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Abstract 

We continue the recent study carried out by several authors on the cut sets in Cayley graphs 
with respect to quasiminimal generating sets. We improve the known results on these questions. 

The application of our main theorem to symmetric Cayley graphs on minimal generating sets 
leads to the following result. 

Let G be a group containing a minimal generating set M such that I MI ~> 4. Let 
S = M w M -  ~. Then one of the following conditions holds. 

(i) s z = u  2 a n d u  4 = l , f o r a l l s , u E M  
(ii) For all (d + 1)-subsets A and B of G which are not of the form F(x )w  {x} for any x e G, 

there exists d + 1 disjoint paths from A to B in Cay(G, S). 

1. Introduction 

Consider a connected regular directed graph X with outdegree d. This means that 
every vertex dominates d distict vertices. There are sets of vertices having cardinality 
d whose failure breaks the connectedness of the graph, namely the vertices domina ted  

by a given vertex. If every disconnecting set has cardinali ty at least d, the graph is said 

to be maximally connected. This proper ty  is impor tan t  because of its connect ion with 
the reliability of networks modeled by graphs. However,  it can be improved. 

The idea of superconnectivity,  in t roduced first by Boesch and Tindell [4] for 

undirected graphs and generalized to the directed case by F/tbrega and Fiol [5], 
selects more  efficient models since it minimizes the disconnecting d-subsets. More  

precisely a graph is superconnected if every disconnecting set has cardinali ty at least 

d + 1, unless it consists of the vertices domina t ing  or  domina ted  by some vertex. 
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The Vosper's property considered first in connection with graphs by Hamidoune 
and Tindell is even more selective. The original definition requires the notion of 
fragments and will be given in the next section. 

By Menger's Theorem a graph is maximally connected if and only if for any two 
d-subsets A, B ~ V, there are d vertex-disjoint (directed) paths from A to B. Vosper's 
property can also be stated in terms of the following stronger version of Menger's 
theorem which shows its importance for graph reliability [10]. 

A maximally connected graph has the Vosper's property if and only if for any two 
(d + 1)-subsets A, B ~ V one of the following conditions holds. 

(i) There is a vertex x such that either A or B consists of {x} and the set of vertices 
dominating x or dominated by x respectively. 

(ii) There are d + 1 vertex-disjoint (directed) paths from A to B. 
Notice that conditions (i) and (ii) cannot hold together. 
The connectivity problems on Cayley graphs have been widely studied in Combina- 

torics. Some results obtained by number theorists may also be translated to give 
connectivity results [10]. Although we cannot review all the results, let us mention few 
of them connected to the present work. 

In [14], Imrich proved a conjecture of Balinski and Russakov relative to the 
connectivity of some Cayley graphs on the symmetric groups. In [6], Godsil proved 
that the connectivity of an undirected Cayley graph defined by a minimal generating 
set is maximal and this result is generalized to directed graphs in [8]. 

A subset S of a graph G will be called quasiminimal if there is a total ordering ' < '  on 
S such that for all x ~ S, x ¢ ( y ;  y < x ) .  Such an ordering is called hierarchical. 

Akers and Krishnamurty proved in [1] that Cayley graphs on quasiminimal 
generating sets of transpositions in the symmetric group are also maximally connec- 
ted. 

Independently Alspach [2] and the authors [13] obtained the following result, 
proved also by Baumslag in a slightly less general form [3]. 

Theorem 1.1 Alspach ([2]; Hamidoune et al. [12]). Let  G be a group with a generating 

set M ~ G\{1} admiring a hierarchical ordering with u as a first element. Let  

X = Cay(G,S), where S c M u M  -1. Then exactly one of  the following conditions 

holds. 

(i) to(X) = [S I. 
(ii) IS]/> 3, S = M u M  -1, u 2 =1 and s 2 = u for  all s ~ S \ {u} .  

The superconnectivity problems in Cayley graphs are more recent. Boesch and 
Tindell mentioned in [4] the difficulty of the characterization of superconnected loop 
graphs. 

The first break on this problem came from Additive group theory. In an unpub- 
lished report, Hamidoune and Tindell [10] observed that an additive theorem of 
Vosper [15] implies that loop graphs of a prime order not defined by an arithmetic 
progression are Vosperian. 
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The application of an additive theorem of Kempermann allowed a characterization 
of Vosperian and superconnected Cayley graphs on abelian groups, obtained by the 
authors in [12]. 

More recently, a theory of superatoms introduced in [ 11 ] can be used, among other 
applications, to calculate all the fragments and minimum cutsets in abelian Cayley 
graphs. It is also used to give easier characterizations for superconnected and Vosper- 
ian Cayley graphs. 

In this paper we study the superconnectivity and the Vosperianity of Cayley graphs 
with respect to quasiminimal generating sets. We show here that these graphs are 
superconnected and verify the stronger Vosper property with few exceptions. 

We shall use in our proof several known results summarized in the next section. 

2. Vulnerability theory 

All graphs we consider are assumed to be directed and without loops and multiple 
arcs. We identify undirected with symmetric graphs. 

For  the definitions given briefly, the reader may refer to [9, 12]. 
Let X = (V, E), be a graph and let F ~ V. The inverse graph of X is X 1 = (V, E 1), 

where E - l = { ( x , y ) t ( y , x ) e E } .  The subgraph induced by F is X [ F ] =  
(F, Ec~(F x F)). We write FF = (y ~ V l(x,y) ~ E for some x ~ F}, OF = F F \ F  and 
6F = V \(F w FF). The last three sets calculated with respect to X 1 will be denoted, 
respectively, by F IF, 0 - F  and 6-F.  We write OxF when the reference to the graph 
X has to be made explicit. The degree of a vertex x is by definition d(x) = IF{x} l- If 
this quantity is independent of x, the graph is said to be regular. The common degree 
will be denoted by d(X). 

The connectivity of X is 

K(X) - min{IOFI 1 ~< IFuOFI  ~<LV[ - 1  or IFI =1}. 

The graph X is said to be connected if ~c(X)> 0 and maximally connected if 
~c(X) -- min{d(x)l, x ~ V}. I f X  is connected and X [ V k T ]  is not, then T is a discon- 
necting set of X. 

If X is a d-regular graph we have clearly 0 ~< ~c(X) ~< d. 
A subset F of V such that F w O F  # V and 10FI = ~c(X) is called a fragment of X. 

A fragment o f X  1 is called a negative fragment ofX.  A fragment of X with minimum 
cardinality is called an atom of X. The cardinality of the atoms of X is denoted by 
~(X). 

The following lemma contains a useful duality between fragments. It is implicit in 
[7]. 

Lemma 2.1 (Hamidoune [7]). (i) to(X)= ~c(X-I). 
(ii) l f  F is a fragment then OF is a negative fragment and 6-(6F)  = F. 
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Let us introduce the other basic definitions. A regular graph X with degree d is said 
to be superconnected if every disconnecting set T has cardinality at least d + 1 unless 
T = ~?(x) or T = ~3-(x) for some x e V. 

A regular graph X with degree d is said to be Vosperian if every fragment has 
cardinality either 1 or I V I - d - 1. 

More details on these notions can be found in [10-12]. Notice that a vosperian 
graph is superconnected but the converse is not always true. 

Let us give the characterization of vosperian graphs mentioned in the introduction. 
We include a proof of it for the convenience of the reader. 

Lemma 2.2 (Hamidoune [11]). Let X be a regular graph such that x(X)  = d(X). The 
following conditions are equivalent. 

(i) X is a vosperian. 
(ii) For all (d + l)-subsets A and B of V such that for all x ~ V, A # O(x)w{x} and 

B ~ 3 - ( x ) u  {x}, there exist d + 1 disjoint paths from A to B. 

Proof. The implication ( i i )~  (i) is straightforward. We only prove the (i)=~ (ii) part. 
Add two different vertices a, b to X and connect a to all the vertices in A and 

connect all the vertices of B to b. Denote the resulting graph by Y. The result will 
follow using Menger's Theorem after proving the following statement. 

Let F ~ V u { a }  such that a ~ F and bq~Fwt~yF. Then ]~rF[ >1 d +1. 
Assume the contrary. Clearly, Fo = F\{a}  # ~b. and Fo u 0Fo # V. By the definition 

of the connectivity we have [ 0Fo [ i> d. Moreover, [~Fo [ ~< [ OyF] <~ d. Therefore, Fo is 
a fragment. Since X is vosperian, we have either IF o I =  1 or [F0[= I V [ -  d -  1. 
Consider the first case, the other one follows by duality. Put  Fo--{c} .  
We have [t3F[ = [#(c)~ (A\{c})[ t> d + 1 since otherwise A c {c} u O(c), a contradic- 
tion. []  

A fragment F is said to be proper if IF[ ~< 16F [. The following Lemma is straightfor- 
ward. 

Lemma 2.3. Let X be a regular graph which is nonsuperconnected. Then either X or 

X -  1 contain a connected proper fragment F with I F ] > 1. 

Note that a noncomplete graph X is maximally connected if and only if [ A [ = 1 for 
an atom A of X. Details from these definitions can be found in [7]. A graph is vertex 
transitive when its automorphism group acts transitively on the set of vertices. 

We use the usual notions of elementary group theory. All groups are assumed to be 
finite. Let A,B be two subsets of a group G. We write 

AB = {xy: x e A and y e B}. 
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Let G be a group containing a subset S. The Cayley graph on G associated to S is by 
definition 

Cay(G, S) = (G, {(x, x s ) [ x  e G and s e S}). 

Observe that, for every subset F c G, F F  = FS. We denote by (S> the subgroup of 
G generated by S. Cay(G, S) is connected whenever (S> = G. Cayley graphs are vertex 
transitive, the set of left translations being a transitive automorphism group of the 
graph. 

The atoms of Cayley graphs have the following property. 

Theorem 2.4 (Hamidoune [93). Let  G be a group, S ~ G and X = Cay(G, S). Assume 

that I~(X) <<. I t ( X -  1). Then there is a unique subgroup H generated by H c~ S which is an 

atom o f  Cay(G, S). Moreover,  every f ragment  o f  X is a union o f  atoms. 

We use also the following corollary to this result contained in [2, 13]. We include 
a short proof, based on the above theorem, for the convenience of the reader. 

Lemma 2.5 (Alspach [2]; Hamidoune et al. [13]). Let  G be a group with a generating 

set M c G\{1} with IM] ~< 3 admiting a hierarchical ordering with u as a f i rs t  element. 

Le t  X = Cay(G,S) ,  where S c M w M  1. 

I f  ~c(X)<]S], then I M I = 3  and S = M w M  1 and u 2 = l  and s 2 = u  fi~r all 

s ~ M \ { u } .  Moreover  {1,u} is the unique atom o f X  = X -1 containing 1. 

Proofi Since M 1 is also quasiminimal, we may assume without loss of generality 
that #(X)~</~(X 1). By Theorem 2.4, there is an atom A which is the subgroup 
generated by A c~ S ~ 0. 

If Av = A w  for v, w ~ S \ A ,  by the quasiminimality of M we must have v = w- 1 and 
then v 2 ~ A. In particular, ~c(X) = [ M \ A I ' I A I .  Since ~c(X) ~< 5, then [ M \ A I  <~ 2. 

If I M \ A I  =1. then G = A w A v , { v }  = M \ A ,  and A is not a fragment. 
Therefore I M \ A  I = 2 and I A [ = 2 and I SI = 5. Let A = { 1, x}, where x 2 = 1, and let 

S = {x , v , v  1,w,w-i}. We must have Av = Av -1 and A w  = A w  -1, which implies 
v 2 = w 2 = x. In particular, x = u, the first element of the hierarchical ordering. [~ 

A basic tool for our method is the following result proved independently by 
Hamidoune [7] in the Cayley graphs language and Olson [19] in the additive 
language. 

Theorem 2.6 (Hamidoune [8]; Olson [19]). Le t  G be a group with a generating set 

S c G\{1}. Let  X --- Cay(G,S) .  Then to(X) > IS]/2. 

We use only the following easy consequence of Theorem 2.6. 
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Corollary 2.7. Let  G be a group with a subset F and a subgroup H such that F H  ~ G. 

Le t  s ~ G \ H  be such that H u l l s  generates G. 

Then [ F H s \ F H I  >1 I H I. 

Proof. If F H s  w F H  = G then I F H s \ F H [  = I G I - [FH [ > I H [, since I H [ divides both 
I G[ and I FH]. Otherwise apply Theorem 2.6 to C a y ( G , ( H \ { 1 }  uHs)) [] 

3. A reduction method 

Let G be a group and let H be a subgroup and let s ~ G \ H  such that G = ( H u  {s}). 
Let So be a generating subset of H and let S c Sou{S ,S -~} .  Set X = Cay(G,S)  and 
Xo = Cay(H,  So). 

We shall say that Xo is a faithful factor of X if the following conditions are satisfied: 

(i) The smaller atom of Xo and Xo ~ has cardinality at most 2. 
(ii) ~(Xo) = I So I if IS0[ ~< 4. 

(iii) [HI > 2151-  K(X0) +1. 

The following proposition characterizes the proper fragments of Cayley graphs 
with faithful factors. 

Proposition 3.1. Let  G be a group, H a subgroup and s c G \ H  such that G = 

( H u  {s}). Let  S O be a generating subset o f  H with ISol >1 3 and let S c S o u { s , s - 1 } .  

Set X = Cay(G, S) and Xo = Cay(H,  So). 
Assume that Xo  is faithful factor  o f  X .  Let  Q be a proper fragment  o f  X containing 

1 and q ~ Q\{1}. Then Q = {1,q} c H and [SQI = 1 8 Q n H [  + 2. 
M o r e o v e r / f [ S \ S o [  = 2 then s 2 = q and q2 = 1. 

Proof. Let F be a fragment of X and set T = 8F, so that G is the disjoint union 
G = F u T u ( ~ F .  

We shall prove the following statement. 

There is a unique left coset x H  such that x H n F  ~ 0 and x H n 6 ( F )  ~ O. (1) 

We first prove that F H  ~ 6F v ~ O. Suppose the contrary. Therefore we would have 
F H  = F u ( T c ~ F H )  ve G By Corollary 2.7, we have 

Inl  ~< [ F H s \ F H I  = I F s \ F H I  + I(T ~ F H ) s \ F H I  <<, I T \ F H I  + IFH ~ T I 

=ITI~<ISI .  

This inequality contradicts the hypothesis of the proposition. This contradiction 
proves the existence in (1). 

Since the graph induced on x H  is isomorphic to Cay(H,  So), we have 

[xH c~SFI >1 ~(Xo).  (2) 
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If there was another coset y H  ~ x H  satisfying (2), by adding the inequalities in (2) 
we would have 

2 + ISo]/> IS] >~ I~F[ >~ 2~(Xo) >~ 2lSo[ - 2. 

Therefore, I Sol ~< 4, but in this case K(Xo) = [So I. By substituting the inequality in 
the above one, we get I Sol ~< 2, against the hypothesis. 

Therefore 

for  all y ~ x H  either y H  c F u O F  or y H  ~ 6 ( F ) u ~ ( F )  (3) 

This proves the uniqueness part of (1). We prove now the following stronger 
statement. 

F ~ x H  or 6(F) c x H  (4) 

Assume that F ¢ : x H  and 6F G xH. Set F1 = F n x H  and F 2 = F \ x H .  Set 
6F1 = 6 F c ~ x H  and 6 F z = b F \ x H .  Put T I =  T n x H  and T 2 =  T n F 2 H  and 
T~ = TncSFzH.  

(F 2 w T z ) H  = F 2 ~ T 2 and (6F2 w T ; ) H  = (~F 2 u T2 (5) 

Since F2 = 13, we have using(4) and Corollary 2.7, 

I(F2u Va) s \ (F2~  Y2)[ >/]HI. 

Therefore I F 2 s \ ( F 2 u T 2 ) I > ~ I H I - I T 2 I .  As F2s \ (F2uT2)  c F l w T 1 u T 2 ,  then 

I F1 u T1 w T ;  I >t [ H I -- I T2 l- Hence, I F1 I + I T t /> [ HI. Similarly, I •F1 I -k I T I >~ 
I HI. By adding these two equations we get I T I + L T 2 1 + I T 3 1 ~ > I H I .  By (2), 
ITz l  -F IT3[ ~ IS I - K(Xo). It follows that 2lSI - K(Xo) >~ IHI, contradicting the 
definition of a faithful factor. This contradiction proves (4). 

Let us now prove the proposition. By (1), there is a unique coset x H  such that 
x H  c~ Q ~ 0 and x H  ¢~ 6Q ¢ O. By (4), either Q c x H  or cSQ c xH. 

Assume that Q G xH. We then have 6Q c xH. By (2), 

t~(Q)I ~< IHI --(K(Xo) +1) <<, IHI - - (K(X)--  K(Xo) <~ tQkxHI  < 1(21, 

contradicting the assumption that Q is proper. Therefore, Q ~ xH. Since 1 6 Q, we 
have x H  = H. In particular q 6 H. 

Since the atoms of Xo have cardinality at most 2, we have ~c(Xo) >~ l Sol - 1. 
Therefore, using (2), 

IQ(S\So)I  = IgQ\HI  <~ ISI - (ISol - 1) ~< 3, (6) 

and so [Q(S\So)[  ~< 3. If the equality holds, ]~Q n g l  = }Sol - l and Q is a fragment of 
Xo. By the Theorem 2.4, Q must be a disjoint union of atoms which have then 
cardinality 2. In any case we have Q = {Â,q}. In particular, 

2 <~ IQ(S\So) l  = I S I -  Ic~QnS[. (7) 
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If IS \Sol  = 1, (7) implies that 

[~Q[ = [~3o~n[  + 2. (8) 

Assume IS \So l  = 2. In particular s 2 ~  1. We have Q{s ,s  -1} ~ { s , s - l , q s ,  qs-1}.  

The assumption s 2 ¢ q shows that the four elements are distinct, contradicting (6). 
Similarly for (s- l)  z C q and hence q2 =1.  Now we have Q s =  Qs -1 and 
[Q{s , s - l } ]  = 2. The relation (8) follows by (7). []  

We are now able to deduce the result about the connectivity of Cayley graphs with 
respect to a quasiminimal generating set. We give the proof in order to illustrate the 
general method in a simpler case and to keep the paper self-contained, as much as 
possible. We begin with the following lemma. 

Lemma 3.2. Let  M be a quasiminimal 9enerating set o f  G with [ M [ >>- 4. Le t  m be the 

maximal  element o f  M under a hierarchical order and let H = ( M k m ) .  Le t  
S ~ M u M  -1 and So = S \ { m , m - a } .  Set X o  = Cay(H,  So). 

I f K ( X o )  >>-[Sol - 1 ,  then IH[ ~> 2[$1 - ~c(Xo) +1. 

Proof. Set b = I M I. We have clearly 2 b -  1 ~< [ H [ and [ S I ~< 2b. Therefore, the stronger 
inequality 

I B I s > I S [ + 4  

is satisfied for b >~ 5. 
Consider the case b - - 4 .  If there is some s e S o  such that s 2 ¢ l ,  then 

[HI ~> 12 ~> [ S[ + 4. Otherwise s 2 = 1, for all s E So. It follows that [ S[ ~< 5. By Lemma 
2.5, we have tc(Xo) = 3. Hence [HI/> 8/> 21S[ - 3 +1. []  

This was the first step to prove that large factors in quasiminimal Cayley graphs are 
faithful. 

Corollary 3.3 (Alspach [2]; Hamidoune et al. [13]). Let  G be a 9roup with a #enerat- 

in9 set M c G\{1} admittin9 a hierarchical orderin9 with u as a f irst  element. Le t  
X = Cay(G, S), where S c M w M - x  

Then ~c(X) >/IS[ - 1 .  Moreover,  the inequality is strict unless IS[ = 2 [ M I - 1  ~> 5 
and u 2 =1 and for  all m ~ M \ { u } ,  m 2 = u. In this case {1,u} is an atom o f  X .  

Proof. The proof is by induction on [M[, by Lemma 2.5 the result holds for [M[ ~< 3. 
Suppose now that ~:(X) ~< [SJ - 1. Clearly, one of the atoms of X and X -  1 is a proper 
fragment. We may assume without loss of generality that X has a proper fragment Q. 
Choose Q with 1 ~ Q and let q ~ Q\{1}. 

Let m be the maximal element of M and let So = S \ { m , m  -1} and let H = ( M \ m ) .  

Set Xo = Cay(H,  So). 
By the induction hypothesis x(Xo) ~> [So J - 1 .  By Lemma 3.2, Xo is faithful. By 

Proposition 3.1 we have Q = {1,q} c H and IS\So[ = 2 and m 2 = q. 
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It  fol lows also tha t  Q is a f ragment  and  hence an a t o m  of X. The  p r o o f  follows now 

by induc t ion  and  the uniqueness  of the a tom.  [ ]  

Coro l la ry  3.4. Let M be a quasi minimal generating set of G with I M[  ~ 4. Let m be the 
maximal element of M under a hierarchical ordering and let H = ( M \ m ) .  Let 

S c M • M  -1 and So = S \ {m ,m-1} .  Set Xo = Cay(H, So). 

Then Xo is a faithful factor of X.  

Proof .  The  result  follows clearly from L e m m a  3.2 and  Coro l l a ry  3.3. [ ]  

4. The superconnectivity 

The fol lowing l emma conta ins  an a rgumen t  which will a p p e a r  in the proofs  of 

T h e o r e m s  4.2 and  5.1. 

L e m m a  4.1. Let G be a group containing a quasiminimal generating set M such that 
IMI >t 4. Let M c S ~ M u M  -1. 

Assume that tc(Cay(G, S)) = IS I. I f  Cay(G, S) contains a connected proper Jragment 

Q with cardinality >~ 2, then there is a hierarchical ordering of  M with a minimal element 

u and v ~ M \ { u }  such that the following conditions holds 

(i) Q = { 1 , u }  and u 2=1 .  

(ii) IS\{v}l = 2 ( IMI  - 1 )  and s 2 = u for all s e S\{u,v} .  

Proof.  Let  m e M be such that H = ( M \ { m } )  is a p r o p e r  s u b g r o u p  of  G and  let 

So = S \ {m ,m-1} .  Set Xo = Cay(H, So). By Coro l l a ry  3.4, Xo is faithful. 

Assume first tha t  I S n { m , m - 1 } l  =1 .  By P r o p o s i t i o n  3.1, 1~3QnHI = ISI - 2 = 

]Sol - 1. I t  fol lows tha t  x(Xo)  ~ I So[ - 1. Then,  by C o r o l l a r y  3.3, S O = So i and  s 2 = u 

for all s ~ S \{u ,m}  and  u 2 = 1  and  the t heo rem holds  with v = m. 

Assume now tha t  I S n { m , m - 1 } l  = 2 .  By P ropos i t i on  3.1, Q = {1,q} c H and 

m 2 = q  and  q 2 = l .  Moreove r ,  Q is a p r o p e r  connec ted  f ragment  of Xo and 

~:(Xo) = I S I - 2 = ]So I. The  result  follows now by induc t ion  for I MI  > 4. Let us now 

cons ider  the case I M [ = 4. Let  u < v < w < m be the 4 e lements  of M in a h ierarchica l  

order .  Since Q is connec ted  we have q e {u, v, w} and  I Sol ~< 5. Since OQ n H = QSo\Q, 
which is a union  of Q-cosets,  we have I SoL = 4. I t  follows tha t  there  is x ~ So\Q such 

that  ISon{X,X-1}l =1 .  
W e  can assume,  by  reorder ing  if necessary,  tha t  q = u and  x = v. Now 

QSo\Q = Q v u Q w u Q w - 1 .  It  follows Qw = Qw-1 and w 2 = u. This comple tes  the 

proof.  [ ]  



140 Y.O. Hamidoune et al./Discrete Mathematics 159 (1996) 131-142 

Theorem 4.2. L e t  G be a group containing a quasiminimal  generating set M such that 

[M[ >~ 4. L e t  S c M u M  -1 

A s s u m e  that  x ( C a y ( G ,  S)) = ]SI. T h e n  C a y ( G , S )  is superconnected unless there is 

a hierarchical reordering o f  M with  a minimal  e lement  u and v ~ M \ { u }  such that  

IS\{v}[ = 2([M[ - 1 )  and s 2 = u f o r  all s ~ S \ { u , v }  and u z =1. 

Proof. Suppose that X is not superconnected. We may assume without loss of 
generality using Lemma 2.4 that X contains a connected proper fragment Q with 
cardinality > 1. The result follows now by Lemma 4.1. 

On the other hand, if the relations of the theorem hold, then clearly Q = {1,u} is 
a proper connected fragment and X is non superconnected. [] 

Let us express now this result in the symmetric case (undirected graphs) which is the 
most studied. 

Corollary 4.3. L e t  G be a group containing a quasiminimal  generat ing set M such that 

[M[ ~> 4. L e t  S = M w  M -1  be such that  x ( C a y ( G , S ) )  = [SI. T h e n  either C a y ( G , S )  is 

superconnected or there is a hierarchical  reordering o f  M with a minimal  e lement  u and 

v E M \ { u }  such that  s 2 = u f o r  all s ~ S \ { u , v }  and v 2 = u z =1. []  

5. The Vosper's property 

Proposition 3.1 implies clearly that a quasiminimal Cayley graph with odd order is 
Vosperian since there cannot be a self-inverse element. It implies also a result proved 
by Llad6 [16] saying that any anti-symmetric quasiminimal Cayley graph is Vosper- 
ian. One can use it to calculate the relators that avoid the Vosper's property. 

For  simplicity we shall solve the problem only in the symmetric case, equivalent to 
the undirected case. 

Theorem 5.1. L e t  G be a group containing a quasiminimal  generat ings set M such that 

J M [  >~ 4. L e t  S = M u M -  1 be such that  x ( C a y ( G ,  S)) = [ S [. T h e n  Cay(G,  S) is Vosper-  

ian unless there is a hierarchical  ordering o f  M with  three smallest  e lements  u < v < w 

such that  one o f  the fo l lowing  condit ions is satisfied. 

(i) There  is v > u wi th  v 2 = u z =1 and s 2 = u f o r  all s ~ S \ { u , v } .  

(ii) s z = u 2 f o r  all s ~ M and u 4 = 1 .  

(iii) s 2 = uv -1 = v - l u ,  f o r  all s e m \ { u , v }  

(iv) s z = uv = vu f o r  all s > v and u 2 = v 2 = 1 .  

(v) s 2 = wu = w - i v  f o r  all s > w and u z = v 2 =1. 

Proof. Suppose that X is nonvosperian. 
We may assume without loss of generality that X contains a proper fragment 

Q with cardinality >1. We may assume that 1 ~ Q and that q e Q\{1}. I f Q n S  ¢ O, 
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then X contains a connected proper  fragment. By Lemma 4.1 the condit ion (i) holds. 

Suppose that  Q c~ S = 0. 
Assume first that  there is mi ~> w such that m 2 = 1. By Propos i t ion  3.1 applied to 

Xi  = C a y ( ( S i ) , S , ) ,  where S i : {S • S i s  ~< m~}, Q = {1,q} is a (connected) a tom of 

X~_ 1 contradict ing our  assumpt ion that  Q w S = 0. We may therefore assume that 

m{ ¢ 1 .for all i >~ 4. 

By applying iteratively the Proposi t ion  3.1, we have 

m 2 = q, fi)r i > 3. (1) 

Moreover ,  Q = {1,q} • H3 and Q is a fragment of x 3  which, by Lemma 2.5 is 

maximally connected. Since I QS3[ = IS31 and $3 c QS3 we have QS3 = $3. In par- 

ticular, IS31 is even. We consider two cases 

Case 1:IS31 = 6. 
We then have I g z [ ) 9 .  By Propos i t ion  3.1, q e l l 2  and w 2 = q .  Moreover ,  

QS2 = $2. N o  three of the cosets Qu, Qu 1, Qv, Qv-1  coincide. Therefore, we must  

have, except for the replacement of an element by its inverse, either Qu --- Qu 1 and 

Qv = Qv-1  o r Q u = Q v a n d Q u - 1  = Q v - 1 .  

The first equality leads to the relation u 2 =  v 2 = q  and (ii) holds. The second 

inequality leads to the relations vu-1 = v - l u  = q and then (iii) holds. 

Case 2:IS31 = 4. 
In this case there are two self-inverse elements in $3. If w 2 = 1, then 3.1 implies that 

I H2] < 21S31 - ~c(X2) + 1. Hence, I Hzl =- 4 and u 2 = v 2 = 1, a contradiction.  There- 
fore, u 2 : v z = 1 and w 2 ve 1. N o  three of the cosets Qw, Qw 1, Qv, Qu can coincide. 

Therefore, exactly two of  them are equal. Except for the replacement of an element by 
its inverse we have either Qw = Q w -  1 and Qu = Qv or Qw = Qu and Qw 1 = Qv. The 

first equality leads to (iv) and the second one to (v). 

It can easily be checked that in any of the cases (i) (v) the subset Q = {1,q} is 
a nontrivial  fragment. This completes the proof. [ ]  

The above proof  can easily be adapted to give the result in the nonsymmetr ic  case. 

In particular, when M is a minimal generating set we get the following result. 

Corollary 5.2. Let  G be a group containing a minimal generating set M such that 

I M[ ~> 4. Let  S = M w M - x .  Then one o f  the following conditions holds. 

(i) Cay(G,S)  is Vosperian. 

(ii) s 2 = u 2 and u 4 = 1, for  all s, u • M.  
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