMT (+A) inference. 

To show this complete, we can transform its labeling into the labeling of LMA. 

We need only change the labels of right formulas; we inductively associate each right 

formula A” with the appropriate new annotation v with p c v, in the obvious way. 
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4.4. Intuitionistic proof search: some comparisons 

In Section 1.3, we motivated one difficulty in intuitionistic proof search, caused 

by the need to order rule applications to reflect scope. We have now seen several 

syntactic methods that recast proof rules so as to reduce the impact of order using 

explicit labeling of scope. In Section 5.1 we shall see how to extend explicitly scoped 

systems using Herbrand terms and unification so as to eliminate the impact of order 

altogether. This represents a solution to a major problem in automatic derivation of 

intuitionistic proofs. It is far from the only problematic feature of intuitionistic proof 

search, however. Related work that addresses these other problems must still be adapted 

to the present framework. We sketch the issues involved in this section. 

The first problem concerns bounding the size of proofs. Propositional intuitionis- 

tic logic can be shown decidable, and decision algorithms for it devised, using such 

bounds. In [14], Dyckhoff presents a sequent calculus from which these bounds follow 

naturally; this system limits the number of times a formula is decomposed along each 

path in a structurally scoped proof to one, by eliminating contraction and avoiding 

preservation of principal formulas of inferences. As the following argument suggests, 

what underlies Dyckhoff s results is the fact that 

A intuitionistically entails B > C - (A 2 B) > C. (11) 

In any one intuitionistic scope, as in classical propositional logic, there is nothing 

to be gained from decomposing a formula more than once. This in itself does not 

guarantee that intuitionistic propositional proofs have bounded size, however, because 

premises of the form (A > B) > C can be instantiated in any scope p to create a new 

scope ~1”. Fact (11) says that this is necessary only once in each scoped path: since 

A holds at scope pee, then for every scope p~av, A > B is true there exactly if B is 

true there. Dyckhoff s calculus encodes this directly using a structural discipline of 

scope. Articulated explicitly as here, it should also be possible to incorporate this 

constraint into an explicitly scoped system, and thereby obtain an explicitly scoped 

decision procedure for intuitionistic logic. The explicitly scoped system would retain a 

possibility of goal-oriented proof search and hence a possibility of faster failure than 

proof search in Dyckhoff s calculus. 

A second problem is to ensure that the calculus gives proofs a compact form. Se- 

quent calculus proofs without cut are often required to include redundant subtrees. 

This point is emphasized in [lo] where it is shown that cut-free classical propositional 

sequent proofs cannot polynomially simulate truth tables. These redundancies are ad- 

dressed by matrix methods of proof [3,5] and tableaux with analytic cuts [12]. La- 

beled methods have been extended to these frameworks in [ 11,501 - but on a semantic 

rather than a proof-theoretic basis. Because cut-elimination can be proved purely syn- 

tactically, we can now anticipate finding a proof-theoretic basis for these techniques, 

in light of the present work, and then adapting these techniques where appropriate 

to synthesize proofs in intuitionistic natural deduction and analyze intuitionistic proof 

search. 
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A third problem, given that inferences can now be applied in any order, is to select 

a perspicuous or efficient order for applying them. Algorithms for proof search with 

particular orders of inference can be given as refinements of the full sequent calculi. 

For example, in [23], a restriction on uses of (I-) is exploited to obtain a bijection 

between normal simply typed I-terms and sequent proofs. Logic programming, mean- 

while, can be presented in terms of sequent calculi in which right rules must be applied 

before left rules whenever possible [32]. This order of rule application is embodied in 

restricted focusing sequent calculi in [2,33]; the proofs obtained are called uniform. 

These disciplines for restricting proof search have so far been formulated in struc- 

turally scoped sequent calculi; thus while they can reduce branching in proof search, 

they cannot by themselves enable proof search for full intuitionistic logic to proceed in 

a goal-directed manner as in an explicitly scoped calculus. The intuitions behind these 

refinements remain applicable in explicitly scoped systems, however. For example, we 

return to the question of the application of these techniques to explicitly scoped calculi 

for intuitionistic logic in Section 5.1. 

There remains the problem of selecting the right discipline of explicit scope for 

a particular application, from the four we have seen: LMP, LMS, LMA, LMT. One 

ground for comparison is the complexity of reasoning with the appropriate equational 

theory of terms. Bittel’s LMT might seem best on these grounds: Bittel shows that 

LMT can be implemented using annotations with free structure and ordinary unifica- 

tion. This implementation is problematic, however, in that it prevents the system from 

lifting compactly to use unification as do the others. In fact, Bittel uses a lifting proce- 

dure that does not eliminate quantifier impermutabilities but allows substitutions to be 

made appropriate to the particular order in which quantifier rules are used - a strategy 

analogous to [49]. Meanwhile, for the strings of LMP, the situation is in fact much 

better than it might appear. Stone [43] shows that the string equations resulting from an 

LMP proof can be solved in polynomial time using a constraint algorithm that avoids 

the need to backtrack among alternative equational unifiers. There is thus some reason 

to think that LMP is not only the most basic system, but also the most efficient one. 

5. Proof-theoretic extensions and applications 

In Sections 3 and 4, we considered a variety of systems that allow intuitionistic 

proofs to be constructed in a more liberal order than a typical, structurally scoped 

calculus. We motivated the need for such systems in Section 1 with two applications 

that depend on the scope discipline of intuitionistic proofs: the analysis of automatic 

proof search for logic programming and the automatic synthesis of functional pro- 

grams. This section returns to these applications and establishes their connection to the 

results of Sections 3 and 4, using some additional proof-theoretic results. We begin in 

Section 5.1 by presenting a Herbrand theorem for LMP and sketching its relevance for 

logic programming. We continue in Section 5.2 with an algorithm to extract A-terms 

from lifted LMP deductions, and sketch its role in program synthesis. 
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5.1. Lifting LMP 

Recall from Section 3.3 that LMP represents only a halfway point in the development 

of a calculus in which rules may appear in any order. LMP allows propositional rules 

that could occur low in a structurally scoped proof to be delayed to a higher point; 

but it does not always allow propositional rules that could occur high in a structurally 

scoped proof to be advanced to a lower point - this was illustrated in proofs (8) 

and (9). This difference is a result of the eigenvariable condition on annotations and 

first-order terms imposed by (+>), (-V) and (3 -+) figures. 

But in Section 2.2, we have already observed that there is a general syntactic de- 

vice for eliminating these eigenvariable conditions: the use of Herbrand terms in place 

of eigenvariables [29]. Herbrand terms are representations of eigenvariables whose 

constituency, not position in the proof, specifies an appropriate order in which eigen- 

variables are to be introduced. At the same time as it eliminates the quantifier imper- 

mutabilities in a calculus, the use of Herbrand terms allows instantiations of quantifiers 

to be delayed until sufficient information becomes available. A variable is used in place 

of a substituted first-order term and its value is determined using unification. 

This section develops and applies a sequent calculus refinement of LMP that uses 

Herbrand terms and unification. We call this new calculus LMU. The calculus imple- 

ments dynamic Skolemization in the style of [29]. Dynamic Skolemization annotates 

formulas in proofs with the information needed to construct any Herbrand terms when 

quantifier-like rules apply, instead of rewriting formulas to a special functional form 

containing Herbrand terms before proof search begins. Dynamic Skolemization is ap- 

propriate because any functional form for intuitionistic logic would have to go beyond 

the ordinary syntax of formulas - for example to encode the intuitionistic difference 

between A > 3x&x) and 3x(4 > B(X)). (But see [ 181 for one way to do this.) 

In our notation for dynamic Skolemization, each formula is subscripted by a list of 

terms H that must occur in the sequent before any inference could decompose that 

formula. The list of terms is maintained so as to include the instantiations made in 

deriving the formula (since it would be impossible to arrive at the formula without 

making those instantiations). This suffices for LMP because it has only eigenvariable 

impermutabilities. However, in general, the list must also be updated to include ad- 

ditional terms based on the propositional impermutabilities of the logic. For example, 

[29] describes the additional bookkeeping required to maintain these terms for first- 

order linear logic [22] with its panoply of impermutabilities [2,21,44]. 

To maintain the list H, rules that formerly involved a free choice of terms are 

revised. Logic variables are substituted for bound variables, and a record of the use of 

the logic variable is made by appending it to the label H on the formula. The values 

of logic variables are later constrained at axioms by unification. For example, we have 

for (I-): 

. . . DT,A>B; -Agx,A . ..cJ.A>B;,B~~,- A 

r>T,A>B; -A 
3--t 

. . . 

(The ellipses anticipate further revisions required under dynamic Skolemization.) 
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Having maintained the list H, dynamic Skolemization reformulates the remaining 

quantifier-like rules so as to build an appropriate term. This is done by combining this 

list H with a name for the principal connective of the inference. The name, which we 

indicate by a subscript, is viewed as a function symbol and H as its argument. Thus, 

the action of (+>) in LMU can be schematized thus: 

. . . D T,A$4H’ _ pW) ,Q,B;,A 
--*I 

. . Dr +A;,B;,A 

The function symbol associated with the implication is g, the list of instantiations H, 

and the new Herbrand term representing an arbitrary transition of accessibility is gH. 

The use of a name associated with the symbol is a slight departure from [29]; they 

use a unique name for each rule application. The difference involves adding to their 

proof a simple step to eliminate redundant eigenvariable introductions by exploiting 

the preservation of principal and side formulas on sequents in LMP. 

Again following [29], we make the role of unification in assigning values to logic 

variables an explicit part of the sequent calculus. Now, given the use of Herbrand terms 

to eliminate scope, the lifetime of a variable can extend beyond the subproof where it 

is introduced. Each sequent therefore includes an input substitution U, which encodes 

the constraints in force and the unifications performed up to the point in proof search 

where the sequent arises; and an output substitution V, which encodes the constraints 

in force and the unifications performed up to the point in proof search where the proof 

of that sequent has been completed. Effectively, V specializes U so as to respect the 

constraints imposed by axioms in the proof of the sequent. 

A distinction between input and output indexing contexts on sequents is required for 

the same reason. Each sequent includes a input specification C of the scopes of terms 

already introduced when the sequent is first encountered in proof search, and an output 

indexing 0 that specifies not only these scopes but also the scopes of terms introduced 

as part of proving the sequent. Overall, sequents are written 

to reflect their dependence on inputs U and .Z and production of outputs V and 0. 

As an illustration of how these new labels of sequents combine with dynamic 

Skolemization, we can give the example of (3 -) and (- 3) in full. First (3 +): 

U;C,gH:11/V;ODr,3yxA~,A[gH/x]~ + A3+ 

U; c/V; @ D r, 3,xA; + A 

(3 +) introduces a new Herbrand term gH determined from the list of instantiations 

H and the name g of the quantifier occurrence. This new Herbrand term is confined 

to the scope p with which the principal formula is labeled; the input indexing to the 

subderivation therefore includes the specification gH : p. 
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Second, (4 3): 

U;C,y:pJV;Ot>r -A[y/x];,JxA;,A 

U;C/V;Or>T - 3xA;,A 
43 

Here, y is a fresh logic variable. Note that because unification determines the value 

of y, it is the unification step and not the ( -+ 3) rule that must determine whether 

the value assigned to y respects the scope ~1 of the formula where y is introduced. 

Accordingly, the rule adds an indexing y : ,LL to C. 

This leaves only the revision of initial sequents left to be explained. We have 

U; CJV; C D r, B; - A;, A 

where V is any most general unifier more specific than U and having the following 

properties: 

1. V(A) and V(B) are identical as terms; 

2. V(v) is identical as a string to V(p) for some fresh logic variable x; and 

3. for any term variable y - where C assigns g to y, and some Herbrand function- 

application hY is a subterm of V(y) - the following holds: for any term hZ - 

associated by C with some annotation p - such that V(hZ)= V(hY), V(p) is a 

prefix of V(a). 

Computation of V calls for string unification; nevertheless annotation equations are 

sufficiently simple that the existence of a solution to a set of annotation equations in 

polynomial time for many search strategies [43]. 

LMU is summarized in Fig. 5. The construction of LMU instantiates the general pro- 

cedure for the construction of optimized sequent calculi described in [29]. The proof of 

correctness given in [29] applies immediately to LMU, once we establish the correct- 

ness of implementing the indexing check by enforcing condition (3) on substitutions. 

To establish this, we first observe that Lincoln and Shankar’s correspondence between 

proofs in the optimized calculus and proofs in the ground calculus is quite close. In 

particular, the introductions of Herbrand function applications equal to hY under the 

output substitution V of an LMU proof correspond to some rule applications introduc- 

ing the eigenvariable a in an LMP proof. Meanwhile, the assignment of t to y by V 

in the optimized proof indicates that the term corresponding to t should be substituted 

at the rule application in the ground proof corresponding to the introduction of y. 

Because of this regularity, condition (3) ensures that the term substituted in the 

ground proof at the site corresponding to y is in fact a term of appropriate index. This 

is just because Herbrand function applications appear in V(y) at the positions corre- 

sponding to any eigenvariables that appear in the ground term. Now, Herbrand function 

applications may appear in V(y) without corresponding to eigenvariables: they may 

appear nested inside arguments to other Herbrand function applications. However, these 

additional checks will not rule out any unifiers of appropriate index. For suppose C con- 

tains hY : p and gZ : q where V(gZ) is a subterm of V(hY). V(u) must contain V(gZ) 

for some variable u free on the formula from which h is introduced. By condition (3), 
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cr; c, y: f~/ v; 0 D r - A[y/z];,,, jzAt;l, A_ 3 
II;C/V:ODr--3zA$,A 

Fig. 5. LMU, a unification-based presentation of LMP. The only proviso is (*) that MGU must supply a 

unifier (with occurs check) at axioms that assigns labels to quantifiers and terms in accordance with X. 

the annotation V(s) is a prefix of the annotation V(p) associated with U. But the logical 

rules ensure that p is a prefix of p. Hence, V(s) must be a prefix of V(p). 

Theorem 5 (Correctness). Let r and A be any multisets of labeled formulas which 
do not contain Herbrand functions or variables. Then there is a deduction in LMP of 

if and only if there is a deduction in LMU of 

U;C/V;OoT - A 

for some U, V, and 0. 

Proof (As outlined in Lincoln and Shankar [29, pp. 284-2871). The only if direction 

is established by an induction on proofs in the ground system (in this case, LMP) 

which shows that the rule ordering of the ground proof and the substitutions made in 
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the ground proof describe an analogous proof in the lifted system (in this case, LMU). 

The if direction is established by showing that the bindings of values to variables, any 

propositional impermutabilities inherited from the ground system (LMU has none), a 

condition that formulas precede their subformulas, and transitivity will induce a strict 

partial order on the rule applications in any proof in the lifted system. An induction 

on the structure of lifted proofs establishes that permutations of inferences convert any 

lifted proof to another proof in which the ordering of rule applications matches this 

induced partial order. 

Substituting eigenvariables for Herbrand terms and appropriate values for logic vari- 

ables gives a new proof where eigenvariable conditions are satisfied - with one ex- 

ception due to the use of names for symbols rather than inferences in LMU. We may 

have cases where one (-x), (-V) or (3 -) rule introduces the same variable as 

a lower one (such occurrences are unordered by Lincoln and Shankar’s conditions). 

Such cases are dispatched as follows. The principal and side formulas of the two rule 

applications must be identical. Because of the preservation of formulas in sequents in 

LMU and LMP, the side formulas of the lower application are available in the sequent 

when the higher rule applies. Therefore, we can exploit the admissibility of contraction 

and simply eliminate the higher inference. 0 

LMU has completely free permutabilities; reasoning about the order of introduction 

of quantifiers and implications is factored into the occur-check in unification. To illus- 

trate this, we return to the LMP proof of (C > B VA) >(C > A V B) given in (9). The 

corresponding proof in LMU is obtained simply by using variables in place of ground 

instantiations at (I--+) - assuming a labeling (C > B VA) >,(C >pA VS). It appears 

in (12). 

$; 18; D , Am - AuB tl;/t9; D . . ..BCU --t BnB 

t?;/fi; D . . . . A” -+AVBKpi ’ I?;/$ D . . . . B” - AvB”~ 

i V 

;/& b . ...@ + c" 19;/19; D . . ..BVAM -AVBap 
V+ 

;/I$ DC>BVA’,C”~ -+AVB@ 
34 

;I$ DC>BVA’ - C>AVB’ 
+> 

;/t?; D -+(C>BVA)>(C>AvB) 
+> 

(12) 

Here 6 is a substitution of p for x. Proof (12) has much the same form as (9), but 

proof (12) represents the fact that (14) outscopes (-+I) in the binding of x to /I, not 

in the structure of the proof. Thus, a permuted proof in which the (I+) rule applies 

lower, as in (13), is also possible. 

~~;/I~;D...B~-+B~~,,. _v 19; 119; D A”IA@ 

I~;/T~;D...B”-+AVB~~... I~;/I~;D...A”+AVB~~... 
+V 

;/$;D...c”B-cccx ,.__ 

;/ti;o...+C”,C,AVB” ,... +’ 

6;/29;b...B”--*C>AVBa... *’ 19;i19;~...A”~C>A~B’...-;3 

29;/~;b...BVA”~C>AVB’... 

/t9;bC>BVAa-K>AVBa... 
>+ 

/T’?;D-(C>BVA)>(C>AVB) 
+> 

(13) 
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Because the inferences of LMU proofs may appear in any order, we can choose 

arbitrary regimes for ordering inferences in LMU proofs without sacrificing complete- 

ness. One possible regime, suggested in [32] and extended in [2,33], is to apply left 

rules only when we are committed that no right formula will be the principal formula 

of a higher rule in the proof, and until then to apply right rules. This search strategy 

provides a general description of the behavior of an interpreter for a logic programming 

language. It allows connectives in right formulas to be viewed as instructions for search. 

This construction applies to any sequent calculus with appropriate permutabilities, 

not just LMU. For example, we might also apply it after adapting the results of 

[ 11, 17,35,42,50] to derive an explicitly scoped sequent calculus of intuitionistic prov- 

ability by purely semantic methods. However, the syntactic analysis of the proofs ob- 

tained plays an important part of describing the logic programming language. For 

example, as observed in [31], LJ proofs gain a natural modular structure from how 

they ensure that the assumption of A can only contribute to the proof of B in proving 

A > B. We have already used syntactic methods to put LMU proofs in correspondence 

with LJ proofs. LMU can therefore be used immediately to extend the logical analysis 

of modules presented in [31] to other logical fragments. 

5.2. Extracting A-terms 

As mentioned in Section 1.1, a major motivation for considering intuitionistic deduc- 

tion is the automatic synthesis of functional programs [9,30]. In the deductive approach 

to program synthesis, the input is a specification of the type of a function (including 

constraints on the relation between its argument and its result). The output is a function 

that provably has this type. Using the Curry-Howard isomorphism [24], the type of the 

function can be specified as a formula in intuitionistic logic and the resulting program 

can be extracted from the proof of the formula. This requires the derivation not only 

of intuitionistic theorems but also of intuitionistic natural deductions. 

LMU’s contribution to this research program is to offer advantageous search for 

proofs that correspond to intuitionistic natural deductions. Now, the proof of correctness 

of LMU gave a system for permuting LMU inferences first to LMP inferences and then 

to LMM inferences and finally to LJ inferences. Thus, performing these permutations 

on an LMP or LMU deduction already gives a way to extract l-terms. This technique 

is rather unsatisfactory, however, in so far as the majority of the permutations dictated 

by the correctness proof will have no impact on the I-term ultimately obtained. We 

now consider how to extract A-terms directly from LMU proofs. 

5.2. I. Motivation 

Intuitively, a completed LMU proof specifies a collection of intuitionistic inferences 

labeled with the scope in which each is to be performed. 

Thus far, the collection of inferences is represented only by the inferences that the 

proof contains. The first step in extracting a A-term from an LMU proof is to make the 

inferences explicit. We will do this in the style of [ 151 by labeling formulas with terms 
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/rrb...P--A’... u/u b c - e O/ib...Bo--BY... T/TO... C-C”. 
/ .AJC,.P-GY. Ob o/TD...B~ C, R= - G?.. 

a. The LMU rendering of a usual iutuitionistic logic proof; d = a/x; T = a/x, a/y. 

/uD...A”-A’. olrb...LP - BY... 

TD (A v B)O --+ A , By, T/TD...C-+ e 
/T D - A’, B’, (A V lJ 3 c) T TD...C=-B~~AVB~C 

/TD...A~C-By.AVB>C 

T/T b .o- e... 
TITD...P-AVBI C 

/TDAIC,BIC-AVB>C 

Fig. 6. Permutations motivate partiality and a different treatment of scope. 

recording the inferences that derive them. In this presentation, formulas on the left 

may be labeled with complex proof-terms built by applying left rules; this contrasts 

with presentations such as that in [20] where left formulas are always labeled with 

variables, and substitutions are performed at the application of left rules. This allows 

each sequent to record the inferences performed in each scope. 

The second step is to assemble a A-term from these scoped inferences. With structural 

scope, it is possible for this assembly to proceed incrementally in lock-step with the 

construction of the sequent proof. The structure of the proof matches the abstraction 

and substitution operations that need to be performed in assembling a A-term (the 

specifications in [ 15,201 do this). However, in LMU, scopes do not always correspond 

to regions of the proof. We therefore require a recursive traversal of the record of 

scoped inferences to assemble the final A-term. 

Bittel’s method of extracting A-terms also involves an incremental labeling and a 

postprocessing traversal [6,7]. Bittel’s traversal procedure is qualitatively quite similar 

to the one here. Our process, unlike his, exploits an independent discipline of explicit 

scope to streamline deduction and guide extraction. At the same time, we account for 

a greater range of ordering of rules and therefore need an additional mechanism to 

accumulate inferences during the construction of proofs. 

We can illustrate the issues involved by the contrast between the two proofs of 

Fig. 6. If S names A > C and 9 names B > C, these proofs both derive a function 

,?u.case(u of id(u) + f (v)linr(u’) + g(d)). In the proof of Fig. 6(a), this term matches 

the scoped structure of the proof. The lowest rule is (-1) just as the widest scope 

connective is I, the next rule is (V +) just as the next connective is case, etc. 

In LMU, it is more complicated. The (V -) rule corresponding to the case state- 

ment lies at the upper left, while the (43) rule appears three times! The annotations 

define the scope of connectives: scope is no longer simply a reflection of the structure 

of the proof tree. To see that scope is still represented, observe that all subproofs con- 

tain the annotation c( corresponding to the one j” in the resulting term. Because these 

scope-annotations propagate through unification during proof construction, the synthe- 

sis of case statements for disjunctions and casex statements for existential quantifiers 

from LMU proofs will be delayed until the proof is complete and the exact scope of 

connectives is determined. 
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This process requires a new mechanism for assembling proof-terms from separate 

subtrees of a proof. In the proof of Fig. 6(b), the right subproofs, even though combined 

by (I-), each partially constrain the deduction associated with the conclusion. One is 

associated with the inference i&(v) + f(u), the other with the inference inr(u’) + g(v’). 

To handle this, the term associated with a formula must be regarded as a partial 

specification of the natural deduction proof of that formula. The need to assemble 

these partial specifications into complete ones reflects the implicit role of contraction 

in collapsing repetitions of formulas in sequents after permutations. 

5.2.2. Recording inferences 
A precise simultaneous specification of LMU and intuitionistic natural deduction is 

as follows. We begin here by describing how the inferences made in an LMU proof 

are recorded. We continue in Section 5.2.3 by describing how terms are reconstructed 

from this record. 

We will use variables in terms as placeholders for content that cannot be determined 

until scopes are fixed. Since annotations determine scope in the proof and in the corre- 

sponding A-term, we implement this through two maps that associate distinct variables 

with annotation eigenvariables. K, abstracts the term that ultimately will describe the 

right-side formula of the rule introducing annotation a; u, will describe the label of the 

left-side formula. Thus, every (--+>) rule introducing annotation CI will be effectively 

assigned the anonymous proof term Iv,.K,. As described below, separate structures 

will determine what terms the proof says should actually correspond to these variables. 

In ordinary natural deduction, case and casex statements indicate not only scope, but 

also the link between a term and the variables that represent its different possible values. 

Since the construction of case statements is delayed, these associations must now be 

treated explicitly. We will implement them using maps from scope-labeled formulas to 

variables, and thereby obtain a mnemonic that signals how the relevance of variables 

may depend on the cases introduced by that formula at that scope. In particular, 

fit?@ V Bi) and snd?(A V Bi) indicate the variables to be introduced in applying the 

(V +) rule to a principal formula A V BL. Meanwhile, unx?(!l,A~) indicates the term 

variable to be introduced in applying the (3 +) rule to a principal formula with label 

$4;. (Since LMU maintains substitutions mapping logic variables to values, it will 

be necessary to apply such a substitution V to a natural deduction term; in so doing, V 

must be extended to rename these special variables, so that VCfst?(M))=( VM), etc.) 

Terms for labeling formulas in sequents are constructed according to the following 

grammar: 

T ::= var @t(T) / snd(T) ( (T, T) 1 

in/(T) / inr( T) 1 inx(t, T) 

(TTP)IasxinT/(TtP)ItypeuinT/ 

The superscript on applications indicates the scope of the application. The notation 

as o in T corresponds to Av.T but emphasizes that this construction does not bind v; 
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and likewise type 1 in T for 1r.T. (The A, case, and casex statements that indicate 

scope come later.) 

To encode the partial specification of terms in different parts of the proof, the label 

of a formula will be a set of terms. Each element of this set will specify a sequence of 

natural deduction steps which could be appropriately included in the analyses of certain 

of the cases described by the proof. In describing the labels of formulas, we allow a 

variable v to abbreviate the singleton {v}, and we allow f(Fi,. . . ,Fk) to abbreviate 

{f@fI,...,Mk)IMI EFI , . . . ,Mk E Fk} for constructors and destructors f. 

Rules which ordinarily bind variables in proof-terms must be adjusted to accommo- 

date explicit scope. This is done by registering the proof-terms of the inferences on 

the sequent for later processing. There are two such repositories. First, there is a set 

T of pairs of annotation terms and proof terms. In each scope, T describes alternative 

terms that might be constructed, depending on the different cases that must be consid- 

ered in that scope. T specifications are augmented at (-3) and (+ V) applications to 

include the proof terms under which the right-side formula is derived. For example, 

suppose the sequent rule for (-3) applies with its side formula B associated with 

terms F and labeled with scope pea. Then the rule extends T as derived in the sub- 

derivation to T U {(pa,M) ( A4 E F} - abbreviated T U (p, F). The proof-terms for B 

are otherwise discarded; the principal formula is associated with an anonymous term 
_ asv,inK,:A>B”. 

Second, there is a set C of triples of annotation terms, labeled formulas, and proof 

terms. C contains a tuple (p,A,M) if a case analysis of the formula A, depending on 

the value of M, may be required in scope p. C specifications are augmented at (V -+) 

and (3 -) applications, to record the proof terms under which the principal formula 

is derived. The side formulas are associated with appropriate new variables. 

C and T thus indicate how terms are to be reconstructed to replace each K, variable: 

cases are introduced corresponding to appropriate elements of C and proof terms are 

derived in each case corresponding to an appropriate element of T. Now, like substitu- 

tions and indexing contexts, the specifications of C and T grow incrementally during 

a proof, so that input and output values are required on sequents. The overall form of 

sequents is therefore 

(the change in substitution from U to V and the change in indexing from C to 0 

records the incremental evolution of state as in LMU). The formulas in r and A are 

associated with sets of proof terms (in addition to the labeling already needed from 

LMU). It is convenient also to notate A as L : A to indicate that each formula A in A 

is associated with a proof term L(A). 

Unlike labels of scope, which allow dependencies that are not used, term labels 

for right formulas must represent dependencies exactly. Thus, the axiom rule takes 

the form 

T; C; U; C/T; C; MGU(MGU( lJ,A, B), px, v); Z D l-, F : B; - F : A;, @ : A 
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where 0 : A indicates that d is a multiset of formulas each associated with an empty 

function from cases to terms. Because dependencies are exact, term labels must be 

merged by sequent rules. For example: 

. ..t>T -F:A;,G:AAB;,L:A . ..t>T - F’:B$,G’:AAB;,L’: A 

. ..Dr+ (F,F’)UGUG’:AAB~,LUL’:d 
+A 

The notation L U L’ : A indicates the multiset in which each formula occurrence A of A 

is associated with L(A) U L’(A). 

Complete rules elaborating LMU sequents with proof-terms are given in Fig. 7. 

Apart from the nuances about partiality and scope described above, the presentation is 

essentially identical to that found in [ 151 and should offer no surprises. 

Observe that the various transformations that we have considered so far in this 

paper can be extended naturally to apply in this calculus. (Each of these regularities 

can be proved straightforwardly by examination of cases and induction on proofs, if 

necessary.) For example, if 9 is a derivation with proof terms, then we can obtain a 

weakened derivation ,4 + 9 by adding any multiset n of decorated formulas on the 

left throughout 9 and another weakened derivation 9 + 0 : A obtained by adding on 

the right throughout 2 any multiset n in which each formula is assigned the empty 

set of terms. Moreover, from a derivation ending 

T;C;U;C/T’;C’;V;OD~ - A 

we can construct an analogous derivation ending 

as long as T”, C”, Z” contain all the tuples in T’, C’ and 0 and as long as U” 

always equates terms that V equates. These facts allow derivations to be copied and 

reused: thus, ml1 permutations of inference remain possible in the calculus with proof 

terms, and, in fact, permutations applied in a proof do not alter its end sequent. 

Moreover, appropriate transformations of contraction are available. A proof whose 

end sequent contains two identical formulas with identical proof-term labels on the left 

can be simplified to a proof whose end sequent contains a single occurrence of this 

assumption. 

Finally, consider cases where 9’ omits part of 9, but has identical formulas on left 

and right in the end sequent to 9, with proof-terms labeled identically on the left, and 

contains only inferences from 9. This leaves open that 9 has the form: 

whereas 9’ has the form: 

T; C; U; C/T”; C”; V’; 0’ D r + L’ : A 

In such a case, T” C T’, C” C C’, and L’(A) G L(A) for all A E A. 
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Together with the the theorems of Sections 3.2, 3.4 and 5.1, these regularities ensure 

that for any labeled proof 

T; C; U; CJT’; C’; V; 0~ - F : A 

where A does not contain Herbrand terms or variables and is labeled with the empty 

path, there is proof 

T; C; U; C/T”; C”; V; @D - F’ : A 

which contains a correctly ordered sequence of inferences corresponding to an LJ proof 

and where T” C T’, C” G C’ and F’ C F. 

5.2.3. Reconstructing terms 

Given specifications T and C and a set 6 of variables guaranteed to be bound in the 

current scope and case, a term A4 : A is reconstructed by a recursive traversal in which 

subterms of the form K, are elaborated. The elaboration, giving cases, introduces the 

case and casex statements needed at scope LX, adds the appropriate variable bindings, 

and recursively reconstructs alternative actions to take at each case. In the recursive 

invocation, we consider only the subsets of T and C involving tuples with annotation 

terms that have a proper prefix ending in a; we abbreviate those subsets T, and C,. 

These processes take for granted that the substitution V has applied to T, C and M, 

and also that eigenvariables have been substituted for Herbrand terms (as performed 

in showing the correctness of LMU). 

The procedures of reconstruction and giving cases are specified nondeterministically, 

because multiple reconstructions may be possible. These multiple reconstructions arise 

because LMU allows some inferences to go unused and others to be redundant. Whether 

such redundant proofs actually are discovered automatically depends on the search 

strategy; in many cases they will not be. 

Definition 5 (Reconstruction/giving cases). One term is a reconstruction of another at 

8 (given T and C) as described by the following cases: 

l For any variable x,x is a reconstruction of x at 6 if and only if x E 6. 

l For any term M, if N is a reconstruction of M at 6, then fit(N), snd(N), inZ(N), 
inr(N), inx(t, N) and Nt are reconstructions at 6 of&(M), snd(M), in/(M), inr(M), 
inx(t, M) and A#‘, respectively. 

l For any terms A4 and M’, if N and N’ are reconstructions at 6 of A4 and M’, 

respectively, then (N,N’) and NN’ are reconstructions at 6 of (A4,M’) and MM’~, 

respectively. 

l For any term K,, if N gives cases at 6 U {va} for K, (given T and C), then Av,N is 

a reconstruction at 6 of as v, in K, and AIN is a reconstruction at 6 of type I in K,. 
N gives cases for K, at 6 given T and C according to the following conditions: 

l There is some formula A of the form 3,x& with a tuple (a, A,M) E C with unx?(A) 

6 6 and for which there is a reconstruction M’ of M at 6 (given T and C). 
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N may be any term of the form: 

rasex(M’ of inx(a, unx?(M)) * R) 

where a is the eigenvariable introduced by the quantifier, and R gives cases for K, 

at 6 U {unx?(M)} (given T and C). 

l There is some formula A of the form B V Ck with a tuple (a,A,M) E C with neither 

fit?(A) E 6 nor s&?(A) E 6 and for which there is a reconstruction M’ of A4 at 6. 

N may be any term of the form: 

case(A4’ of inZCfst?(A)) + R 1 inr(snd?(d)) + R’) 

where R gives cases for K, at 6 U {fit?(A)} (given T and C), and R’ gives cases 

for K, at 6 U {s&?(A)} (given T and C). 

l Otherwise, N may be any term obtained by reconstructing at 6 any term M for 

which (cr,M) E T, given T, and C,. 

Observe that if T’ C T, C’ C T and there is a reconstruction of A4 at 6 given T’ and 

C’, then there is a reconstruction of M at 6 given T and C. This must be so if M 

does not refer to K, terms, since T and C will not figure in the reconstruction of M. 

Inductive reasoning then shows that for each case treated during reconstruction of A4 for 

T’ and C’, a case binding the same variables will also be treated during reconstruction 

of M for T and C; thus, although additional cases may show up in reconstructing M 

for T and C, after each path the same term in T can be reconstructed as the term 

reconstructed in the analogous case from T’. 

It is also easy to see that the result of reconstruction corresponds to a natural de- 

duction proof. 

Theorem 6 (Correctness of extraction). Consider a proof with end sequent of the form 

8;0;U;CIT;C;V;Or>---tF:A 

(Such a proof describes a complete derivation.) Suppose that N is a reconstruction 

of any term ME F for T and C at 0. Then N represents a natural deduction proof 

sfA. 

Proof. When any proof-term variable x is reconstructed in a term, it will be bound. 

For this will happen only when x E 6, but when we reconstruct starting from 0, at each 

recursive invocation 6 contains only variables whose binding operators will surround 

the term being constructed. 

Since every variable in N is thus correctly bound, to show that N represents a natural 

deduction proof of A, it suffices to show that each variable is used with a consistent 

type throughout N. This follows immediately from the construction and deconstmction 

of proof-terms in lock-step with formulas in the sequent calculus, and the existence of a 

unifying substitution matching the types of left and right occurrences of variables. 0 
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We can also establish that a 1 term can always be reconstructed according to this 

scheme: 

Theorem 7 (Completeness of extraction). Given a deduction 53 with end sequent 

@;@;U;C/T;C;V;Ot>-F:A 

Then for some ME F there is some reconstruction of M for T and C at 8. 

Proof. As observed in Section 5.2.2, we can transform 9 to a deduction corresponding 

to an LJ inference, which records inferences T’ C T and C’ g C and derives terms 

F’GF. 
As observed above, if there is a reconstruction of any term M in F from T’ and C’, 

then there is a reconstruction of M from T and C. So it suffices to consider Bf. This 

has the advantage that reconstruction of 9’ can proceed in lock-step with the syntactic 

structure of the proof. 

We show by induction on the structure of 9’ the following property of proofs. Let 

the end sequent of the proof be 

T;C.../T’;C’...r - A 

Let 6 denote the proof-term variables free in the labels of r formulas and suppose 

some term in each of those labels can be reconstructed according to T and C at 6. Let 

F : Ap be the distinguished formula in A such that the proof corresponds to an LJ proof 

of r ---+ F : A” by the cleaning transformations of Lemma 1. r is empty except above 

(- 1); so if the proof ends in a left rule, p has the form VU. Then if the proof ends 

in a left rule then giving cases for K, at 6 after 0 given T’ U (p, F) and C’ succeeds; 

and otherwise we have M E F where reconstructing M at 6 given T’ and C’ succeeds. 

Note that the requirement placed on deductions ending in right rules entails that 

placed on deductions ending in let3 rules. If reconstructing M at 6 given T’ and C’ 

succeeds, then no matter what further cases are introduced in elaborating cases at CI 

using T’ U (,u, M) and C’, we always arrive at a leaf at which the reconstruction of M 

can be used. 

We illustrate the key cases of the induction here. At axioms, the label F is a label 

of some left formula, which by assumption can be reconstructed. 

At (I-), the left subderivation ends 

T;C.../T”;C”...r - G:A ,.., 

By the construction of a’, this derivation cannot end in a right rule (see Lemma 1); 

G : A is the side formula of the (I+) inference. Therefore, by the induction hypothesis, 

there is a reconstruction of G : A given T” and C”. Now the right subderivation ends 

T”; C”;. . . IT’; C’ . . . l-, (FG)” : B; - F’ : A’, . . . 

We can now conclude that the induction hypothesis applies to this derivation. The 

labels of r continue to have reconstructions given T” and C”, because they extend 

T and C. Moreover, since we have reconstructions for elements of F and G given 
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/PD.. .[ssl?(va) : A” ---+ fsf?(v.) : A’, U/O D ,flf51?(U~))’ : c” - f(fsl?(v,))” : c”, 

v, = /UD ,f: A II C, fst?(vo : A” - fstP(v_ )” : CY,. 

u/r D snd?(v,) : Em + snd? uY) : P T/TD , g(fsf?(vm )Y : 0 + g(sad?(v,))Y : C’, _. 

2)2 = u/r P , g : B 3 C, s,ld?(u,) : B” --t g(snd?(qJ)Y : C’ 

a. Extracting a term from the usual proor by this system; 0 = a/x; T = a/q a/y 

b. The permuted proof. D = a/x:; T = a/~, 4/y. 

Fig. 8. Extracting I terms from the proofs of Figure 6 

T” and C”, we must also have a reconstruction for an element of (FG)” there. The 

induction hypothesis therefore supplies a reconstruction or case analysis of F’. Since 

this is a left rule, this suffices. 

At (V -+), we have two subderivations: 

T;C.../T”;C”...T,fit?(AVB’;,):A; - F:Ap ,... 

T”; C” . . JT’; C’ . ..r.snd?(AVBz):BL - F’:AF ,... 

The induction hypothesis applies to both. Further, the condition on r ensures that some 

element of the label G of the principal formula of the rule can be reconstructed given T 

and C - and thus given T’ and C’. We must show that we can give cases for K, given 

T’ u (vcc, F U F’) and C’ U @,A V Bb, G). Giving cases begins at 6 (corresponding to 

the free variables end sequent) by treating the case for G. This leaves the subproblems 

of giving cases for 6 U {fit?(A V BL)} and 6 U {snd?(A V BL)} - that this is feasible is 

guaranteed by the induction hypothesis. 

At (ix), the subderivation ends: 

T;C...JT”;C”...l&:A~ -4:B; ,... 

The induction hypothesis applies immediately; this shows (at least) that there is a case 

analysis of K, given T” U (p,M) and C” at 6 U {vu}. But if this is possible, then 

we can reconstruct as v, in KD at 6 given these records. This is just what we need to 

establish for the overall derivation. 0 



186 M. Stone I Theoretical Computer Science 211 (1999) 129-188 

Fig. 8 shows the application of this system to the proofs of Fig. 6, and illustrates 

this result. In both cases, we are left with the problem of reconstructing the term 

as O, in K, given T={(a,fCfst?(u*))a),(~1,g(snd?(u,))”)} and C={(cl,AVB’,u,)} 

(with 6 providing for assumed variables f and g). We give cases for K, by finding 

the case ua, which reconstructs to itself, and reconstructing the terms f($t?(u,)~ and 

g(snd?(v,))Y for the two outcomes of u,. Letting u =fst?(ua) and u’ = snd?(u,), we 

arrive, as expected, at Iv, case(u, of in/(u) 3 f(u) ( inr(u’) + g(u’)). 

6. Conclusion 

This paper has considered an alternative proof system for intuitionistic logic, and 

justified it by a syntactic argument. Although inspired by translation proof methods, 

this is a distinct, more direct result. In fact, together with the soundness and com- 

pleteness theorems for classical logic, this result effectively amounts to an alternative 

demonstration of the soundness and completeness of (fallible) Kripke semantics for 

characterizing LJ proofs. Further, its proof-theoretic formulation makes possible new 

applications of translation methods in logic programming and program synthesis. 

More generally, this work shows one way to construct efficient inference procedures 

by developing syntactic abstractions for scope and information-flow in proofs. This 

new strategy contrasts with the strategy of [l l] of labeling formulas based on the 

content of the sequents from which they are to be proved. We use symbols to name 

the inferences in the proof that represent a change of scope and strings of symbols to 

encode the scoped position of other inferences in the proof. By imposing constraints 

on these symbols that mirror to the constraints imposed in a structural discipline of 

scope, we arrive at system of explicit scope that allows rules to be used in any order. 

Because terms represent positions in the proof, the terms themselves describe where 

the inferences belong according to the original structure of proofs. 

We see then that such procedures can have extremely simple statements and ex- 

tremely natural justifications. Moreover, as the development of a family of systems 

including LMA and LMT shows, such abstractions are not tied directly to any one 

semantics and can build on structure already implicit in a proof system. This raises the 

prospect of applying this idea to other systems, particularly linear logic [22], even in 

the absence of compelling classical semantics. The task remains daunting since there 

must be at least three kinds of scope transition in linear logic, corresponding to the 

splitting of context at (- @), the copying of context at (- V), and the modalization of 

context at (-! ). These scope transitions interact in complicated ways, as underscored 

by pet-mutability studies [2,21,44]. We leave this problem to future research. 
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