Local Box Adjacency Algorithms for Cylindrical Algebraic Decompositions

SCOTT McCALLUM ${ }^{\dagger}$ § AND GEORGE E. COLLINS ${ }^{\ddagger \uparrow}$
${ }^{\dagger}$ Department of Computing, Division of ICS, Macquarie University, NSW 2109, Australia
${ }^{\ddagger}$ Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, U.S.A.

Abstract

We describe new algorithms for determining the adjacencies between zero-dimensional cells and those one-dimensional cells that are sections (not sectors) in cylindrical algebraic decompositions (cad). Such adjacencies constitute a basis for determining all other cell adjacencies. Our new algorithms are local, being applicable to a specified 0D cell and the 1D cells described by specified polynomials. Particularly efficient algorithms are given for the 0D cells in spaces of dimensions two, three and four. Then an algorithm is given for a space of arbitrary dimension. This algorithm may on occasion report failure, but it can then be repeated with a modified isolating interval and a likelihood of success. (C) 2002 Elsevier Science Ltd

1. Introduction

The basic theory of, and terminology about, cylindrical algebraic decomposition (cad) can be found in Arnon et al. (1984a). The cad algorithm in its original formulation did not produce information concerning the adjacency relation on the set of cells comprising a cad. However it was realized that such cell adjacency information would be essential for certain applications of cads. A particularly important potential application is that of path planning, discussed in an early paper (Schwartz and Sharir, 1983). A more recent attempt at realization of path planning using cad in a simple case is discussed in McCallum (1997). Another possible application, that of clustering cells into maximal sign-invariant connected sets for the purpose of aiding in the cad computation process itself, was pursued in Arnon (1988).

Let A be a set of bivariate irreducible integral polynomials. Arnon et al. (1984b) presented an algorithm which, given such a set A of bivariate polynomials, constructs an A-invariant cad of the plane, and determines all pairs of adjacent cells in that cad. The algorithm of Arnon et al. (1984b) determines which sections are adjacent to a given 0 -cell c^{0} in the plane by analyzing the sides of a suitable box constructed around c^{0}. For this reason we call the adjacency algorithm of Arnon et al. (1984b) the "box algorithm" in the plane.

Now let A be a set of trivariate irreducible integral polynomials. Arnon et al. (1988) presented an algorithm which, given such a set A of trivariate polynomials, constructs an

[^0]A-invariant cad of three-space having the so-called boundary property, and determines all pairs of adjacent cells in that cad.

Collins and McCallum (1995) described an algorithm for determining in a cad of \mathbf{R}^{3} the section-section interstack adjacencies over a given adjacency in the induced cad of the plane. The algorithm is called a "box algorithm" for three-space. A somewhat informal extension to four-dimensional space of the box algorithm for three-space was also presented. The box algorithm for four-space uses a subalgorithm called the "real projection algorithm".
We were motivated by some concerns about the efficiency of the real projection subalgorithm of Collins and McCallum (1995) to seek another approach to adjacency determination which might avoid the need for this subalgorithm. The present paper contains descriptions of, and correctness proofs for, new box algorithms for two-, three- and fourdimensional spaces which do not require the real projection algorithm. These new algorithms are local, being applicable to a specified 0 -cell and the 1 D sections determined by specified polynomials. This could be computationally advantageous, as we shall indicate in the next section.

In the final section of this paper we present a local box adjacency algorithm for n-space, where n is arbitrary. Moreover, this algorithm permits the input polynomials to have coefficients from an algebraic number field, unlike the three- and four-space adjacency algorithms, which require the input polynomials to be irreducible integral polynomials. In Section 3.2 we summarize how to find all cell adjacencies in a cad of 3-space using our box algorithms. This summary reveals that to find all cell adjacencies in n-space for $n \geq 3$ will require algorithms allowing algebraic polynomials as inputs. Our n-space algorithm is fallible in the sense that it may occasionally report failure, but it can then be reapplied with a high probability of success.

2. A Local Box Adjacency Algorithm for the Plane

The box adjacency algorithm for the plane presented by Arnon et al. (1984b) is satisfactory, but is not an explicitly local algorithm. In this section we formulate a local version of the box algorithm of Arnon et al. (1984b). Our motivation for doing so is to provide a foundation upon which our presentation of the local box adjacency algorithms for higher dimensional spaces will be based. This section could also serve as a helpful review for the reader of the basic idea of cell adjacency computation in the plane.

The following theorem will be applied repeatedly in this paper.
Theorem 2.1. Let \mathbf{R}^{*} denote the two-point compactification of \mathbf{R}. Let c be a cell in a cad of \mathbf{R}^{n} and let p be a point in $\left(\mathbf{R}^{*}\right)^{n}$ that does not belong to c. Then p is a limit point of c if and only if p is adjacent to c.

Proof. Recall that by definition p is adjacent to c if and only if $\{p\} \cup c$ is connected, and that all cells in a cad are connected sets. Let $C=p \cup c$. Assume that p is a limit point of c. If p is not adjacent to c then C is not connected, so there exist open sets, O_{1} and O_{2} such that $O_{1} \cap C$ and $O_{1} \cap C$ are non-empty disjoint sets whose union is C. We may assume that $p \in O_{1} \cap C$. But since p is a limit point of c, O_{1} also contains points of c. Therefore $O_{1} \cap C$ also contains points of c. Now $O_{1}-\{p\}$ is an open set and
$\left(O_{1}-\{p\}\right) \cap c$ is non-empty, so $\left(O_{1}-\{p\}\right) \cap c$ and $O_{2} \cap c=O_{2} \cap C$ are non-empty disjoint sets whose union is c, contradicting the connectedness of c.

Next assume that p is not a limit point of c. Let ϵ be a positive real number such that the ball of radius ϵ centered at p contains no point of c. Let O_{1} be the ball of radius $\epsilon / 2$ centered at p, and let O_{2} be the set of all points less than $\epsilon / 2$ from some point of c. Then O_{1} and O_{2} are non-empty disjoint open sets containing p and c, respectively, so $c \cup\{p\}$ is not connected.

Now we are ready to state a theorem, which is strongly suggestive of our method for cell adjacency determination in the plane. We will use the notion of a strong isolating interval for a root α of a real polynomial $A(x)$: this is an isolating interval for α whose closure is also an isolating interval for α.

THEOREM 2.2. Let $A(x)$ and $B(x, y)$ be real polynomials of positive degrees in x and y, respectively. Let $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b_{2}\right)$ be strong open isolating intervals for roots α of $A(x)$ and β of $B(\alpha, y) \neq 0$, respectively, such that B is delineable over $\left(\alpha, a_{2}\right]$ and B has no zeros in $\left[\alpha, a_{2}\right] \times\left\{b_{1}, b_{2}\right\}$. Let σ be a section of B over $\left(\alpha, a_{2}\right]$. Then σ is adjacent to (α, β) if and only if σ and $\left\{a_{2}\right\} \times\left[b_{1}, b_{2}\right]$ have non-empty intersection.

Proof. The section σ determines a continuous function $y=f(x)$ on $\left(\alpha, a_{2}\right]$. First, assume that σ is adjacent to (α, β). By Theorem 2.1, (α, β) is a limit point of σ. Therefore there is a point $\left(\alpha^{\prime}, \beta^{\prime}\right)$ of σ in $\left(\alpha, a_{2}\right) \times\left(b_{1}, b_{2}\right)$ (with $\left.\beta^{\prime}=f\left(\alpha^{\prime}\right)\right)$. We claim that $f\left(a_{2}\right) \in\left(b_{1}, b_{2}\right)$. Suppose that this is not the case. Then, by continuity of f, there exists $x_{0} \in\left(\alpha, a_{2}\right]$ such that $f\left(x_{0}\right)=b_{1}$ or $f\left(x_{0}\right)=b_{2}$. Either possibility is contrary to an hypothesis. This proves the claim. We have shown that σ and $\left\{a_{2}\right\} \times\left[b_{1}, b_{2}\right]$ have non-empty intersection.

Conversely assume that σ and $\left\{a_{2}\right\} \times\left[b_{1}, b_{2}\right]$ have non-empty intersection. That is, $f\left(a_{2}\right) \in\left[b_{1}, b_{2}\right]$. This implies $f\left(a_{2}\right) \in\left(b_{1}, b_{2}\right)$, by an hypothesis. We claim that $f(x) \in$ $\left(b_{1}, b_{2}\right)$, for every $x \in\left(\alpha, a_{2}\right]$. Suppose that this is not the case. Then by continuity of f there exists $x_{0} \in\left(\alpha, a_{2}\right)$ such that $f\left(x_{0}\right)=b_{1}$ or $f\left(x_{0}\right)=b_{2}$. This proves the claim. It follows that $\sigma \subset\left(\alpha, a_{2}\right] \times\left[b_{1}, b_{2}\right]$.
By the property $\sigma \subset\left(\alpha, a_{2}\right] \times\left[b_{1}, b_{2}\right]$ and the compactness of the subset $\{\alpha\} \times\left[b_{1}, b_{2}\right]$ of the plane (Munkres, 1975), σ has a limit point $\left(\alpha, \beta^{\prime}\right)$ in $\{\alpha\} \times\left[b_{1}, b_{2}\right]$. By the closure of the real variety of $B, B\left(\alpha, \beta^{\prime}\right)=0$. But β is the unique real root of $B(\alpha, y)$ in $\left[b_{1}, b_{2}\right]$, since $\left(b_{1}, b_{2}\right)$ is a strong isolating interval for β as a root of $B(\alpha, y)$, an hypothesis. Hence $\beta^{\prime}=\beta$. By Theorem 2.1, σ is adjacent to (α, β).

Here now is our algorithm based on the above theorem. The inputs and outputs of the algorithm make sense in the context of cad computation in the plane. The inputs to the theorem, $A(x)$ and $B(x, y)$, are required to be algebraic polynomials, by which we mean polynomials with coefficients in some algebraic number field. If we have computed some cad of \mathbf{R}^{n} and wish only to compute cell adjacencies in the induced cad of \mathbf{R}^{2}, we need to use the algorithm only with irreducible integral polynomials as inputs. But, as we shall see in the next section, to compute all cell adjacencies in \mathbf{R}^{3}, we will need to allow algebraic polynomials as inputs. With the notation and hypotheses of the theorem, the algorithm computes the number of sections of B over (α, a_{2}] that are adjacent to (α, β).

Figure 1. An application of the local box adjacency algorithm.

That is, the algorithm determines the number of sections of B that are right-adjacent to (α, β).

Local box adjacency algorithm in \mathbf{R}^{2}

Inputs:

1. $A(x), B(x, y)$: algebraic polynomials of positive degrees in x and y, respectively.
2. $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$: strong open isolating intervals with rational endpoints for roots α of A and β of $B(\alpha, y) \neq 0$ such that B is delineable over $\left(\alpha, a_{2}\right]$.

Outputs:

1. $\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$: a subinterval of $\left(a_{1}, a_{2}\right)$ with rational number endpoints and containing α such that B has no zeros in $\left[a_{1}^{\prime}, a_{2}^{\prime}\right] \times\left\{b_{1}, b_{2}\right\}$.
2. n : the number of sections of B over $\left(\alpha, a_{2}\right]$ that are adjacent to (α, β).

Steps:

1. Refine the interval $\left(a_{1}, a_{2}\right)$ to an interval $\left(a_{1}^{\prime}, a_{2}^{\prime}\right]$ such that B has no zeros in $\left[a_{1}^{\prime}, a_{2}^{\prime}\right] \times\left\{b_{1}, b_{2}\right\}$. To accomplish this, proceed as follows. Refine $\left(a_{1}, a_{2}\right)$ to an interval $\left(a_{1}^{\prime}, a_{2}^{\prime}\right]$ such that $\left[a_{1}^{\prime}, a_{2}^{\prime}\right]$ contains no root of $B\left(x, b_{1}\right)$ or of $B\left(x, b_{2}\right)$.
2. Set $n \leftarrow$ the number of real roots of $B\left(a_{2}^{\prime}, y\right)$ in $\left(b_{1}, b_{2}\right)$.
3. Return $\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ and n.

This algorithm performs the portion of the work of steps 2 and 4 of algorithm SSADJ2 from Arnon et al. (1984b) that pertains to the root β of $B(\alpha, y)$. Figure 1 illustrates an application of the algorithm to an example in which $(\alpha, \beta)=(-1,0), A(x)=x+$ $1, B(x, y)=x^{2}+2 y^{2}-1,\left(a_{1}, a_{2}\right)=(-2,0)$ and $\left(b_{1}, b_{2}\right)=(-1 / 2,1 / 2)$. The dashed vertical line segments represent the subinterval $\left(a_{1}^{\prime}, a_{2}^{\prime}\right)=(-5 / 4,-3 / 4)$ computed by the algorithm. The number of sections of B that are right-adjacent to (α, β) is, of course, two. We now provide a correctness argument for the above algorithm.

THEOREM 2.3. The local box adjacency algorithm for the plane is correct.
Proof. We first note that both $B\left(x, b_{1}\right)$ and $B\left(x, b_{2}\right)$ are non-zero polynomials. The reason is that $B\left(\alpha, b_{1}\right) \neq 0$ and $B\left(\alpha, b_{2}\right) \neq 0$, since $\left(b_{1}, b_{2}\right)$ is a strong isolating interval for β as a root of $B(\alpha, y)$ (input condition 2). Hence step 1 can achieve its goal in finite time.

We shall prove that B has n sections over $\left(\alpha, a_{2}\right]$ that are adjacent to (α, β) by exhibiting a bijection ϕ between the sections of B over (α, a_{2}] adjacent to (α, β) and the real roots of $B\left(a_{2}^{\prime}, y\right)$ in $\left(b_{1}, b_{2}\right)$. Let σ be a section of B over $\left(\alpha, a_{2}\right]$ which is adjacent to (α, β). By Theorem 2.2, in which we take $a_{2}=a_{2}^{\prime}, \sigma$ and $\left\{a_{2}^{\prime}\right\} \times\left[b_{1}, b_{2}\right]$ have non-empty intersection. That is, there is a point $\left(a_{2}^{\prime}, \beta^{\prime}\right)$ of σ such that $\beta^{\prime} \in\left[b_{1}, b_{2}\right]$. It follows that $\beta^{\prime} \in\left(b_{1}, b_{2}\right)$. We define $\phi(\sigma)=\beta^{\prime}$. Now ϕ is a one-to-one mapping since B is delineable over $\left(\alpha, a_{2}\right]$, by hypothesis.
Let β^{\prime} be a real root of $B\left(a_{2}^{\prime}, y\right)$ in $\left(b_{1}, b_{2}\right)$. Then $\left(a_{2}^{\prime}, \beta^{\prime}\right)$ lies in some section σ of B over $\left(\alpha, a_{2}\right]$. By Theorem 2.2, in which we take $a_{2}=a_{2}^{\prime}, \sigma$ is adjacent to (α, β). Clearly $\phi(\sigma)=\beta^{\prime}$. We have shown that ϕ is also an onto mapping, which completes the correctness proof.

In an actual implementation of this algorithm we may wish to also have it return the number of left adjacencies, namely the number of real roots of $B\left(a_{1}^{\prime}, y\right)$ in $\left(b_{1}, b_{2}\right)$. To keep the exposition simple we have omitted throughout this paper the treatment of left adjacencies.

Knowing how many sections of $B(x, y)$ are adjacent to every $\left(\alpha, \beta_{i}\right)$ does not, in general, suffice to conclude which sections these are, because if the leading coefficient of $B(x, y)$ vanishes at α, some sections of $B(x, y)$ may be adjacent to $(\alpha,-\infty)$. That is, they may approach $(\alpha,-\infty)$ as x approaches α from the right. To determine how many sections are adjacent to $(\alpha,-\infty)$, we need a slightly modified version of the above algorithm to determine the number of sections adjacent to $(\alpha,-\infty)$. In this modification, the input $\left(b_{1}, b_{2}\right)$ is replaced by a rational number b which is less than all roots of $B(\alpha, y)$. Step 1 then refines $\left(\alpha, a_{2}\right]$ to an interval $\left(\alpha, a_{2}^{\prime}\right]$ such that B contains no root of $B(x, b)$, Step 2 sets n to the number of roots of $B\left(a_{2}^{\prime}, y\right)$ in $(-\infty, b)$, the number of sections of B over $\left(\alpha, a_{2}\right]$ which are adjacent to $(\alpha,-\infty)$. The local box adjacency algorithms of the following sections of this paper also have similar modifications.

As suggested earlier, the algorithm of this section is a localized version of algorithm SSADJ2 of Arnon et al. (1984b), so to speak. The availability of such a local adjacency algorithm would leave open the possibility that one could make use of root multiplicity information to determine some of the adjacencies in the plane. Use of root multiplicity information for this purpose would be expected to speed up considerably the computation of some of the cell adjacencies in the plane.

The local box adjacency of this section and its variations that we have discussed enable us to determine all adjacencies between two sections in any cad of \mathbf{R}^{2}. From these all other adjacencies can be inferred as discussed in Arnon et al. (1984b). For the reader's convenience we summarize here how this is accomplished. There are, first, the obvious intrastack adjacencies, those between two cells in the same stack. Namely, any sector in a stack is adjacent to any section immediately above or below it. Then there are the interstack adjacencies. Let c_{0} be any section in the induced cad of \mathbf{R} and c_{1} be an adjacent sector. Let S_{0} and S_{1} be the stacks over c_{0} and c_{1}, respectively. Let s be any sector of S_{1}, and let s_{1} and s_{2} be the sections in S_{1} that are immediately below and above s. Here we imagine that each stack contains sections at $-\infty$ and ∞. Let t_{1} and t_{2} be the sections
in S_{0} that are adjacent to s_{1} and s_{2}. Then, by Corollary 2.5 of Arnon et al. (1984b), the cells in S_{0} that are adjacent to s are t_{1}, t_{2} and all cells between t_{1} and t_{2}.

3. Adjacencies in Three-space

In this section we first present in Section 3.1 a local box adjacency algorithm for 3 -space. Following that in Section 3.2 we shall, for the reader's convenience, outline how, based on theorems from Arnon et al. (1988), all other cell adjacencies in three-space can be deduced from the adjacencies between 0D cells and 1D cells.

3.1. A LOCAL BOX ADJACENCY ALGORITHM FOR THREE-SPACE

Let $A(x), B(x, y)$ and $C(x, y, z)$ be irreducible integral polynomials of positive degrees in their main variables and let (α, β, γ) be a point of \mathbf{R}^{3} for which

$$
A(\alpha)=B(\alpha, \beta)=C(\alpha, \beta, \gamma)=0
$$

and $C(\alpha, \beta, z) \neq 0$. We present a local box adjacency algorithm for determining the number of sections of C adjacent to (α, β, γ) over each of the sections of B that are adjacent to (α, β).

The following theorem is an analogue of Theorem 2.2, and is strongly suggestive of our algorithm for cell adjacency determination in three-space. The theorem gives a criterion for a section τ of C over a section of B to be adjacent to (α, β, γ) : namely, τ is adjacent to (α, β, γ) if and only if τ intersects a certain side (face) of a box in \mathbf{R}^{3} satisfying certain hypotheses. The theorem provides the basis for our local box adjacency algorithm for \mathbf{R}^{3}.

Theorem 3.1. Let $A(x), B(x, y)$ and $C(x, y, z)$ be real polynomials of positive degrees in their main variables. Let $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$ and $\left(c_{1}, c_{2}\right)$ be strong open isolating intervals for roots α of $A(x), \beta$ of $B(\alpha, y) \neq 0$ and γ of $C(\alpha, \beta, z) \neq 0$, respectively, such that B is delineable over $\left(\alpha, a_{2}\right], B$ has no zeros in $\left[\alpha, a_{2}\right] \times\left\{b_{1}, b_{2}\right\}, C$ is delineable over each section of B over $\left(\alpha, a_{2}\right]$, and B and C have no common zeros in $\left[\alpha, a_{2}\right] \times\left[b_{1}, b_{2}\right] \times\left\{c_{1}, c_{2}\right\}$. Let σ be a section of B over $\left(\alpha, a_{2}\right]$ and let τ be a section of C over σ. Then τ is adjacent to (α, β, γ) if and only if τ and $\left\{a_{2}\right\} \times\left[b_{1}, b_{2}\right] \times\left[c_{1}, c_{2}\right]$ have non-empty intersection.

Proof. The section σ determines a continuous function $y=f(x)$ on (α, a_{2}]. Likewise τ determines a continuous function $z=g(x, y)$ on σ. We define $h(x)=g(x, f(x))$, for $x \in\left(\alpha, a_{2}\right]$. Then h is continuous. First, assume that τ is adjacent to (α, β, γ). By Theorem 2.1, (α, β, γ) is a limit point of τ. Therefore (α, β) is a limit point of σ; hence σ is adjacent to (α, β), by Theorem 2.1. Now by Theorem 2.2σ and $\left\{a_{2}\right\} \times\left[b_{1}, b_{2}\right]$ have non-empty intersection, that is, $f\left(a_{2}\right) \in\left[b_{1}, b_{2}\right]$. Since (α, β, γ) is a limit point of τ there is a point $\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ of τ in the interior of the box $\left[\alpha, a_{2}\right] \times\left[b_{1}, b_{2}\right] \times\left[c_{1}, c_{2}\right]$ (with $\beta^{\prime}=f\left(\alpha^{\prime}\right)$ and $\gamma^{\prime}=h\left(\alpha^{\prime}\right)$). We claim that $h\left(a_{2}\right) \in\left(c_{1}, c_{2}\right)$. Suppose that this is not the case. Then, by continuity of h, there exists $x_{0} \in\left(\alpha, a_{2}\right]$ such that $h\left(x_{0}\right)=c_{1}$ or $h\left(x_{0}\right)=c_{2}$. Now by Theorem 2.2, in which we take $a_{2}=x_{0}, \sigma$ and $\left\{x_{0}\right\} \times\left[b_{1}, b_{2}\right]$ have non-empty intersection, that is, $f\left(x_{0}\right) \in\left[b_{1}, b_{2}\right]$. Thus $\left(x_{0}, f\left(x_{0}\right), h\left(x_{0}\right)\right)$ is a common zero of B and C in $\left[\alpha, a_{2}\right] \times\left[b_{1}, b_{2}\right] \times\left\{c_{1}, c_{2}\right\}$, contrary to hypothesis. The claim is proved. We have shown that $\left(a_{2}, f\left(a_{2}\right), h\left(a_{2}\right)\right) \in\left\{a_{2}\right\} \times\left[b_{1}, b_{2}\right] \times\left[c_{1}, c_{2}\right]$, so τ and $\left\{a_{2}\right\} \times\left[b_{1}, b_{2}\right] \times\left[c_{1}, c_{2}\right]$ have non-empty intersection.

To prove the converse, assume that τ and $\left\{a_{2}\right\} \times\left[b_{1}, b_{2}\right] \times\left[c_{1}, c_{2}\right]$ have non-empty intersection, that is, $f\left(a_{2}\right) \in\left[b_{1}, b_{2}\right]$ and $h\left(a_{2}\right) \in\left[c_{1}, c_{2}\right]$. Then σ and $\left\{a_{2}\right\} \times\left[b_{1}, b_{2}\right]$ have non-empty intersection, so σ is adjacent to (α, β) (Theorem 2.2). Let $x \in\left(\alpha, a_{2}\right]$. By Theorem 2.2, taking $a_{2}=x, \sigma$ and $\{x\} \times\left[b_{1}, b_{2}\right]$ have non-empty intersection, that is, $f(x) \in\left[b_{1}, b_{2}\right]$. We claim that $h(x) \in\left(c_{1}, c_{2}\right)$. For if this were not the case then by continuity of h there would exist $x_{0} \in\left(\alpha, a_{2}\right]$ such that either $h\left(x_{0}\right)=c_{1}$ or $h\left(x_{0}\right)=c_{2}$; so $\left(x_{0}, f\left(x_{0}\right), h\left(x_{0}\right)\right)$ would be a common zero of B and C in $\left[\alpha, a_{2}\right] \times\left[b_{1}, b_{2}\right] \times\left\{c_{1}, c_{2}\right\}$, contrary to hypothesis. It follows from what we have established that $\tau \subset\left(\alpha, a_{2}\right] \times$ $\left[b_{1}, b_{2}\right] \times\left[c_{1}, c_{2}\right]$.

Since $\tau \subset\left(\alpha, a_{2}\right] \times\left[b_{1}, b_{2}\right] \times\left[c_{1}, c_{2}\right], \sigma$ is adjacent to (α, β) and the subset $\{(\alpha, \beta)\} \times$ $\left[c_{1}, c_{2}\right]$ of \mathbf{R}^{3} is compact (Munkres, 1975), τ has a limit point $\left(\alpha, \beta, \gamma^{\prime}\right)$ in $\{(\alpha, \beta)\} \times\left[c_{1}, c_{2}\right]$. By the closure of the real variety of $C, C\left(\alpha, \beta, \gamma^{\prime}\right)=0$. But γ is the unique root of $C(\alpha, \beta, z)$ in $\left[c_{1}, c_{2}\right]$, by an hypothesis. Hence $\gamma^{\prime}=\gamma$. By Theorem 2.1τ is adjacent to (α, β, γ).

We now describe a new local adjacency algorithm for three-space based upon Theorem 3.1. The inputs and outputs for the algorithm make sense in the context of the computation of a cad of \mathbf{R}^{3}. All of the requirements on the inputs with the exception of requirement 2 b are fulfilled by the theory of cad construction. The requirement 2 b could be fulfilled by application of the local box adjacency algorithm described in Section 2. As for the algorithm of Section 2, the following algorithm determines what we might call the right adjacencies for (α, β, γ) (and the polynomials $A, B, C)$. Unlike the algorithm of Section 2, this algorithm requires irreducible integral polynomials as inputs; its correctness proof depends on the irreducibility of B. A more general three-space algorithm, applicable to algebraic polynomials, is needed for some adjacency computations in fourspace. In Section 5 we describe an n-space algorithm for algebraic polynomials which can be applied for $n=3$.

In the following algorithm description, and elsewhere in this paper, we shall use the convention that the resultant of two polynomials with respect to any variable such that one of the polynomials, but not both, is of degree zero in that variable, is equal to the polynomial of degree zero (regardless of the degree of the other polynomial in that variable).

Local box adjacency algorithm in \mathbf{R}^{3}

Inputs:

1. $A(x), B(x, y), C(x, y, z)$: irreducible integral polynomials of positive degrees in their main variables.
2. $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right)$: strong open isolating intervals with rational endpoints for roots α of A, β of $B(\alpha, y)$ and γ of $C(\alpha, \beta, z) \neq 0$ such that
(a) B is delineable over $\left(\alpha, a_{2}\right]$,
(b) neither $B\left(x, b_{1}\right)$ nor $B\left(x, b_{2}\right)$ has any root in $\left(\alpha, a_{2}\right]$, and
(c) C is delineable over each section of B over $\left(\alpha, a_{2}\right]$.

Outputs:

1. $\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$: a subinterval of $\left(a_{1}, a_{2}\right)$ with rational endpoints and containing α such that B and C have no common zeros in $\left[\alpha, a_{2}^{\prime}\right] \times\left[b_{1}, b_{2}\right] \times\left\{c_{1}, c_{2}\right\}$.
2. L : the list of all lists $\left(i, N_{i}\right)$ such that among the sections of B over $\left(\alpha, a_{2}\right]$ that are adjacent to (α, β), for the i th such section, σ_{i}, there are $N_{i}>0$ sections of C that are adjacent to (α, β, γ).

Steps:

1. Refine the isolating interval $\left(a_{1}, a_{2}\right)$ for α to a subinterval $\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ such that B and C have no common zeros in $\left[\alpha, a_{2}^{\prime}\right] \times\left[b_{1}, b_{2}\right] \times\left\{c_{1}, c_{2}\right\}$. To accomplish this, proceed as follows. For $k=1,2$ do: set $R_{k}(x) \leftarrow \operatorname{res}_{y}\left(B(x, y), C\left(x, y, c_{k}\right)\right)$, the resultant with respect to y of $B(x, y)$ and $C\left(x, y, c_{k}\right)$. Refine $\left[\alpha, a_{2}\right]$ to an interval $\left[\alpha, a_{2}^{\prime}\right]$ such that (α, a_{2}^{\prime}] contains no root of $R_{1}(x)$ or $R_{2}(x)$. [The correctness proof for this algorithm will show that both $R_{1}(x)$ and $R_{2}(x)$ are non-zero polynomials, and that step 1 in fact guarantees that B and C have no common zeros in $\left[\alpha, a_{2}^{\prime}\right] \times\left[b_{1}, b_{2}\right] \times\left\{c_{1}, c_{2}\right\}$.]
2. Compute isolating intervals for the real roots $\beta_{1}<\beta_{2}<\cdots<\beta_{N}$ of $B\left(a_{2}^{\prime}, y\right)$ which are contained in $\left(b_{1}, b_{2}\right)$.
3. Set $L \leftarrow()$, the null list. For $i=1, \ldots, N$ do compute the number N_{i} of real roots of $C\left(a_{2}^{\prime}, \beta_{i}, z\right)$ in $\left(c_{1}, c_{2}\right)$, and if $N_{i}>0$, append $\left(i, N_{i}\right)$ to L.
4. Return $\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ and L.

Figure 2 illustrates an example to which the three-space adjacency algorithm could be applied. In this example, $(\alpha, \beta, \gamma)=(-1,0,0), A(x)=x+1, B(x, y)=x^{2}+2 y^{2}-1$, $C(x, y, z)=x^{2}+y^{2}+z^{2}-1,\left(a_{1}, a_{2}\right)=(-5 / 4,-3 / 4),\left(b_{1}, b_{2}\right)=(-1 / 2,1 / 2)$ and $\left(c_{1}, c_{2}\right)=$ $(-1 / 4,1 / 4)$. Notice that this example is closely related to that illustrated in Figure 1. In particular, requirement 2 b is satisfied because the values of a_{1} and a_{2} used for this example are the values of a_{1}^{\prime} and a_{2}^{\prime} constructed by the two-space adjacency algorithm for the example of Figure 1. Figure 3 illustrates the three-space adjacency algorithm's output for this example: $\left(a_{1}^{\prime}, a_{2}^{\prime}\right)=(-17 / 16,-15 / 16)$ and $L=((1,2),(2,2))$.

Theorem 3.2. The above algorithm is correct.

Proof. We shall show that B and C have no common zeros in $\left[\alpha, a_{2}^{\prime}\right] \times\left[b_{1}, b_{2}\right] \times\left\{c_{1}\right\}$. A symmetric argument will show that B and C have no common zeros in $\left[\alpha, a_{2}^{\prime}\right] \times\left[b_{1}, b_{2}\right] \times$ $\left\{c_{2}\right\}$. We first show that the polynomial $R_{1}(x)$ computed in step 1 is non-zero. Suppose not. In case $\operatorname{deg}_{y} C\left(x, y, c_{1}\right)=0, R_{1}(x)=C\left(x, y, c_{1}\right)$, by definition. So $C\left(x, y, c_{1}\right)=0$. In particular $C\left(\alpha, \beta, c_{1}\right)=0$, contradicting the hypothesis that $\left(c_{1}, c_{2}\right)$ is a strong isolating interval for γ. In case $\operatorname{deg}_{y} C\left(x, y, c_{1}\right)>0$, by Theorem 2 of Collins (1971), B(x,y) and $C\left(x, y, c_{1}\right)$ would have a common divisor of positive degree in $\mathbf{Q}[x, y]$. Since $B(x, y)$ is irreducible in $\mathbf{Z}[x, y]$, and hence in $\mathbf{Q}[x, y], B(x, y)$ itself would therefore be a divisor of $C\left(x, y, c_{1}\right)$. Therefore $C\left(\alpha, \beta, c_{1}\right)$ would vanish, contrary to the hypothesis that $\left(c_{1}, c_{2}\right)$ is a strong isolating interval for γ. The proof that $R_{1}(x) \neq 0$ is complete.
Suppose first that $\operatorname{deg}_{y} C\left(x, y, c_{1}\right)=0$, in which case $R_{1}(x)=C\left(x, y, c_{1}\right)$, by definition. Then $\left(\alpha, a_{2}^{\prime}\right]$ contains no root of $C\left(x, y, c_{1}\right)$. Therefore B and C have no common zeros in $\left(\alpha, a_{2}^{\prime}\right] \times \mathbf{R} \times\left\{c_{1}\right\}$. Suppose on the other hand that $\operatorname{deg}_{y} C\left(x, y, c_{1}\right)>0$. Then $\left(\alpha, a_{2}^{\prime}\right]$ contains no root of $R_{1}(x)$. Therefore there is no common zero of $B(x, y)$ and $C(x, y, z)$ in $\left(\alpha, a_{2}^{\prime}\right] \times \mathbf{R} \times\left\{c_{1}\right\}$, by Theorem 5 of Collins (1971). It remains to show that $B(\alpha, y)$ and $C\left(\alpha, y, c_{1}\right)$, as polynomials in y, have no common zeros in $\left[b_{1}, b_{2}\right]$. This is so because $B\left(\alpha, \beta^{\prime}\right) \neq 0$ for every $\beta^{\prime} \in\left[b_{1}, b_{2}\right]$ with $\beta^{\prime} \neq \beta$, since $\left(b_{1}, b_{2}\right)$ is a strong isolating interval

Figure 2. The curves enter and leave through the bottom and top of the box.

Figure 3. The curves enter through the face $x=-\frac{15}{16}$, very close to the edges where this meets the top and bottom faces.
for β as a root of $B(\alpha, y)$, and $C\left(\alpha, \beta, c_{1}\right) \neq 0$, since $\left(c_{1}, c_{2}\right)$ is a strong isolating interval for γ as a root of $C(\alpha, \beta, z) \neq 0$. This completes the proof that B and C have no common zeros in $\left[\alpha, a_{2}^{\prime}\right] \times\left[b_{1}, b_{2}\right] \times\left\{c_{1}\right\}$.

By Theorem 2.2, in which we take $a_{2}=a_{2}^{\prime}$, there is a one-to-one correspondence between the sections of B over $\left(\alpha, a_{2}\right]$ adjacent to (α, β) and the β_{i} that are isolated in Step 2. Hence there are N sections $\sigma_{1}<\cdots<\sigma_{N}$ of B over $\left(\alpha, a_{2}\right]$ adjacent to (α, β), and $\left(a_{2}^{\prime}, \beta_{i}\right) \in \sigma_{i}$. Let $1 \leq i \leq N$. We can prove that C has N_{i} sections over σ_{i} adjacent to (α, β, γ) by exhibiting a bijection between the real roots of $C\left(a_{2}^{\prime}, \beta_{i}, z\right)$ in $\left(c_{1}, c_{2}\right)$ and the sections of C over σ_{i} adjacent to (α, β, γ). The bijection is defined in the same manner as in the proof of Theorem 2.3. The mapping definition and the proof of bijectivity use Theorem 3.1. This completes the proof of the theorem.

Algorithm SSADJ3 from Arnon et al. (1988) is the key subalgorithm of Arnon et al. (1988) for \mathbf{R}^{3} adjacency determination. The algorithm of this section differs from SSADJ3 in at least two respects. First, the algorithm presented here is an algorithm localized at a particular point (α, β, γ) of \mathbf{R}^{3}, in contrast with SSADJ3 which treats the entire cylinder over a point (α, β) of the plane. Second, the strategy of SSADJ3 is to extract cell adjacencies in three-space from adjacency information for a suitable plane projection of three-space. The algorithm presented here, on the other hand, makes use of a suitable three-dimensional box about (α, β, γ) for adjacency determination.

In principle an analogue of SSADJ3 could be obtained by applying the local box algorithm for every root γ of $C(\alpha, \beta, z)$ and for the adjacencies at $(\alpha, \beta,-\infty)$. As for the algorithm of Section 2, the use of a local adjacency algorithm might permit the use of root multiplicity information to determine some of the adjacencies in three-space.

Our local box adjacency algorithm for three-space determines adjacencies between a point (α, β, γ) and sections of C over sections of B over a sector that is adjacent to α. We also need to determine adjacencies between (α, β, γ) and sections of C over a sector in \mathbf{R}^{2} that is adjacent to (α, β). Substituting α for x reduces this to an adjacency problem in the y, z-plane, determining the number of sections of $C(\alpha, y, z)$ that are adjacent to (β, γ). We can apply the local box adjacency algorithm for \mathbf{R}^{2} with input polynomials $B(\alpha, y)$ and $C(\alpha, y, z)$ and strong isolating intervals $\left(b_{1}, b_{2}\right)$ and $\left(c_{1}, c_{2}\right)$.
We have proved the correctness of our local box adjacency algorithm for \mathbf{R}^{3} under the assumption that $C(\alpha, \beta, z) \neq 0$. But if $C(\alpha, \beta, z)=0$ we may nevertheless wish to determine points (α, β, γ) that are adjacent to sections of C over 1D cells in \mathbf{R}^{2} that are adjacent to (α, β). To do this, we may employ a technique used in Arnon et al. (1988), Theorems 4.2 and 4.3. Let $R(x, z)=\operatorname{res}_{y}(B(x, y), C(x, y, z))$ and $P(x, z)=\mathrm{pp}_{z}(R(x, z))$, the primitive part of $R(x, z)$ with respect to z. If σ is a section of C over a section of B that is adjacent to (α, β) over a sector adjacent to α then σ is adjacent to (α, β, γ) where γ is either a real root of $P(\alpha, z), \infty$ or $-\infty$. Let γ be a real root of $P(\alpha, z)$ and let $\left(c_{1}, c_{2}\right)$ be a strong isolation interval for γ as a root of $P(\alpha, z)$. Slight modification to the proofs of Theorems 3.1 and 3.2 shows that the local box adjacency algorithm for \mathbf{R}^{3} is applicable and will determine the number of sections of C that are adjacent to (α, β, γ). In case σ is a section of C over a sector adjacent to (α, β), a similar technique applies. We set $R(y, z)=\operatorname{res}_{x}(A(x), C(x, y, z))$ and $P(y, z)=\operatorname{pp}_{z}(R(x, z))$. Then we let $\left(c_{1}, c_{2}\right)$ be an isolating interval for a root γ of $P(\beta, z)$.

3.2. DETERMINING ALL OTHER ADJACENCIES IN THREE-SPACE

As in \mathbf{R}^{2}, the intrastack adjacencies are obvious. The interstack adjacencies are those between the two adjacent stacks over two adjacent cells in the induced cad of \mathbf{R}^{2}. We
classify these by the dimensions of the cells in the induced cad, D^{\prime}, which may be $\{0,1\}$, $\{0,2\}$, or $\{1,2\}$.
We begin with the case $\{0,1\}$. Let c_{i} be the cell in D^{\prime} of dimension i. We assume that every section in the stack S_{1} over c_{1} is adjacent to a unique section in the stack S_{0} over c_{0}, including possibly sections at ∞ and $-\infty$. This requires that if any polynomial $C(x, y, z)$ is nullified by c_{0} that S_{0} has been refined by including the needed sections, using the technique described in the last paragraph of Section 3.1. Then, as in \mathbf{R}^{2}, if s is a sector in S_{1} with sections σ_{1} and σ_{2} immediately above and below, and if σ_{i} is adjacent to section τ_{i} in $S_{0}, i=1,2$, then s is adjacent to both τ_{1} and τ_{2} and all cells in S_{0} between τ_{1} and τ_{2}.

Next consider the case $\{1,2\}$. Let c_{i} be the cell in D^{\prime} of dimension i. Suppose first that c_{1} is a section. If a section of $C(x, y, z)$ over c_{2} is adjacent to a section over c_{1}, that section over c_{1} must also be a section of $C(x, y, z)$. Suppose that the section of C over c_{2} is a section of $C(x, y, z)$ over a section of $B(x, y)$ over a sector s. Let a be a rational number in s. The adjacencies among sections of C over sections of B over s are in one-to-one correspondence with the adjacencies of sections of $C(a, x, y)$ over sections of $B(a, y)$ in \mathbf{R}^{2}. We can determine the latter adjacencies by applying the local box adjacency algorithm for \mathbf{R}^{2} with input polynomials $B(a, y)$ and $C(a, x, y)$ and strong isolating intervals for the roots β_{i} of $B(a, y)$ and the roots $\gamma_{i, j}$ of $C\left(a, \beta_{i}, z\right)$.

Now suppose that c_{1} is a sector. Consider any section σ_{2} of $C(x, y, z)$ over c_{2}. Again, any section σ_{1} over c_{1} that is adjacent to σ_{2} must be a section of C. Let (α, b) be a point in c_{1} with b rational. Let b_{1} and b_{2} be rational numbers such that $b_{1}<b<b_{2}$, and such that $\left(\alpha, b_{1}\right)$ and $\left(\alpha, b_{2}\right)$ are in c_{1}. The adjacencies among sections of C over c_{2} and adjacencies of C over c_{1} are in one-to-one correspondence with sections of $C(\alpha, y, z)$ over an interval $\left(b, b_{2}\right]$ or an interval $\left[b_{1}, b\right)$. Let $B(y)=y-b$ be the minimal polynomial of b. Apply the local box adjacency algorithm for \mathbf{R}^{2} with input polynomials $y-b$ and $C(\alpha, y, z)$, the strong isolating interval $\left(b_{1}, b_{2}\right)$ for b as the root of $B(y)$ and strong isolating intervals for roots of $C(\alpha, b, z)$.

Finally we consider the case $\{0,2\}$. We now suppose that adjacencies for the cases $\{0,1\}$ and $\{1,2\}$ have already been determined. Let c_{0} and c_{2} be cells in \mathbf{R}^{2} of dimensions 0 and 2 , respectively. Let s_{2} be a section of $C(x, y, z)$ over c_{2}. By Theorem 6.1 of Arnon et al. (1988), if p and q are limit points of s_{2} in $c_{0} \times \mathbf{R}^{*}$ then so is every point between p and q. Suppose first that c_{0} does not nullify C. Then by the theorem just cited, s_{2} has a unique limit point in $c_{0} \times \mathbf{R}^{*}$. Let c_{1} be a section or sector of dimension 1 in \mathbf{R}^{2} that is adjacent to c_{2}. Let s_{1} be the unique section of C over c_{1} that is adjacent to s_{2}. Let s_{0} be the unique section of C over c_{0} that is adjacent to s_{1}. Then s_{0} is the unique section of C over c_{0} that is adjacent to s_{2}.
Now assume that c_{0} nullifies C. In this case we may need to insert more sections into the stack over c_{0}. Let C_{x} denote the partial derivative of C with respect to x and let $B(x, y)=\operatorname{res}_{z}\left(C(x, y, z), C_{x}(x, y, z)\right)$ if C_{x} has positive degree in z, otherwise $B(x, y)=C_{x}(x, y, o)$. We need to augment our set of projection factors by including B as a new bivariate projection polynomial. This will result in adding the irreducible factors of B as new bivariate projection factors, and will also produce new univariate projection factors. If $c_{0}=\{(\alpha, \beta)\}$ and $\left(a_{1}, a_{2}\right)$ is the isolating interval for α, we need to refine $\left(a_{1}, a_{2}\right)$ to an isolating interval $\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ whose closure contains no roots of the new univariate projection factors. Consider the example $C(x, y, z)=y^{3} z+x y^{2}-x^{3}$. The original projection factors are $y^{3} z+x y^{2}-x^{3}, y+x, y-x, y$ and x and $(0,0)$ nullifies
C. $C_{x}(x, y, z)=y^{2}-3 x^{2}$ so $B(x, y)=y^{2}-3 x^{2}$, which is irreducible. Adding B to the projection factor set does not introduce any new univariate projection factors.
Let $c_{2}^{\prime}=c_{2} \cap\left(\left(a_{1}^{\prime}, a_{2}^{\prime}\right) \times \mathbf{R}\right)$. We need to identify sections of B that are interior to c_{2}^{\prime} and adjacent to (α, β). This can be done by isolating the roots of $B\left(a_{2}^{\prime}, y\right)$ (assuming that c_{2} is to the right of $\left.c_{0}\right)$ and the roots of $B^{\prime}\left(a_{2}^{\prime}, y\right)$ where $B^{\prime}(x, y)$ is any original projection factor having a section adjacent to c_{2}. We omit details of this process, which depend on whether c_{2} is bounded both below and above. Applications of the local box adjacency algorithm for \mathbf{R}^{2} at (α, β) with isolating interval $\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ and polynomials B_{i} will be required. Suppose that a section σ of B over c_{2}^{\prime} that is adjacent to (α, β) has been identified. We now need to find the limit point (α, β, γ) in the stack over c_{0} of the section of C over σ. We cannot do this directly, but if we compute $G(x, z)=\operatorname{res}_{y}(B(x, y), C(x, y, z))$, then γ will be among the roots of $G(\alpha, z)$ if γ is finite. For our example let $c_{0}=\{(0,0)\}$ and let c_{2} be the sector bounded on the left by the y-axis and bounded below by the line $y=x$. There is a unique section of $B(x, y)$ that is interior to $c_{2}^{\prime}=c_{2}$ and adjacent to c_{0}, namely a portion of the line $y=\sqrt{3} x . G(x, z)=x^{6}\left(27 z^{2}-4\right)$.

Let $\left(b_{1}, b_{2}\right)$ be an isolating interval for the root β^{\prime} of $B\left(a_{2}^{\prime}, y\right)$ such that $\left(a_{2}^{\prime}, \beta^{\prime}\right)$ is in σ. Let γ_{j} be one of the roots of $G(\alpha, z)$ and let $\left(c_{1}^{*}, c_{2}^{*}\right)$ be an isolating interval for γ_{j}. With $\left(c_{1}^{*}, c_{2}^{*}\right)$ in place of an isolating interval for a root of $C(\alpha, \beta, z)$, we can then use the local box adjacency algorithm in \mathbf{R}^{3} to determine the number of sections of C over σ that are adjacent to $\left(\alpha, \beta, \gamma_{j}\right)$. We can also determine the number adjacent to $(\alpha, \beta,-\infty)$. If we repeat this procedure for each γ_{j}, we can determine which sections of C over σ are adjacent to which $\left(\alpha, \beta, \gamma_{j}\right)$ s. Now suppose that we have found all points (α, β, γ) that are adjacent to some section of C over some section of some B_{i} that is adjacent to (α, β) and interior to c_{2}^{\prime}. Call these $\gamma_{1}, \ldots, \gamma_{n}$. For each section or sector in \mathbf{R}^{2} that is adjacent to both c_{2} and c_{0}, add an additional γ_{i} such that $\left(\alpha, \beta, \gamma_{i}\right)$ is the limit of the section of C over that section or sector. For every such γ_{i} make $\left(\alpha, \beta, \gamma_{1}\right)$ a section of the stack over c_{0}. Now let τ be any particular section of C over c_{2}. Let γ_{1} (possibly $-\infty$) be least such that the section of τ over some section of some B_{i} has $\left(\alpha, \beta, \gamma_{1}\right)$ as limit point; let γ_{2} (possibly ∞) be greatest. Then by Theorem 6.1 of Arnon et al. (1988), τ is adjacent to $\left(\alpha, \beta, \gamma_{1}\right),\left(\alpha, \beta, \gamma_{2}\right)$ and all sections and sectors between in the stack over c_{0}. The process we have outlined for finding the γ_{i} s follows from Theorems 6.2, 6.3 and 6.4 of Arnon et al. (1988). In our example, the limit of the section of C over the sector that bounds c_{2} on the left is 0 . Also the limit of the section of C over the section of $y-x$ that bounds c_{2} below is 0 . There are two γ_{i} s, namely $2 / 3 \sqrt{3}$ and $-2 / 3 \sqrt{3}$. By application of the modified local box adjacency algorithm for 3 -space we find that the section of C over the section of $y^{2}-3 x^{2}$ that is interior to c_{2} is adjacent to $(0,0,-2 / 3 \sqrt{3})$. Therefore c_{2} is adjacent to the section $(0,0,0)$, the section $(0,0,-2 / 3 \sqrt{3})$, and the sector between these two sections.

4. A Local Box Adjacency Algorithm for Four-space

Let $A(x), B(x, y), C(x, y, z)$ and $D(x, y, z, w)$ be irreducible integral polynomials of positive degrees in their main variables. Let $(\alpha, \beta, \gamma, \delta)$ be a point of \mathbf{R}^{4} for which

$$
A(\alpha)=B(\alpha, \beta)=C(\alpha, \beta, \gamma)=D(\alpha, \beta, \gamma, \delta)=0
$$

$C(\alpha, \beta, z) \neq 0$ and $D(\alpha, \beta, \gamma, w) \neq 0$. We present a local box adjacency algorithm for determining the number of sections of D adjacent to $(\alpha, \beta, \gamma, \delta)$ over each of the sections of C adjacent to (α, β, γ) over each of the sections of B adjacent to (α, β).

We begin with a four-dimensional analogue of Theorem 3.1. This theorem provides the basic idea for the algorithm for cell adjacency determination in four-space which is described subsequently.

Theorem 4.1. Let $A(x), B(x, y), C(x, y, z)$ and $D(x, y, z, w)$ be real polynomials of positive degrees in their main variables. Let $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right)$ and $\left(d_{1}, d_{2}\right)$ be strong open isolating intervals for roots α of $A(x), \beta$ of $B(\alpha, y) \neq 0, \gamma$ of $C(\alpha, \beta, z) \neq 0$ and δ of $D(\alpha, \beta, \gamma, w) \neq 0$ such that B is delineable over $\left(\alpha, a_{2}\right], B$ has no zeros in $\left[\alpha, a_{2}\right] \times\left\{b_{1}, b_{2}\right\}$, C is delineable over each section of B over $\left(\alpha, a_{2}\right], B$ and C have no common zeros in $\left[\alpha, a_{2}\right] \times\left[b_{1}, b_{2}\right] \times\left\{c_{1}, c_{2}\right\}, D$ is delineable over each section of C over each section of B over $\left(\alpha, a_{2}\right]$ and B, C and D have no common zeros in $\left[\alpha, a_{2}\right] \times\left[b_{1}, b_{2}\right] \times\left[c_{1}, c_{2}\right] \times\left\{d_{1}, d_{2}\right\}$. Let σ be a section of B over $\left(\alpha, a_{2}\right]$, let τ be a section of C over σ and let ρ be a section of D over τ. Then ρ is adjacent to $(\alpha, \beta, \gamma, \delta)$ if and only if ρ and $\left\{a_{2}\right\} \times\left[b_{1}, b_{2}\right] \times\left[c_{1}, c_{2}\right] \times\left[d_{1}, d_{2}\right]$ have non-empty intersection.

We omit the proof of this theorem since it follows the same pattern as the proofs of Theorems 2.2 and 3.1, and because the theorem is a special case of Theorem 5.1 in the following section.

While this theorem suggests the strategy we might wish to employ for cell adjacency determination in four-space, we have found that the simplest method of achieving one of the key hypotheses of the theorem-namely, that " B, C and D have no common zeros in $\left[\alpha, a_{2}\right] \times\left[b_{1}, b_{2}\right] \times\left[c_{1}, c_{2}\right] \times\left\{d_{1}, d_{2}\right\} "$ - is by no means obvious. We have discovered what we think is a relatively simple and elegant method of ensuring this hypothesis. The method itself is described in steps 1 and 2 of the adjacency algorithm which will shortly follow. The complete validity of the method, which will be established as part of the correctness proof for the adjacency algorithm, depends upon the following result which is stated and proved by McCallum (1999). Recall from McCallum (1988) or McCallum (1998) that an r-variate real polynomial (or analytic function) f is said to be order-invariant in a subset S of r-space if the order of f is the same at every point of S.

Theorem 4.2. Let $r \geq 2$, let $f\left(x_{1}, \ldots, x_{r}\right)$ and $g\left(x_{1}, \ldots, x_{r}\right)$ be real polynomials of positive degrees in the main variable x_{r}, let $R\left(x_{1}, \ldots, x_{r-1}\right)$ be the resultant of f and g with respect to x_{r}, and suppose that $R \neq 0$. Let S be a connected subset of \mathbf{R}^{r-1} on which f is delineable and in which R is order-invariant. Then g is sign-invariant in each section of f over S.

We now describe a new local adjacency algorithm for four-space based upon Theorem 4.1. The inputs and outputs for the algorithm make sense in the context of cad computation in \mathbf{R}^{4}. All of the requirements on the inputs except for 2 c and 2 e are fulfilled by the theory of cad construction with improved projection, for which the reader can consult either McCallum (1988) or McCallum (1998). Requirements 2c and 2e can be fulfilled by application of the adjacency algorithms from Sections 2 and 3.

Local box adjacency algorithm in \mathbf{R}^{4}

Inputs:

1. $A(x), B(x, y), C(x, y, z), D(x, y, z, w)$: irreducible integral polynomials of positive degrees in their main variables.
2. $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right),\left(d_{1}, d_{2}\right)$: strong open isolating intervals with rational endpoints for roots α of A, β of $B(\alpha, y), \gamma$ of $C(\alpha, \beta, z) \neq 0$ and δ of $D(\alpha, \beta, \gamma, w) \neq 0$ such that
(a) B is delineable over $\left(\alpha, a_{2}\right]$,
(b) B is order-invariant in each of its sections over $\left(\alpha, a_{2}\right]$,
(c) neither $B\left(x, b_{1}\right)$ nor $B\left(x, b_{2}\right)$ has any root in $\left(\alpha, a_{2}\right]$,
(d) C is delineable over each section of B over $\left(\alpha, a_{2}\right]$,
(e) B and C have no common zeros in $\left[\alpha, a_{2}\right] \times\left[b_{1}, b_{2}\right] \times\left\{c_{1}, c_{2}\right\}$ and
(f) D is delineable over each section of C over each section of B over $\left(\alpha, a_{2}\right]$.

Outputs:

1. $\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$: a subinterval of $\left(a_{1}, a_{2}\right)$ with rational endpoints and containing α such that B, C and D have no common zeros in $\left[\alpha, a_{2}^{\prime}\right] \times\left[b_{1}, b_{2}\right] \times\left[c_{1}, c_{2}\right] \times\left\{d_{1}, d_{2}\right\}$.
2. L : a list of all lists $\left(i, j, N_{i, j}\right)$ such that
(a) there are at least i sections of B over $\left(\alpha, a_{2}\right]$ that are adjacent to (α, β); let σ_{i} be the i th such section,
(b) there are at least j sections of C over σ_{i} that are adjacent to (α, β, γ); let $\tau_{i, j}$ be the j th such section,
(c) there are $N_{i, j}>0$ sections of D over $\tau_{i, j}$ that are adjacent to $(\alpha, \beta, \gamma, \delta)$.

Steps:

1. The goal of the first two steps is to refine the interval $\left(a_{1}, a_{2}\right)$ to an interval $\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ such that B, C and D have no common zeros in $\left[\alpha, a_{2}^{\prime}\right] \times\left[b_{1}, b_{2}\right] \times\left[c_{1}, c_{2}\right] \times\left\{d_{1}, d_{2}\right\}$. The first step is to perform the following simple loop:
for $k=1,2$ carry out the following sequence of operations:
(a) if $\operatorname{deg}_{z} D\left(x, y, z, d_{k}\right)=0$ then

$$
\text { set } Q_{k}(x, y) \leftarrow D\left(x, y, z, d_{k}\right)
$$

else

$$
\operatorname{set} Q_{k}(x, y) \leftarrow \operatorname{res}_{z}\left(C(x, y, z), D\left(x, y, z, d_{k}\right)\right)
$$

[end "if-then-else"];
(b) $\bar{Q}_{k} \leftarrow Q_{k}$;
while $B \mid \bar{Q}_{k}$ do

$$
\operatorname{set} \bar{Q}_{k} \leftarrow \bar{Q}_{k} / B
$$

[end "while"];
if $\operatorname{deg}_{y} \bar{Q}_{k}=0$ then

$$
\text { set } R_{k}(x) \leftarrow \bar{Q}_{k}(x, y)
$$

else
set $R_{k}(x) \leftarrow \operatorname{res}_{y}\left(B, \bar{Q}_{k}\right)$
[end "if-then-else"].
[end "for"].
2. Refine $\left(a_{1}, a_{2}\right)$ to an interval $\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ such that $\left(\alpha, a_{2}^{\prime}\right]$ contains no root of $R_{1}(x)$ or $R_{2}(x)$. [The correctness proof for this algorithm will show that steps 1 and 2 in fact guarantee that B, C and D have no common zeros in $\left[\alpha, a_{2}^{\prime}\right] \times\left[b_{1}, b_{2}\right] \times\left[c_{1}, c_{2}\right] \times$ $\left\{d_{1}, d_{2}\right\}$.]
3. Compute isolating intervals for the real roots $\beta_{1}<\beta_{2}<\cdots<\beta_{N}$ of $B\left(a_{2}^{\prime}, y\right)$ that are contained in $\left(b_{1}, b_{2}\right)$.
4. For $i=1, \ldots, N$ do compute isolating intervals for the N_{i} real roots $\gamma_{i, 1}<$ $\gamma_{i, 2}<\cdots<\gamma_{i, N_{i}}$ of $C\left(a_{2}^{\prime}, \beta_{i}, z\right)$ in $\left(c_{1}, c_{2}\right)$.
5. Set $L \leftarrow$ the null list. For $i=1, \ldots, N$ do for $j=1, \ldots, N_{i}$ do compute the number $N_{i, j}$ of real roots of $D\left(a_{2}^{\prime}, \beta_{i}, \gamma_{i, j}, w\right)$ in $\left(d_{1}, d_{2}\right)$ and, if $N_{i, j}>0$, append the list $\left(i, j, N_{i, j}\right)$ to L.

THEOREM 4.3. The above algorithm is correct.

Proof. We shall show that B, C and D have no common zeros in $\left[\alpha, a_{2}^{\prime}\right] \times\left[b_{1}, b_{2}\right] \times$ $\left[c_{1}, c_{2}\right] \times\left\{d_{1}\right\}$. A symmetric argument will show that B, C and D have no common zeros in $\left[\alpha, a_{2}^{\prime}\right] \times\left[b_{1}, b_{2}\right] \times\left[c_{1}, c_{2}\right] \times\left\{d_{2}\right\}$. Let $D_{1}(x, y, z)=D\left(x, y, z, d_{1}\right)$. First, we show that $Q_{1}(x, y) \neq 0$. Suppose not. In case $\operatorname{deg}_{z} D_{1}=0$, we would have $D_{1}=0$. So, in particular, $D\left(\alpha, \beta, \gamma, d_{1}\right)=0$, contrary to the hypothesis that $\left(d_{1}, d_{2}\right)$ is a strong isolating interval for δ as a root of $D(\alpha, \beta, \gamma, w) \neq 0$. In case $\operatorname{deg}_{z} D_{1}>0$, we would have $\operatorname{res}_{z}\left(C, D_{1}\right)=0$, which would imply $C \mid D_{1}$, since C is irreducible. This would imply $D_{1}(\alpha, \beta, \gamma)=0$, since $C(\alpha, \beta, \gamma)=0$, by hypothesis. Again we have reached a contradiction. The proof that $Q_{1}(x, y) \neq 0$ is complete. We remark that the property $Q_{1} \neq 0$ ensures the termination of the "while" loop in step 1b.
Second, we show that $R_{1}(x) \neq 0$. Suppose not. In case $\operatorname{deg}_{y} \bar{Q}_{1}=0$, we would have $\bar{Q}_{1}=0$, contrary to the property proved above. In case $\operatorname{deg}_{y} \bar{Q}_{1}>0$, we would have $\operatorname{res}_{y}\left(B, \bar{Q}_{1}\right)=0$. This would imply that B is a divisor of \bar{Q}_{1}, since B is irreducible. But this contradicts the property that B is not a divisor of \bar{Q}_{1}, which is the condition for the termination of the "while" loop in step 1 b . The proof that $R_{1}(x) \neq 0$ is complete.

Now $Q_{1}=B^{n} \bar{Q}_{1}$, for some $n \geq 0$, by construction of \bar{Q}_{1}. We observe that $\bar{Q}_{1} \neq 0$ throughout each section of B over ($\left.\alpha, a_{2}^{\prime}\right]$, by construction of a_{2}^{\prime}. So \bar{Q}_{1} is (rather trivially) order-invariant in each such section of B. Moreover B is order-invariant in each of its sections over (α, a_{2}^{\prime}] by input hypothesis 2 b . Therefore, by Lemma A. 3 of McCallum (1988), Q_{1} is order-invariant in each section of B over ($\left.\alpha, a_{2}^{\prime}\right]$.

Suppose that B, C and D_{1} have some common zero $\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ in $\left(\alpha, a_{2}^{\prime}\right] \times\left[b_{1}, b_{2}\right] \times$ [c_{1}, c_{2}]. Then $\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ lies in some section τ of C over some section σ of B over ($\left.\alpha, a_{2}^{\prime}\right]$, by input hypotheses 2 a and 2 d . As shown previously, Q_{1} is order-invariant in σ. Therefore, by Theorem 4.2, D_{1} is sign-invariant in τ. Hence, since D_{1} vanishes at the point ($\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$) of τ, D_{1} vanishes throughout τ. By input hypotheses $2(\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e})$, and Theorem 3.1, in which we take $a_{2}=\alpha^{\prime}, \tau$ is adjacent to (α, β, γ). Therefore, by the closure of the real variety of $D_{1}, D_{1}(\alpha, \beta, \gamma)=0$. This contradicts the hypothesis that $\left(d_{1}, d_{2}\right)$ is a strong isolating interval for δ as a root of $D(\alpha, \beta, \gamma, w) \neq 0$. The proof that B, C and D have no common zeros in $\left(\alpha, a_{2}^{\prime}\right] \times\left[b_{1}, b_{2}\right] \times\left[c_{1}, c_{2}\right] \times\left\{d_{1}\right\}$ is complete.

Output condition 1 has almost been completely established. It remains to show that $B(\alpha, y), C(\alpha, y, z)$ and $D_{1}(\alpha, y, z)$ have no common zeros in $\left[b_{1}, b_{2}\right] \times\left[c_{1}, c_{2}\right]$. This is so because $B\left(\alpha, \beta^{\prime}\right) \neq 0$ for every $\beta^{\prime} \in\left[b_{1}, b_{2}\right]$ with $\beta^{\prime} \neq \beta, C\left(\alpha, \beta, \gamma^{\prime}\right) \neq 0$ for every
$\gamma^{\prime} \in\left[c_{1}, c_{2}\right]$ with $\gamma^{\prime} \neq \gamma$, and $D_{1}(\alpha, \beta, \gamma) \neq 0$ (since $\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right)$ and $\left(d_{1}, d_{2}\right)$ are strong isolating intervals for β, γ and δ, respectively).

Output condition 2 can be proved by exhibiting, for each i in range $1 \leq i \leq N$ and each j in range $1 \leq j \leq N_{i}$, a one-to-one correspondence between the real roots of $D\left(a_{2}^{\prime}, \beta_{i}, \gamma_{i, j}, w\right)$ in $\left(d_{1}, d_{2}\right)$ and the sections of D over $\tau_{i, j}$ that are adjacent to $(\alpha, \beta, \gamma, \delta)$. The proof is a straightforward application of Theorem 4.1, and is analogous to the proof of output condition 2 of the algorithm of Section 3 .

As already mentioned in the previous section, the following section will present an n-space algorithm for algebraic polynomials. The algorithm above, however, will be much more efficient for the numerous adjacency computations in 4 -space involving only irreducible integral polynomials.

We observed in Section 3 the considerable complexity of computing all cell adjacencies in three-space. A comparable treatment of all cell adjacencies in four-space is therefore beyond the scope of this paper, as the complexity of this task in four-space would certainly be considerably greater. It is reasonable to expect, however, that consideration of all the required cases, would show how to reduce this to applications of the algorithms of Sections 2 and 3, the above algorithm, and the n-space algorithm of the following section for $n=3$.

5. A Local Box Adjacency Algorithm for n-Space

Let $A_{1}\left(x_{1}\right), A_{2}\left(x_{1}, x_{2}\right), \ldots, A_{n}\left(x_{1}, \ldots, x_{n}\right)$ be irreducible integral polynomials of positive degrees in their main variables. Let $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be a point of \mathbf{R}^{n} for which

$$
A_{1}\left(\alpha_{1}\right)=A_{2}\left(\alpha_{1}, \alpha_{2}\right)=\cdots=A_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0
$$

and suppose that $A_{2}\left(\alpha_{1}, x_{2}\right), \ldots, A_{n}\left(\alpha_{1}, \ldots, \alpha_{n-1}, x_{n}\right)$ are all non-zero polynomials. We shall present in this section a local box adjacency algorithm whose output can be described as follows. Let σ_{2} be a section of A_{2} over (α_{1}, b_{1}] adjacent to (α_{1}, α_{2}) and, for $3 \leq i<n$, let σ_{i} be a section of A_{i} over σ_{i-1} which is adjacent to $\left(\alpha_{1}, \ldots, \alpha_{i}\right)$. The algorithm's output comprises, for every such sequence of sections $\sigma_{2}, \ldots, \sigma_{n-1}$, the number of sections of A_{n} over σ_{n-1} which are adjacent to $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

As in the previous sections, we begin with a theorem, which provides the basis for our cell adjacency algorithm.

Theorem 5.1. Let $n \geq 2$. Let $A_{1}\left(x_{1}\right), A_{2}\left(x_{1}, x_{2}\right), \ldots, A_{n}\left(x_{1}, \ldots, x_{n}\right)$ be real polynomials of positive degrees in their main variables. Let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)$ be strong open isolating intervals for roots α_{1} of $A_{1}\left(x_{1}\right), \alpha_{2}$ of $A_{2}\left(\alpha_{1}, x_{2}\right) \neq 0, \ldots, \alpha_{n}$ of $A_{n}\left(\alpha_{1}, \ldots, \alpha_{n-1}, x_{n}\right) \neq 0$, respectively. Suppose that, for $2 \leq i \leq n$, the polynomials $A_{2}, A_{3}, \ldots, A_{i}$ have no common zeros in $\left[\alpha_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{i-1}, b_{i-1}\right] \times\left\{a_{i}, b_{i}\right\}$. Suppose that A_{2} is delineable over $\left(\alpha_{1}, b_{1}\right]$ and let σ_{2} be a section of A_{2} over $\left(\alpha_{1}, b_{1}\right]$. For $3 \leq i \leq n$, suppose that A_{i} is delineable over σ_{i-1} and let σ_{i} be a section of A_{i} over σ_{i-1}. Then σ_{n} is adjacent to $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ if and only if σ_{n} and $\left\{b_{1}\right\} \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ have non-empty intersection.

Proof. The theorem is proved by induction on n. The induction base (that is, the case $n=2$) is Theorem 2.2, proved in Section 2. Let $n>2$. Assume as the induction
hypothesis that the assertion to be proved holds with n replaced by $n-1$. We must now establish the truth of the assertion, making use of the induction hypothesis. The section σ_{2} determines a continuous function $x_{2}=f_{2}\left(x_{1}\right)$ on (α_{1}, b_{1}]. Likewise, for $3 \leq i \leq n, \sigma_{i}$ determines a continuous function $f_{i}\left(x_{1}, \ldots, x_{i-1}\right)$ on σ_{i-1}. For $2 \leq i \leq n$ we define $h_{i}\left(x_{1}\right)=f_{i}\left(x_{1}, h_{2}\left(x_{1}\right), \ldots, h_{i-1}\left(x_{1}\right)\right)$, for $x_{1} \in\left(\alpha_{1}, b_{1}\right]$. Then, for $2 \leq i \leq n, h_{i}$ is continuous.
First, assume that σ_{n} is adjacent to $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. By Theorem 2.1, $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a limit point of σ_{n}. Therefore $\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)$ is a limit point of σ_{n-1}, hence adjacent to σ_{n-1} by Theorem 2.1. By the induction hypothesis, σ_{n-1} and $\left\{b_{1}\right\} \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n-1}, b_{n-1}\right]$ have non-empty intersection. That is, for $2 \leq i \leq n-1, h_{i}\left(b_{1}\right) \in\left[a_{i}, b_{i}\right]$. Since $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a limit point of σ_{n}, there is a point $\left(\alpha_{1}^{\prime}, \ldots, \alpha_{n}^{\prime}\right)$ of σ_{n} in the interior of the box $\left[\alpha_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ (with $\alpha_{i}^{\prime}=h_{i}\left(\alpha_{1}^{\prime}\right)$, for $\left.2 \leq i \leq n\right)$. We claim that $h_{n}\left(b_{1}\right) \in\left(a_{n}, b_{n}\right)$. Suppose that this is not the case. Then, by continuity of h_{n}, there exists $x \in\left(\alpha_{1}, b_{1}\right]$ such that $h_{n}(x)=a_{n}$ or $h_{n}(x)=b_{n}$. Now by the induction hypothesis, in which we take $b_{1}=x, \sigma_{n-1}$ and $\{x\} \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n-1}, b_{n-1}\right]$ have non-empty intersection. That is, for $2 \leq i \leq n-1, h_{i}(x) \in\left[a_{i}, b_{i}\right]$. Thus $\left(x, h_{2}(x), \ldots, h_{n}(x)\right)$ is a common zero of A_{2}, \ldots, A_{n} in $\left[\alpha_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n-1}, b_{n-1}\right] \times\left\{a_{n}, b_{n}\right\}$, contrary to an hypothesis. The claim is proved. We have shown that $\left(b_{1}, h_{2}\left(b_{1}\right), \ldots, h_{n}\left(b_{1}\right)\right)$ is an element of $\left\{b_{1}\right\} \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$, so σ_{n} and $\left\{b_{1}\right\} \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ have non-empty intersection.

To prove the converse, assume that σ_{n} and $\left\{b_{1}\right\} \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ have non-empty intersection. That is, for $2 \leq i \leq n, h_{i}\left(b_{1}\right) \in\left[a_{i}, b_{i}\right]$. Then σ_{n-1} and $\left\{b_{1}\right\} \times\left[a_{2}, b_{2}\right] \times$ $\cdots \times\left[a_{n-1}, b_{n-1}\right]$ have non-empty intersection, so σ_{n-1} is adjacent to $\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)$, by the induction hypothesis. Let $x^{\prime} \in\left(\alpha_{1}, b_{1}\right]$. By the induction hypothesis, in which we take $b_{1}=x^{\prime}, \sigma_{n-1}$ and $\left\{x^{\prime}\right\} \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n-1}, b_{n-1}\right]$ have non-empty intersection. That is, for $2 \leq i \leq n-1, h_{i}\left(x^{\prime}\right) \in\left[a_{i}, b_{i}\right]$. We claim that $h_{n}\left(x^{\prime}\right) \in\left(a_{n}, b_{n}\right)$. For if this were not the case then by continuity of h_{n} there would exist $x \in\left(\alpha_{1}, b_{1}\right]$ such that either $h_{n}(x)=a_{n}$ of $h_{n}(x)=b_{n}$. So $\left(x, h_{2}(x), \ldots, h_{n}(x)\right)$ would be a common zero of A_{2}, \ldots, A_{n} in $\left[\alpha_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n-1}, b_{n-1}\right] \times\left\{a_{n}, b_{n}\right\}$, contrary to an hypothesis. It follows from what we have established that

$$
\sigma_{n} \subset\left(\alpha_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right]
$$

By this relation, the observation noted above that σ_{n-1} is adjacent to ($\alpha_{1}, \ldots, \alpha_{n-1}$) and the compactness of the subset $\left\{\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)\right\} \times\left[a_{n}, b_{n}\right]$ of \mathbf{R}^{n} (Munkres, 1975), σ_{n} has a limit point $\left(\alpha_{1}, \ldots, \alpha_{n-1}, \alpha_{n}^{\prime}\right)$ in $\left\{\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)\right\} \times\left[a_{n}, b_{n}\right]$. By the closure of the real variety of $A_{n}, A_{n}\left(\alpha_{1}, \ldots, \alpha_{n-1}, \alpha_{n}^{\prime}\right)=0$. But α_{n} is the unique root of $A_{n}\left(\alpha_{1}, \ldots, \alpha_{n-1}, x_{n}\right)$ in $\left[a_{n}, b_{n}\right]$, by an hypothesis. Hence $\alpha_{n}^{\prime}=\alpha_{n}$. By Theorem 2.1, σ_{n} is adjacent to $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

We now describe our n-space local adjacency algorithm based upon Theorem 5.1. The inputs and outputs for the algorithm make sense in the context of cad computation in \mathbf{R}^{n}. The algorithm inputs $A_{1}\left(x_{1}\right), \ldots, A_{n}\left(x_{1}, \ldots, x_{n}\right)$ are required to be algebraic polynomials, by which we mean polynomials with coefficients in some algebraic number field. The requirement on inputs 2 b is fulfilled by the theory of cad construction. The requirement 2 a could be fulfilled by successive application of the algorithm for dimensions $n=2,3, \ldots, n-1$.

Local box adjacency algorithm in \mathbf{R}^{n}

Inputs:

1. $A_{1}\left(x_{1}\right), A_{2}\left(x_{1}, x_{2}\right), \ldots, A_{n}\left(x_{1}, \ldots, x_{n}\right)$: algebraic polynomials of positive degrees in $x_{1}, x_{2}, \ldots, x_{n}$, respectively, where $n \geq 2$.
2. $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)$: strong open isolating intervals with rational endpoints for roots α_{1} of $A_{1}\left(x_{1}\right), \alpha_{2}$ of $A_{2}\left(\alpha_{1}, x_{2}\right) \neq 0, \ldots, \alpha_{n}$ of $A_{n}\left(\alpha_{1}, \ldots, \alpha_{n-1}, x_{n}\right) \neq 0$, respectively, such that:
(a) for $2 \leq i \leq n-1, A_{2}, \ldots, A_{i}$ have no common zeros in $\left[\alpha_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times$ $\left[a_{i-1}, b_{i-1}\right] \times\left\{a_{i}, b_{i}\right\}$, and
(b) A_{2} is delineable over $\left(\alpha_{1}, b_{1}\right]$ and, for $3 \leq i \leq n, A_{i}$ is delineable over each section of A_{i-1} over \ldots over each section of A_{2} over (α_{1}, b_{1}].

Outputs:

either "failure" or both 1 and 2 described as follows:

1. $\left(a_{1}^{\prime}, b_{1}^{\prime}\right)$: a subinterval of $\left(a_{1}, b_{1}\right)$ with rational endpoints and containing α such that A_{2}, \ldots, A_{n} have no common zeros in $\left[\alpha_{1}, b_{1}^{\prime}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n-1}, b_{n-1}\right] \times\left\{a_{n}, b_{n}\right\}$.
2. L : a list of all sequences $\left(i_{2}, \ldots, i_{n-1}, N\right)$ such that, with σ_{1} denoting $\left(\alpha_{1}, b_{1}\right]$, we have for $2 \leq j \leq n-1, A_{j}$ has at least i_{j} sections over σ_{j-1} adjacent to $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{j}\right)$, with σ_{j} denoting the i_{j} th such section; and $N>0$ is the number of sections of A_{n} over σ_{n-1} which are adjacent to $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Steps:

1. The goal of the first two steps is to refine the interval $\left(a_{1}, b_{1}\right)$ to an interval $\left(a_{1}^{\prime}, b_{1}^{\prime}\right)$ such that A_{2}, \ldots, A_{n} have no common zeros in $\left[\alpha_{1}, b_{1}^{\prime}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n-1}, b_{n-1}\right] \times$ $\left\{a_{n}, b_{n}\right\}$. First, carry out the following loop:

$$
\begin{aligned}
& \text { set } i \leftarrow n-1 ; \\
& \text { set success } \leftarrow \text { true; } \\
& \text { set } R \leftarrow A_{n}\left(x_{1}, \ldots, x_{n-1}, a_{n}\right) ; \\
& \text { while } i \geq 2 \text { and success do } \\
& \qquad \text { set } R \leftarrow \operatorname{res}_{x_{i}}\left(A_{i}, R\right) ; \\
& \quad \text { if } R=0 \text { then } \\
& \quad \text { set success } \leftarrow \text { false; } \\
& \quad \text { set } i \leftarrow i-1 ; \\
& \text { if success }=\text { false then } \\
& \quad \text { report "failure" and exit; }
\end{aligned}
$$

2. Refine $\left(a_{1}, b_{1}\right)$ to an interval $\left(a_{1}^{\prime}, b_{1}^{\prime}\right)$ such that $\left(\alpha_{1}, b_{1}^{\prime}\right]$ contains no root of $R\left(x_{1}\right)$. [The correctness proof for this algorithm will show that steps 1 and 2 guarantee that A_{2}, \ldots, A_{n} have no common zeros in $\left.\left[\alpha_{1}, b_{1}^{\prime}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n-1}, b_{n-1}\right] \times\left\{a_{n}\right\}.\right]$ Steps 1 and 2 must be repeated exactly once, with " a_{n} " replaced by " b_{n} ". Before repeating step 2 set $b_{1} \leftarrow b_{1}^{\prime}$.
3. Set $L \leftarrow()$. Set $\beta_{1} \leftarrow b_{1}^{\prime}$. Set $T \leftarrow$ a tree with one node β_{1}. Compute isolating intervals for the real roots $\gamma_{1}<\gamma_{2}<\cdots<\gamma_{N}$ of $A_{2}\left(\beta_{1}, x_{2}\right)$ which are contained in $\left(a_{2}, b_{2}\right)$. Store in T as the children of the root every γ_{k}. If $N>0$ then set $L \leftarrow((N))$.
4. For $l=2, \ldots, n-1$ do
set $L^{\prime} \leftarrow()$;
while $L \neq()$ do
set $\lambda \leftarrow$ the first element of L;
[λ is a sequence of the form $\left(i_{2}, \ldots, i_{l-1}, N\right)$]
remove the first element from L;
for $j=2, \ldots, l-1$ do
set $\beta_{j} \leftarrow$ the i_{j} th real root of $A_{j}\left(\beta_{1}, \ldots, \beta_{j-1}, x_{j}\right)$ in $\left(a_{j}, b_{j}\right)$, previously stored in T;
for $i=1, \ldots, N$ do
set $\beta_{l} \leftarrow$ the i th real root of $A_{l}\left(\beta_{1}, \ldots, \beta_{l-1}, x_{l}\right)$ in $\left(a_{l}, b_{l}\right)$, previously stored in T;
compute isolating intervals for the real roots $\gamma_{1}<\gamma_{2}<\cdots<\gamma_{N^{\prime}}$ of $A_{l+1}\left(\beta_{1}, \ldots, \beta_{l}, x_{l+1}\right)$ in $\left(a_{l+1}, b_{l+1}\right)$;
store in T as the children of the node containing β_{l} every γ_{k};
if $N^{\prime}>0$ then

$$
\text { append }\left(i_{2}, \ldots, i_{l-1}, i, N^{\prime}\right) \text { to } L^{\prime} ;
$$

set $L \leftarrow L^{\prime}$;
5. Return b_{1}^{\prime} and L.

Theorem 5.2. The above algorithm is correct.

Proof. We shall show that, if the algorithm does not report failure, then A_{2}, \ldots, A_{n} have no common zeros in $\left[\alpha_{1}, b_{1}^{\prime}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n-1}, b_{n-1}\right] \times\left\{a_{n}\right\}$. A symmetric argument will show that, if failure is not reported, then A_{2}, \ldots, A_{n} have no common zeros in $\left[\alpha_{1}, b_{1}^{\prime}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n-1}, b_{n-1}\right] \times\left\{b_{n}\right\}$. Assume that failure is not reported. Then step 1 successively computes a sequence of non-zero polynomials $R_{n-1}\left(x_{1}, \ldots, x_{n-1}\right), \ldots$, $R_{1}\left(x_{1}\right)$, which are the successive values of the program variable R.

Now step 2 ensures that $R_{1}\left(x_{1}\right)$ has no root in $\left(\alpha_{1}, b_{1}^{\prime}\right]$. Assume that there is some common zero $\left(\beta_{1}, \ldots, \beta_{n}\right)$ of the polynomials A_{2}, \ldots, A_{n} in $\left(\alpha_{1}, b_{1}^{\prime}\right] \times \mathbf{R} \times \cdots \times \mathbf{R} \times\left\{a_{n}\right\}$. Then, for $2 \leq i \leq n-1, A_{i}\left(\beta_{1}, \ldots, \beta_{i}\right)=0$, and $R_{n-1}\left(\beta_{1}, \ldots, \beta_{n-1}\right)=0$. Therefore, for $i=n-2, n-3, \ldots, 1, R_{i}\left(\beta_{1}, \ldots, \beta_{i}\right)=0$, by Theorem 5 of Collins (1971). In particular, $R_{1}\left(\beta_{1}\right)=0$. But $\beta_{1} \in\left(\alpha_{1}, b_{1}^{\prime}\right]$, contradicting the property that ($\left.\alpha_{1}, b_{1}^{\prime}\right]$ contains no root of $R_{1}\left(x_{1}\right)$. We conclude that A_{2}, \ldots, A_{n} have no common zeros in $\left(\alpha_{1}, b_{1}^{\prime}\right] \times \mathbf{R} \times \cdots \times \mathbf{R} \times\left\{a_{n}\right\}$, hence in $\left[\alpha_{1}, b_{1}^{\prime}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n-1}, b_{n-1}\right] \times\left\{a_{n}\right\}$.

It remains to show that A_{2}, \ldots, A_{n} have no common zeros in $\left\{\alpha_{1}\right\} \times\left[a_{2}, b_{2}\right] \times \cdots \times$ $\left[a_{n-1}, b_{n-1}\right] \times\left\{a_{n}\right\}$. Assume that there is some common zero $\left(\beta_{1}, \ldots, \beta_{n}\right)$ of A_{2}, \ldots, A_{n} in
$\left\{\alpha_{1}\right\} \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n-1}, b_{n-1}\right] \times\left\{a_{n}\right\}$. Then, for $2 \leq i \leq n-1, A_{i}\left(\alpha_{1}, \beta_{2}, \ldots, \beta_{i}\right)=0$. Hence, for $i=2,3, \ldots, n-1, \beta_{i}=\alpha_{i}$, because $\left(a_{i}, b_{i}\right)$ is a strong isolating interval for α_{i} as a root of $A_{i}\left(\alpha_{1}, \ldots, \alpha_{i-1}, x_{i}\right) \neq 0$. Therefore $A_{n}\left(\alpha_{1}, \ldots, \alpha_{n-1}, a_{n}\right)=0$, contrary to the hypothesis that $\left(a_{n}, b_{n}\right)$ is a strong isolating interval for α_{n} as a root of $A_{n}\left(\alpha_{1}, \ldots, \alpha_{n-1}, x_{n}\right) \neq 0$. We conclude that $\left\{\alpha_{1}\right\} \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n-1}, b_{n-1}\right] \times\left\{a_{n}\right\}$ contains no common zeros of A_{2}, \ldots, A_{n}. The proof that A_{2}, \ldots, A_{n} have no common zeros in $\left[\alpha_{1}, b_{1}^{\prime}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n-1}, b_{n-1}\right] \times\left\{a_{n}\right\}$ is complete.
In order to prove that the algorithm correctly delivers a list L according to the specification stated as output assertion 2, we need to consider the following assertion, which we will denote by I. It will be shown that I is an invariant of the main loop of step 4 .
$\quad l \geq 2 ; T$ is a tree of algebraic numbers such that T has root $\beta_{1}=b_{1}^{\prime}$ and T has
height at most $l ; L$ is a list of $(l-1)$-tuples such that $\left(i_{2}, \ldots, i_{l-1}, N\right)$ belongs to
L if and only if, with σ_{1} denoting $\left(\alpha_{1}, b_{1}\right]$, there exists a path $\beta_{1}, \ldots, \beta_{l-1}$ in T
such that:
for $2 \leq j \leq l-1, A_{j}$ has at least i_{j} sections over σ_{j-1} adjacent to $\left(\alpha_{1}, \ldots, \alpha_{j}\right)$,
with σ_{j} denoting the i_{j} th such section, β_{j} is the i_{j} th real root of $A_{j}\left(\beta_{1}, \ldots, \beta_{j-1}\right.$,
$\left.x_{j}\right)$ in $\left(a_{j}, b_{j}\right)$, and the point $\left(\beta_{1}, \ldots, \beta_{j}\right)$ belongs to $\sigma_{j} ; N>0$ is the number of
sections of A_{l} over σ_{l-1} which are adjacent to $\left(\alpha_{1}, \ldots, \alpha_{l}\right)$, the children of β_{l-1}
are the N real roots of $A_{l}\left(\beta_{1}, \ldots, \beta_{l-1}, x_{l}\right)$ in $\left(a_{l}, b_{l}\right) ;$ for $1 \leq i \leq N$, if β_{l} denotes
the i th child of β_{l-1} and σ_{l} denotes the i th section of A_{l} over σ_{l-1} adjacent to
$\left(\alpha_{1}, \ldots, \alpha_{l}\right)$, then $\left(\beta_{1}, \ldots, \beta_{l}\right) \in \sigma_{l}$.

Assertion I is established by step 3, if the reader allows the first statement of step 4, namely the assignment of 2 to the variable l, to be considered as part of step 3. [That N is equal to the number of sections of A_{2} over σ_{1} which are adjacent to $\left(\alpha_{1}, \alpha_{2}\right)$ is proved by exhibiting a bijection ϕ between the set of sections of A_{2} over σ_{1} adjacent to (α_{1}, α_{2}) and the set of real roots of $A_{2}\left(\beta_{1}, x_{2}\right)$ in $\left(a_{2}, b_{2}\right)$. The mapping ϕ is defined and proved bijective by analogy with the definition and proof of bijectivity of the mapping ϕ in the proof of Theorem 2.3.]
Let us now show that our assertion I is indeed an invariant of the outermost loop ("for $l=2, \ldots, n-1$ do $\ldots "$) of step 4. Assume that I is true prior to an iteration of this outermost loop. The "while" loop ("while $L \neq()$ do ...") processes every element of L, in turn. Let us consider what happens for a typical element $\left(i_{2}, \ldots, i_{l-1}, N\right)$ of L. By the assertion I, there is a path $\beta_{1}, \ldots, \beta_{l-1}$ in T such that, for $2 \leq j \leq l-1, \beta_{j}$ is the i_{j} th real root of $A_{j}\left(\beta_{1}, \ldots, \beta_{j-1}, x_{j}\right)$ in $\left(a_{j}, b_{j}\right)$. So the first "for" loop ("for $j=2, \ldots, l-1$ do ...") works correctly.

Let $1 \leq i \leq N$, let β_{l} be the i th child of β_{l-1} and let σ_{l} be the i th section of A_{l} over σ_{l-1} adjacent to $\left(\alpha_{1}, \ldots, \alpha_{l}\right)$. [Note that β_{l} and σ_{l} are well defined, by the assertion I.] We compute isolating intervals for the real roots $\gamma_{1}<\cdots<\gamma_{N^{\prime}}$ of $A_{l+1}\left(\beta_{1}, \ldots, \beta_{l}, x_{l+1}\right)$ in $\left(a_{l+1}, b_{l+1}\right)$. We must prove that A_{l+1} has N^{\prime} sections over σ_{l} which are adjacent to $\left(\alpha_{1}, \ldots, \alpha_{l+1}\right)$. We shall do this by exhibiting a bijection ϕ from the set of sections of A_{l+1} over σ_{l} adjacent to $\left(\alpha_{1}, \ldots, \alpha_{l+1}\right)$ to the set of real roots of $A_{l+1}\left(\beta_{1}, \ldots, \beta_{l}, x_{l+1}\right)$ in $\left(a_{l+1}, b_{l+1}\right)$.

Let σ_{l+1} be a section of A_{l+1} over σ_{l} which is adjacent to $\left(\alpha_{1}, \ldots, \alpha_{l+1}\right)$. By Theorem 5.1, in which we take $n=l+1$ and $b_{1}=\beta_{1}\left(=b_{1}^{\prime}\right), \sigma_{l+1}$ and $\left\{\beta_{1}\right\} \times\left[a_{2}, b_{2}\right] \times$ $\cdots \times\left[a_{l+1}, b_{l+1}\right]$ have non-empty intersection. That is, there is a point $\left(\beta_{1}, \beta_{2}^{\prime}, \ldots, \beta_{l+1}^{\prime}\right)$ of σ_{l+1} such that $\beta_{j}^{\prime} \in\left[a_{j}, b_{j}\right]$, for all j in the range $2 \leq j \leq l+1$. It follows from the assertion I that $\beta_{j}^{\prime}=\beta_{j}$, for all $j, 2 \leq j \leq l+1$. Therefore $\beta_{l+1}^{\prime} \in\left(a_{l+1}, b_{l+1}\right)$. We
define $\phi\left(\sigma_{l+1}\right)=\beta_{l+1}^{\prime}$. Now ϕ is a one-to-one mapping since A_{l+1} is delineable over σ_{l}, by hypothesis.
Let β_{l+1}^{\prime} be a real root of $A_{l+1}\left(\beta_{1}, \ldots, \beta_{l}, x_{l+1}\right)$ in $\left(a_{l+1}, b_{l+1}\right)$. Then the point $\left(\beta_{1}, \ldots, \beta_{l}\right)$ lies in σ_{l}, by assertion I, and hence the point $\left(\beta_{1}, \ldots, \beta_{l}, \beta_{l+1}^{\prime}\right)$ lies in some section σ_{l+1} of A_{l+1} over σ_{l}. By Theorem 5.1, in which we take $n=l+1$ and $b_{1}=\beta_{1}\left(=b_{1}^{\prime}\right)$, σ_{l+1} is adjacent to $\left(\alpha_{1}, \ldots, \alpha_{l+1}\right)$. Clearly $\phi\left(\sigma_{l+1}\right)=\beta_{l+1}^{\prime}$. We have shown that ϕ is also an onto mapping, completing the proof of bijectivity of ϕ, and of the assertion that A_{l+1} has N^{\prime} sections over σ_{l} which are adjacent to $\left(\alpha_{1}, \ldots, \alpha_{l+1}\right)$.

Therefore, the "for" loop ("for $i=1, \ldots, N$ do \ldots ") extends T and L^{\prime} in precisely the manner required so that, when every element of L has been processed, the assertion I will be valid, with $l+1$ in place of l and L^{\prime} in place of L. Since the last two actions of the outermost loop body set L equal to L^{\prime} and (effectively) l equal to $l+1$, the truth of assertion I is restored at the end of the loop iteration being considered.

We have shown that assertion I is established by step 3, and is preserved by each iteration of the main loop of step 4. Hence I is true upon termination of step 4, at which point $l=n$. The required assertion about L can now be read off from part of the invariant assertion I (in which we put $l=n$).

We can give an intuitive argument that this algorithm is unlikely to fail. It suffices to argue that none of the resultants computed in Step 1 of the algorithm is likely to be zero. Let us call these successive resultants $R_{n-2}, R_{n-3}, \ldots, R_{1} . A_{n-1}$ has only a finite number of irreducible factors. There is no relation between A_{n} and A_{n-1} that would lead one to expect that one of these irreducible factors would also be a factor of $A\left(x_{1}, \ldots, x_{n-1}, a_{n}\right)$, and thus R_{n-2} is unlikely to be zero. (A_{n-1} might be a factor of the discriminant of A_{n}, or a factor of the resultant of A_{n} with some other polynomial, but there is no reason to expect that this would lead to a common factor after the rational number a_{n} has been substituted for x_{n} in A_{n}.) Continuing, there is similarly no reason to expect that A_{n-2} and R_{n-2} would have a common factor. The argument is the same for $n-3, \ldots, 1$.
In spite of the probabilities, the algorithm might fail. But then there is an easy remedy: simply change the isolating interval $\left[a_{n}, b_{n}\right]$, for example, by refining the interval.

Acknowledgements

A significant portion of the research for this paper was undertaken while the first author was a visiting Research Associate Professor in the Department of Computer and Information Sciences at the University of Delaware in the first half of 1998. He was supported by NSF Grant CCR-9712246 during this stay. The second author was supported in part during this visit by the same NSF Grant. Revision and extension of the paper was carried out while the second author was a Visiting Scholar at Macquarie University in February 2001. He was supported by a Macquarie University Research Grant during that visit. The authors would like to thank Ross Moore for constructing the three figures in this paper. The authors would also like to thank the referees for their helpful comments.

References

Arnon, D. S. (1988). A cluster-based cylindrical algebraic decomposition algorithm. J. Symb. Comput., 5, 189-212.
Arnon, D. S., Collins, G. E., McCallum, S. (1984a). Cylindrical algebraic decomposition I: the basic algorithm. SIAM J. Comput., 13, 865-877.

Arnon, D. S., Collins, G. E., McCallum, S. (1984b). Cylindrical algebraic decomposition II: an adjacency algorithm for the plane. SIAM J. Comput., 13, 878-889.
Arnon, D. S., Collins, G. E., McCallum, S. (1988). An adjacency algorithm for cylindrical algebraic decompositions of three-dimensional space. J. Symb. Comput., 5, 163-187.
Collins, G. E. (1971). The calculation of multivariate polynomial resultants. J. ACM, 18, 515-532.
Collins, G. E., McCallum, S. (1995). Adjacency algorithms for cylindrical algebraic decompositions of three and higher dimensional space I: adjacencies over a non-nullifying $\{0,1\}$ adjacency. Technical Report No. C/TR95-02, Department of Computing, School of MPCE, Macquarie University.
McCallum, S. (1988). An improved projection operation for cylindrical algebraic decomposition of threedimensional space. J. Symb. Comput., 5, 141-161.
McCallum, S. (1997). A computer algebra approach to path finding in the plane. In Harland, J. ed. Proceedings of Computing: The Australasian Theory Symposium (CATS'97), pp. 44-50.
McCallum, S. (1998). An improved projection operation for cylindrical algebraic decomposition. In Caviness, B. F., Johnson, J. R. eds, Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 242-268. Vienna, Springer-Verlag.
McCallum, S. (1999). On projection in CAD-based quantifier elimination with equational constraint. In Dooley, S. ed., Proceedings of 1999 International Symposium on Symbolic and Algebraic Computation (ISSAC'99), pp. 145-149. New York, ACM Press.
Munkres, J. (1975). Topology - A First Course. Englewood Cliffs, NJ, Prentice-Hall.
Schwartz, J., Sharir, M. (1983). On the 'piano movers' problem II. General techniques for computing topological properties of real algebraic manifolds. Adv. Appl. Math., 4, 298-351.

[^0]: §E-mail: scott@ics.mq.edu.au
 ${ }^{\top}$ E-mail: collins@cis.udel.edu
 $0747-7171 / 02 / 030321+22 \quad \$ 35.00 / 0$

