
E
L
S
R
P

J A C C : C A R D I O V A S C U L A R I N T E R V E N T I O N S V O L . 5 , N O . 4 , 2 0 1 2

© 2 0 1 2 B Y T H E A M E R I C A N C O L L E G E O F C A R D I O L O G Y F O U N D A T I O N I S S N 1 9 3 6 - 8 7 9 8 / $ 3 6 . 0 0

P U B L I S H E D B Y E L S E V I E R I N C . D O I : 1 0 . 1 0 1 6 / j . j c i n . 2 0 1 1 . 1 2 . 0 1 5
Differences in Neointimal Thickness Between the
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Objectives The goal of this study was to describe the neointimal healing on the abluminal side (ABL) of
malapposed (ISA) struts and nonapposed side-branch (NASB) struts in terms of coverage by optical co-
herence tomography (OCT) and in comparison with the adluminal side (ADL).

Background The neointimal healing on the ABL of ISA and NASB struts has never to our knowl-
edge been explored in vivo and could be involved in the correction of acute malapposition. The
bioresorbable vascular scaffold (BVS) is made of a translucent polymer that enables imaging of the
ABL with OCT.

Methods Patients enrolled in the ABSORB B (ABSORB Clinical Investigation Cohort B) study were
treated with implantation of a BVS and imaged with OCT at 6 months. Thickness of coverage on the
ADL and ABL of ISA and NASB struts was measured by OCT.

Results Twenty-eight patients were analyzed; 114 (2.4%) struts were malapposed or at side
branches. In 76 ISA struts (89.4%) and 29 NASB struts (100%), the thickness of ABL coverage was
�30 �m. Coverage was thicker on the ABL than on the ADL side (101 vs. 71 �m; 95% confidence
interval [CI] of the difference: 20 to 40 �m). In 70 struts (60.7%, 95% CI: 50.6% to 70.0%), the neoin-
timal coverage was thicker on the ABL, versus only 20 struts (18.5%, 95% CI: 11.6% to 28.1%) with
thicker neointimal coverage on the ADL side (odds ratio: 3.35, 95% CI: 2.22 to 5.07).

Conclusions Most of the malapposed and side-branch struts are covered on the ABL side 6 months
after BVS implantation, with thicker neointimal coverage than on the ADL side. The physiological
correction of acute malapposition involves neointimal growth from the strut to the vessel wall or
bidirectional. (ABSORB Clinical Investigation, Cohort B [ABSORB B]; NCT00856856) (J Am Coll Car-
diol Intv 2012;5:428–35) © 2012 by the American College of Cardiology Foundation
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The neointimal healing process after stenting has been exten-
sively studied in the bare-metal stent (BMS) era, to understand
the mechanisms of restenosis. Experimental studies have de-
scribed proliferation of endothelial and smooth muscle cells
after endothelial denudation (1–4), starting from the nonin-
jured segments, until the endothelial continuity is restored
(5–9). At this point, the confluence of endothelial cells inhibits
their own proliferation and stimulates the secretion of heparin-
sulfates, inhibiting in turn the proliferation of smooth muscle
cells (10). According to this confluent model, in case of
detachment of struts from the vessel wall, the endothelial cells
can spread on the surface of the stent until the contact with
other endothelial cells stops the process, thus resulting in
conformal coverage of the whole detached mesh. As an
additional mechanism, circulating endothelial progenitor cells
enhance re-endothelialization (11,12).

The interest to study the neointimal healing has grown
exponentially in the drug-eluting stent (DES) era. Pathol-
ogy studies described the association between delayed neoin-
timal healing and very late stent thrombosis in DES (13–16). As
a consequence, imaging techniques such as angioscopy
(17–19) or optical coherence tomography (OCT) (20–24)
have tried to estimate the degree of neointimal coverage in
clinical series, exploring its value as a potential surrogate for
thrombotic events. However, our knowledge about the
healing process is limited to the adluminal (ADL) side of
the struts. Pathology studies have paid little attention to the
abluminal (ABL) side of malapposed or side-branch struts,
probably due to the scarce information available about these
specific categories and to methodological challenges for an
accurate assessment. The ABL side has remained inacces-
sible in vivo also for angioscopy and OCT. OCT has
become an experimental tool for the assessment of coverage
due to a 10-fold higher axial resolution (14 �m) than
intravascular ultrasound (IVUS), but the intense optical
backscattering at the surface of metallic struts casts a dorsal
shadow that prevents ABL visualization. The healing pro-
cess on the ABL side might play a relevant role in the
spontaneous resolution of acute incomplete stent apposition
(ISA), as described in recent sequential OCT studies
(24–26). Conversely to DES, the bioresorbable vascular
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scaffold (BVS) is made of a translucent polymer, resulting in
significant backscattering of the optical radiation only at the
strut boundaries and no dorsal shadowing, thus enabling for
the first time quantification of the neointimal thickness on
the ABL side of those struts detached from the vessel wall.
In this study, we compare the neointimal thickness on the
ABL versus ADL sides of ISA and nonapposed side-branch
(NASB) struts in the BVS.

Methods

BVS technical specifications. BVS (Abbott Vascular) is a
fully bioresorbable scaffold, consisting of a semicrystalline
poly-L-lactide (PLLA) backbone, coated by a thin amor-

hous layer of poly-D,L-lactide (PDLLA) containing the
antiproliferative agent everolimus. BVS struts have a total
thickness of 150 �m and are
ully resorbed 2 years after im-
lantation (27), following a pro-
ess in which the long chains of
LLA and PDLLA are progres-
ively cleaved as ester bonds be-
ween lactide repeating units are
ydrolyzed. Eventually, small
articles �2 �m in diameter are

phagocytosed by macrophages.
Ultimately, PLLA and PDLLA
degrade to lactate, which is me-
tabolized via the Krebs cycle.
The whole scaffold is translucent
to optical radiation, with the ex-
ception of 2 radio-opaque plati-
num markers embedded into the
proximal and distal edges, to
ease fluoroscopic visualization.
BVS has proved excellent clini-
cal and angiographic results up
to 2-years follow-up, at which
time the scaffold is resorbed (27,28).
Study sample. The ABSORB Cohort B registry (ABSORB

linical Investigation Cohort B, NCT00856856) enrolled
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Abbreviations
and Acronyms

ABL � abluminal

ADL � adluminal

BMS � bare-metal stent(s)

BVS � bioresorbable
vascular scaffold

CI � confidence interval

DES � drug-eluting stent(s)

ISA � incomplete stent
apposition

IVUS � intravascular
ultrasound

NASB � nonapposed side
branch

OCT � optical coherence
tomography

PDLLA � poly-D,L-lactide

PLLA � poly-L-lactide

SS � sheer stress
011, accepted December 1, 2011.

http://www.clinicaltrials.gov/ct2/show/NCT00856856?term=NCT00856856&rank=1


m
l
t
fl
w
m
g
a
f
s
(

c
g

m
s

C

J A C C : C A R D I O V A S C U L A R I N T E R V E N T I O N S , V O L . 5 , N O . 4 , 2 0 1 2

A P R I L 2 0 1 2 : 4 2 8 – 3 5

Gutiérrez-Chico et al.

Neointimal Healing on the Abluminal Side

430
patients older than 18 years, with diagnosis of stable or
unstable angina pectoris or silent ischemia, and de novo
lesions in native coronary arteries amenable for percutane-
ous treatment with the BVS: % diameter stenosis �50% by
visual estimation and reference vessel diameter of 2.5 to 3.5
mm. Major exclusion criteria were acute myocardial infarc-
tion, unstable arrhythmias, left ventricular ejection fraction
�30%, restenotic lesions, lesions located in the left main
coronary artery or in bifurcations involving a side branch �2

m, a second clinically or hemodynamically significant
esion in the target vessel, documentation of intracoronary
hrombus, or initial Thrombolysis In Myocardial Infarction
ow grade 0. For invasive follow-up purposes, the cohort
as subdivided into 2 groups: Cohort B1, undergoing
ultimodality invasive imaging (quantitative coronary an-

iography, IVUS, virtual histology, palpography, and OCT)
t 6 and 24 months; and Cohort B2, with identical imaging
ollow-up protocol scheduled at 12 and 24 months. All the
tudy lesions were treated with the BVS device revision 11
3.0 � 18 mm). The registry was approved by the ethics

Figure 1. ISA and NASB Struts

Incomplete stent apposition (ISA) or malapposed struts are those separated fro
wall needs to be visible in the cross section to properly classify a strut as ISA.

branches, with no vessel wall behind (lower panels, arrows). In NASB struts, apposi
ommittee at each participating institution, and each patient
ave written informed consent before inclusion.

The present study analyzes the OCT images obtained 6
onths after implantation from Cohort B1, when the

tructural integrity of the device is still preserved.
OCT study. OCT pullbacks were obtained with M2, M3, or

7 systems (LightLab Imaging, Westford, Massachusetts),

vessel wall by a contrast-filled gap (upper panels). The underlying vessel
posed side-branch (NASB) struts are those located at the ostium of side

Table 1. Characteristics of the Different OCT Systems* in the Study,
With the Corresponding Number of Patients Imaged by Each of Them

M2 M3 C7

Technique Occlusive Nonocclusive Nonocclusive

Domain Time Time Fourier

Catheter* ImageWire ImageWire Dragonfly

Rotation speed, frames/s 15.6 20 100

Pullback speed, mm/s 2 3 20

No. of patients 5 5 18

*All systems and catheters from LightLab Imaging, Westford, Massachusetts.

OCT � optical coherence tomography.
m the
Nonap
tion cannot be assessed by optical coherence tomography.
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depending on the site, using an occlusive or nonocclusive
technique, as appropriate (Table 1).

OCT images were analyzed offline in a core laboratory
(Cardialysis BV, Rotterdam, the Netherlands) by indepen-
dent investigators, using proprietary software (LightLab
Imaging). Cross sections at 1-mm longitudinal intervals within
the scaffolded segment and 5 mm proximal and distal to the
scaffold edges were analyzed. Apposition was visually assessed
strut by strut. Malapposition, also named incomplete stent
apposition (ISA), was defined as a break in continuity between
the backscattering frame of the translucent strut and the vessel
wall, appearing as a contrast-filled gap between these 2
structures (Fig. 1). In the regions where ISA was found, cross
sections at 0.2-mm longitudinal intervals were analyzed. Struts
located at the ostium of side branches, with no vessel wall
behind, were labeled as NASB struts and considered an
independent category of apposition (Fig. 1).

Neointimal thickness was measured on both the ADL
and ABL sides of each ISA or NASB strut as the distance

Figure 2. Measurement of Neointimal Thickness at the ADL and ABL Sides

Measurement of neointimal thickness at the adluminal (ADL) and abluminal (A
measured as the distance from the inner contour of the polymer-neointima in
midpoint of the longitudinal axis of the strut with the center of gravity of the

software named “thickness ruler.” This guiding line, however, has been erased from
from the black-box boundary to the neointima-lumen in-
terface, following a straight line connecting the midpoint of
the longitudinal axis of the strut with the center of gravity
of the vessel (Fig. 2). Well-apposed struts were disregarded for
this study. Previous analysis of 400 BVS struts immediately
post-implantation reported an average thickness of 30.1 � 5.7
�m for the ADL interface of the strut frame and 30.4 � 5.7
�m for the ABL interface (the latter only accessible in 80 ISA
or NASB struts) (29). On this basis, ABL neointimal thickness
�30 �m or thicker than in the ADL side were both consid-
ered as highly suggestive of neointimal coverage.

Two independent analysts (J.L.G.C. and Y.O.) measured
the thickness of coverage in the selected struts following the
method described and blinded to one another’s results, to
assess interobserver reproducibility.
Statistical analysis. Coverage thickness on the ADL versus
he ABL side of each strut was compared by multilevel linear
egression with struts clustered at the patient level. The pooled
ercentages of struts with thicker ABL coverage and with

A and NASB Struts

es of ISA (upper panels) and NASB (lower panels) struts. Thickness was
to the neointima-lumen interface, following a straight line connecting the

l. The correct alignment is achieved using a tool of LightLab’s proprietary
of IS

BL) sid
terface
vesse
the image to ease its comprehension. Abbreviations as in Figure 1.
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thicker ADL coverage were calculated and compared by
pooled analysis using an inverse variance random effects model
for paired measurements, taking into account the between-
clusters and within-the-cluster variability, using each stent as
an independent unit of clustering (30). The odds ratio at each
individual stent and the pooled odds ratio of the whole sample
were graphically represented by means of forest plots. Results
for the whole sample of struts and for the ISA and NASB
subgroups were reported. Interobserver variability for measure-

Table 2. Baseline Clinical Characteristics of the Patients (N � 28)

Male 23 (82.1)

Age, yrs* 64.5 (56.0–70.4)

Hypertension 15 (53.6)

DM 2 (7.1)

Insulin-requiring 1 (3.6)

Hypercholesterolemia 27 (96.4)

Smoking 5 (17.9)

Family history of CHD 13 (46.4)

Prior

MI 13 (46.4)

PCI 7 (25.0)

Of the target vessel 2 (7.1)

Clinical indication

Stable angina 21 (75.0)

Unstable angina 4 (14.3)

No. of diseased vessels

1 22 (78.6)

2 3 (10.7)

3 3 (10.7)

*Values are n (%) or median (25th percentile to 75th percentile).

CHD � coronary heart disease; DM � diabetes mellitus; MI � myocardial infarction;

PCI � percutaneous coronary intervention.

Table 3. Thickness of Neointimal Coverage at the AD

Mean

All detached struts, n � 114 (16 stents)

ADL 71

ABL 101

(ABL � ADL) difference 30

ISA struts, n � 85 (12 stents)

ADL 65

ABL 95

(ABL � ADL) difference 31

NASB struts, n � 29 (6 stents)

ADL 83

ABL 110

(ABL � ADL) difference 28

Shown are the weighted average values and paired comparisons (mu
ABL � abluminal; ADL � adluminal; CI � confidence interval; ISA � incomp
ments at each side of the struts was estimated by intraclass
correlation coefficients for the absolute agreement (ICCa).

All the analyses and graphics were performed with the PASW
version 17.0.2 (SPSS, Chicago, Illinois) and CMA Version 2
(Biostat, Englewood, New Jersey) software packages.

Results

The average follow-up period for Cohort B1 was 183 � 9
days. A total of 28 patients (28 lesions and scaffolds, 4,670
struts) were analyzed with OCT. Table 2 shows the baseline
clinical characteristics of the patients. Sixteen of 28 analyzed
scaffolds presented ISA or NASB struts suitable for the
planned comparison: 114 struts (2.4%, 85 ISA and 29
NASB). The reproducibility of the measurements was
excellent (ICCa: 0.908, 95% confidence interval [CI]: 0.869
to 0.935 for the ADL side; ICCa: 0.982, 95% CI: 0.975 to
0.988 for the ABL side; with no significant bias detected).

Coverage was significantly thicker on the ABL than on the
ADL side in the whole sample (101 �m; 95% CI: 87 to 116
�m vs. 71 �m; 95% CI: 59 to 83 �m; mean difference: 30 �m,
95% CI: 20 to 40 �m; p � 0.0001) and in the subgroups of
SA (95 �m; 95% CI: 80 to 111 �m vs. 65 �m; 95% CI: 53
o 76 �m; mean difference: 31 �m, 95% CI: 19 to 43 �m; p

� 0.0001) and NASB struts (110 �m; 95% CI: 83 to 139 �m
vs. 83 �m; 95% CI: 58 to 108 �m; mean difference 30 �m,
95% CI: 20 to 40 �m; p � 0.008) (Table 3).

In 70 struts (60.7%, 95% CI: 50.6% to 70.0%), the neoin-
timal coverage was thicker on the ABL side. Conversely, only
20 struts (17.5%) had thicker neointimal coverage on the ADL
side (p � 0.0001). Similar results were observed in the ISA and
NASB subgroups, although in the latter, the difference in

ABL Sides of the Struts

ointimal Thickness (�m)

95% CI

p ValueLower Upper

59 83

87 116

20 40 �0.0001

53 76

80 111

19 43 �0.0001

58 108

83 139

8 47 0.008

inear regression for paired measurements).
L and

Ne

ltilevel l
lete stent apposition; NASB � nonapposed side branch.
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percentages did not reach statistical significance (Table 4, Fig. 3).
In 105 struts (92.1%), the thickness of ABL coverage was �30
�m: 76 (89.4%) ISA struts and 29 (100%) NASB struts,
compared with 98 struts (86.0%) in which the ADL thickness
was �30 �m: 71 (83.5%) ISA and 27 (93.1%) NASB struts.

iscussion

The main findings of this study are: 1) neointimal coverage
is thicker on the ABL than on the ADL side in 61.4% of
ISA and NASB struts; and 2) at least 60.7% and up to
92.1% of the ISA and NASB struts are covered on the ABL
side after 6 months in the BVS.

To the best of our knowledge, this is the first study
comparing in vivo the neointimal thickness on the ADL

Table 4. Percentage of Struts With Neointimal Coverage Thicker on the AB

n

Pooled %

Estimate Low

Whole sample, n � 114 struts
(16 stents)

ABL thicker 70 60.7 50.6

ADL thicker 20 18.5 11.6

ISA, n � 85 struts (12 stents)

ABL thicker 55 64.8 52.9

ADL thicker 14 18.3 10.4

NASB, n � 29 struts (6 stents)

ABL thicker 15 47.2 28.0

ADL thicker 6 20.2 7.8

Shown are the pooled estimations of the proportions and the pooled paired comparisons.

OR � odds ratio; other abbreviations as in Table 3.

Figure 3. Paired Pooled Comparison of the Percentages of Struts With Thi

Forest plot representing the odds ratio and 95% confidence interval (CI) fo

Figures 1 and 2.
versus the ABL surface of an intracoronary device in a
cohort of patients. This comparison had not been techni-
cally possible hitherto for two reasons. First, only struts
remaining detached from the vessel wall at follow-up
present both ADL and ABL surfaces in which neointimal
thickness can be measured. This limits the study to small ISA
or side-branch regions, difficult to detect and to track. Second
and more importantly, the intense backscattering of the ultra-
sound or of the optical beam at the metallic struts has
prevented visualization of their ABL side in BMS or DES.
The translucency of the PLLA polymer in the BVS enables for
the first time quantification of the ABL neointimal coverage.

The assessment of coverage in the BVS with OCT is
challenging. The translucency of the polymer results in a
frame-shaped backscattering at the strut boundaries. This

n on the ADL Side and Vice Versa

Paired Comparison

CI

OR

95% CI

p ValueUpper Low Upper

70.0 3.35 2.22 5.07 �0.0001

28.1

75.2 4.16 2.53 6.82 �0.0001

30.1

67.3 1.92 0.90 4.12 0.094

43.0

overage on the ABL Than on the ADL Side Versus the Opposite

stent and the pooled odds ratio at the bottom. Abbreviations as in
L Tha

95%
cker C

r each
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signal convolutes with the one generated by neointima, and
they often become indiscernible. We circumvented this
limitation by taking the inner contour of the backscattering
frame of the strut. Compared with other methods of
measurement, this approach offers the advantage of a clear
reproducible criterion (P. W. Serruys, Y. Onuma, J. A.
Ormiston, et al., unpublished data, June 2010), although it
overestimates slightly the neointimal thickness due to the
inclusion of the polymer backscattering (�30 �m) in the
measurement. Since our current study is based on the relative
thickness on one side versus the other, rather than in
absolute thickness values, we chose the most accurate and
reproducible method of measurement. Our results strongly
suggest that most ISA and NASB struts are covered on the
ABL side in the BVS at 6 months: at least 60.7%,
considering those struts with ABL � ADL thickness, or up
to 92.1% if we include also those struts with ABL thickness
�30 �m, regardless of the ADL/ABL ratio. Previous OCT
tudies reported that only 27.4% to 34.6% of ISA struts
ere covered on the ADL side after 9 to 13 months in
etallic DES (24,30). Our observations would suggest that

he ABL side might be a more favorable scenario than the
DL for a complete coverage, but this finding could be also

xplained by differential characteristics of the BVS, since the
DL coverage of ISA struts was also higher in this study

han in previous reports on metallic DES (24,30).
The differences in neointimal thickness suggest that the

eointimal inhibition is for some reason less efficient on the
BL than on the ADL side. Differences in shear stress (SS)
etween the ADL and ABL sides might likely play a role to
xplain this finding. An inverse relation between SS and
eointimal hyperplasia has been described in BMS (31) and
ES (32–34). Computational models studying the effect of

atheter placement (35,36) and of stent infraexpansion (37) on
all SS have consistently found lower SS levels when the

atheter was placed close to the vessel wall (35,36) or beneath
he struts of an undersized stent (37). Therefore, SS could be
ower at the ABL side and thus explain the thicker neointima.

ur results fit well into this SS theoretical model, although
uid dynamics can vary considerably depending on the geom-
try of the vessel, so the hydrodynamic forces become region-
lly unpredictable. Surprisingly, NASB struts show a similar
DL/ABL thickness ratio to that of ISA struts, although in a
ifurcation, both sides can be submitted to high SS forces. Side
ranches �2-mm diameter were an exclusion criterion for this
tudy, thus our NASB struts correspond predominantly to tiny
ide branches, probably with flow patterns closer to the ISA
cenario than to the true bifurcation. Other factors, such as a
ore intense wound healing reaction in the vicinity of the

ascular tissue, could also play a role.
The neointimal healing on the ABL side is relevant to under-

tand the mechanism by which acute stent malapposition might
e spontaneously corrected over time. We have learned from

CT studies that the proportion of malapposed struts gets
pontaneously reduced from approximately 7.7% immediately
fter stenting to 1.2% at 6 months follow-up (25); but the
hysiological mechanism for this correction is to a great extent
nknown, and it is important to understand why it happens in
ome regions but not in others. The thicker ABL neointima
uggests that the integration process of malapposed areas into the
essel wall might be the consequence of neointimal growth from
he strut to the vessel or bidirectionally, rather than merely from
essel to strut.
Study limitations. Although the term “neointimal thick-
ness” is commonly used in OCT studies (21,22,38,39), its
sensitivity and specificity for neointimal detection are still
unknown and �100%. OCT coverage correlates with histo-
logical neointima and endothelialization after stenting in ani-
mal models (40–43); but OCT is unable to detect thin layers
of endothelium below 14-�m axial resolution, and cannot
iscern between neointima and other material, such as fibrin or
hrombus. Optical densitometry analysis might be useful in the
uture (42). Additionally, OCT has been validated for the
ssessment of neointimal coverage, taking into account only
he ADL coverage. This study has been performed under the
ssumption that the validation on the ADL side can also apply
o the ABL side: this hypothesis, although theoretically plau-
ible, has not been empirically demonstrated to date.

The observations in this study apply only to the BVS,
bioresorbable everolimus-eluting vascular scaffold. Ex-

rapolation of the conclusions to other intracoronary
evices, such as BMS or DES, must be cautious, even
hough considerable analogy has been described in the
eointimal healing of these devices.

onclusions

Most malapposed and side-branch struts are covered on
the ABL side 6 months after BVS implantation, with
thicker neointimal coverage than on the ADL side. The
physiological correction of acute malapposition involves
neointimal growth from the strut to the vessel wall or
bidirectional.

Reprint requests and correspondence: Prof. Patrick W. Serruys, Eras-
mus Medical Center, Thoraxcentre, Ba583a, =s-Gravendijkwal 230,
3015 CE Rotterdam, the Netherlands. E-mail: p.w.j.c.serruys@
erasmusmc.nl.
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