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We describe new algorithms for determining the adjacencies between zero-dimensional
cells and those one-dimensional cells that are sections (not sectors) in cylindrical alge-

braic decompositions (cad). Such adjacencies constitute a basis for determining all other

cell adjacencies. Our new algorithms are local, being applicable to a specified 0D cell
and the 1D cells described by specified polynomials. Particularly efficient algorithms are

given for the 0D cells in spaces of dimensions two, three and four. Then an algorithm is

given for a space of arbitrary dimension. This algorithm may on occasion report failure,
but it can then be repeated with a modified isolating interval and a likelihood of success.

c© 2002 Elsevier Science Ltd

1. Introduction

The basic theory of, and terminology about, cylindrical algebraic decomposition (cad)
can be found in Arnon et al. (1984a). The cad algorithm in its original formulation did
not produce information concerning the adjacency relation on the set of cells comprising
a cad. However it was realized that such cell adjacency information would be essential for
certain applications of cads. A particularly important potential application is that of path
planning, discussed in an early paper (Schwartz and Sharir, 1983). A more recent attempt
at realization of path planning using cad in a simple case is discussed in McCallum
(1997). Another possible application, that of clustering cells into maximal sign-invariant
connected sets for the purpose of aiding in the cad computation process itself, was pursued
in Arnon (1988).

Let A be a set of bivariate irreducible integral polynomials. Arnon et al. (1984b)
presented an algorithm which, given such a set A of bivariate polynomials, constructs
an A-invariant cad of the plane, and determines all pairs of adjacent cells in that cad.
The algorithm of Arnon et al. (1984b) determines which sections are adjacent to a given
0-cell c0 in the plane by analyzing the sides of a suitable box constructed around c0. For
this reason we call the adjacency algorithm of Arnon et al. (1984b) the “box algorithm”
in the plane.

Now let A be a set of trivariate irreducible integral polynomials. Arnon et al. (1988)
presented an algorithm which, given such a set A of trivariate polynomials, constructs an
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A-invariant cad of three-space having the so-called boundary property, and determines
all pairs of adjacent cells in that cad.

Collins and McCallum (1995) described an algorithm for determining in a cad of R3

the section–section interstack adjacencies over a given adjacency in the induced cad
of the plane. The algorithm is called a “box algorithm” for three-space. A somewhat
informal extension to four-dimensional space of the box algorithm for three-space was
also presented. The box algorithm for four-space uses a subalgorithm called the “real
projection algorithm”.

We were motivated by some concerns about the efficiency of the real projection subal-
gorithm of Collins and McCallum (1995) to seek another approach to adjacency deter-
mination which might avoid the need for this subalgorithm. The present paper contains
descriptions of, and correctness proofs for, new box algorithms for two-, three- and four-
dimensional spaces which do not require the real projection algorithm. These new algo-
rithms are local, being applicable to a specified 0-cell and the 1D sections determined by
specified polynomials. This could be computationally advantageous, as we shall indicate
in the next section.

In the final section of this paper we present a local box adjacency algorithm for n-space,
where n is arbitrary. Moreover, this algorithm permits the input polynomials to have
coefficients from an algebraic number field, unlike the three- and four-space adjacency
algorithms, which require the input polynomials to be irreducible integral polynomials.
In Section 3.2 we summarize how to find all cell adjacencies in a cad of 3-space using
our box algorithms. This summary reveals that to find all cell adjacencies in n-space
for n ≥ 3 will require algorithms allowing algebraic polynomials as inputs. Our n-space
algorithm is fallible in the sense that it may occasionally report failure, but it can then
be reapplied with a high probability of success.

2. A Local Box Adjacency Algorithm for the Plane

The box adjacency algorithm for the plane presented by Arnon et al. (1984b) is sat-
isfactory, but is not an explicitly local algorithm. In this section we formulate a local
version of the box algorithm of Arnon et al. (1984b). Our motivation for doing so is to
provide a foundation upon which our presentation of the local box adjacency algorithms
for higher dimensional spaces will be based. This section could also serve as a helpful
review for the reader of the basic idea of cell adjacency computation in the plane.

The following theorem will be applied repeatedly in this paper.

Theorem 2.1. Let R∗ denote the two-point compactification of R. Let c be a cell in a
cad of Rn and let p be a point in (R∗)n that does not belong to c. Then p is a limit point
of c if and only if p is adjacent to c.

Proof. Recall that by definition p is adjacent to c if and only if {p} ∪ c is connected,
and that all cells in a cad are connected sets. Let C = p ∪ c. Assume that p is a limit
point of c. If p is not adjacent to c then C is not connected, so there exist open sets,
O1 and O2 such that O1 ∩ C and O1 ∩ C are non-empty disjoint sets whose union is
C. We may assume that p ∈ O1 ∩ C. But since p is a limit point of c, O1 also contains
points of c. Therefore O1 ∩C also contains points of c. Now O1 −{p} is an open set and
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(O1−{p})∩c is non-empty, so (O1−{p})∩c and O2∩c = O2∩C are non-empty disjoint
sets whose union is c, contradicting the connectedness of c.

Next assume that p is not a limit point of c. Let ε be a positive real number such that
the ball of radius ε centered at p contains no point of c. Let O1 be the ball of radius ε/2
centered at p, and let O2 be the set of all points less than ε/2 from some point of c. Then
O1 and O2 are non-empty disjoint open sets containing p and c, respectively, so c ∪ {p}
is not connected. 2

Now we are ready to state a theorem, which is strongly suggestive of our method for
cell adjacency determination in the plane. We will use the notion of a strong isolating
interval for a root α of a real polynomial A(x): this is an isolating interval for α whose
closure is also an isolating interval for α.

Theorem 2.2. Let A(x) and B(x, y) be real polynomials of positive degrees in x and y,
respectively. Let (a1, a2) and (b1, b2) be strong open isolating intervals for roots α of A(x)
and β of B(α, y) 6= 0, respectively, such that B is delineable over (α, a2] and B has no
zeros in [α, a2] × {b1, b2}. Let σ be a section of B over (α, a2]. Then σ is adjacent to
(α, β) if and only if σ and {a2} × [b1, b2] have non-empty intersection.

Proof. The section σ determines a continuous function y = f(x) on (α, a2]. First,
assume that σ is adjacent to (α, β). By Theorem 2.1, (α, β) is a limit point of σ. There-
fore there is a point (α′, β′) of σ in (α, a2) × (b1, b2) (with β′ = f(α′)). We claim that
f(a2) ∈ (b1, b2). Suppose that this is not the case. Then, by continuity of f , there exists
x0 ∈ (α, a2] such that f(x0) = b1 or f(x0) = b2. Either possibility is contrary to an hy-
pothesis. This proves the claim. We have shown that σ and {a2}× [b1, b2] have non-empty
intersection.

Conversely assume that σ and {a2} × [b1, b2] have non-empty intersection. That is,
f(a2) ∈ [b1, b2]. This implies f(a2) ∈ (b1, b2), by an hypothesis. We claim that f(x) ∈
(b1, b2), for every x ∈ (α, a2]. Suppose that this is not the case. Then by continuity of f
there exists x0 ∈ (α, a2) such that f(x0) = b1 or f(x0) = b2. This proves the claim. It
follows that σ ⊂ (α, a2]× [b1, b2].

By the property σ ⊂ (α, a2]× [b1, b2] and the compactness of the subset {α} × [b1, b2]
of the plane (Munkres, 1975), σ has a limit point (α, β′) in {α} × [b1, b2]. By the closure
of the real variety of B, B(α, β′) = 0. But β is the unique real root of B(α, y) in [b1, b2],
since (b1, b2) is a strong isolating interval for β as a root of B(α, y), an hypothesis. Hence
β′ = β. By Theorem 2.1, σ is adjacent to (α, β). 2

Here now is our algorithm based on the above theorem. The inputs and outputs of the
algorithm make sense in the context of cad computation in the plane. The inputs to the
theorem, A(x) and B(x, y), are required to be algebraic polynomials, by which we mean
polynomials with coefficients in some algebraic number field. If we have computed some
cad of Rn and wish only to compute cell adjacencies in the induced cad of R2, we need
to use the algorithm only with irreducible integral polynomials as inputs. But, as we
shall see in the next section, to compute all cell adjacencies in R3, we will need to allow
algebraic polynomials as inputs. With the notation and hypotheses of the theorem, the
algorithm computes the number of sections of B over (α, a2] that are adjacent to (α, β).
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Figure 1. An application of the local box adjacency algorithm.

That is, the algorithm determines the number of sections of B that are right-adjacent to
(α, β).

Local box adjacency algorithm in R2

Inputs:

1. A(x), B(x, y): algebraic polynomials of positive degrees in x and y, respectively.
2. (a1, a2), (b1, b2): strong open isolating intervals with rational endpoints for roots α

of A and β of B(α, y) 6= 0 such that B is delineable over (α, a2].

Outputs:

1. (a′1, a
′
2): a subinterval of (a1, a2) with rational number endpoints and containing α

such that B has no zeros in [a′1, a
′
2]× {b1, b2}.

2. n: the number of sections of B over (α, a2] that are adjacent to (α, β).

Steps:

1. Refine the interval (a1, a2) to an interval (a′1, a
′
2] such that B has no zeros in

[a′1, a
′
2] × {b1, b2}. To accomplish this, proceed as follows. Refine (a1, a2) to an

interval (a′1, a
′
2] such that [a′1, a

′
2] contains no root of B(x, b1) or of B(x, b2).

2. Set n← the number of real roots of B(a′2, y) in (b1, b2).
3. Return (a′1, a

′
2) and n. 2

This algorithm performs the portion of the work of steps 2 and 4 of algorithm SSADJ2
from Arnon et al. (1984b) that pertains to the root β of B(α, y). Figure 1 illustrates
an application of the algorithm to an example in which (α, β) = (−1, 0), A(x) = x +
1, B(x, y) = x2 + 2y2 − 1, (a1, a2) = (−2, 0) and (b1, b2) = (−1/2, 1/2). The dashed
vertical line segments represent the subinterval (a′1, a

′
2) = (−5/4,−3/4) computed by the

algorithm. The number of sections of B that are right-adjacent to (α, β) is, of course,
two. We now provide a correctness argument for the above algorithm.
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Theorem 2.3. The local box adjacency algorithm for the plane is correct.

Proof. We first note that both B(x, b1) and B(x, b2) are non-zero polynomials. The
reason is that B(α, b1) 6= 0 and B(α, b2) 6= 0, since (b1, b2) is a strong isolating interval for
β as a root of B(α, y) (input condition 2). Hence step 1 can achieve its goal in finite time.

We shall prove that B has n sections over (α, a2] that are adjacent to (α, β) by ex-
hibiting a bijection φ between the sections of B over (α, a2] adjacent to (α, β) and the
real roots of B(a′2, y) in (b1, b2). Let σ be a section of B over (α, a2] which is adjacent to
(α, β). By Theorem 2.2, in which we take a2 = a′2, σ and {a′2} × [b1, b2] have non-empty
intersection. That is, there is a point (a′2, β

′) of σ such that β′ ∈ [b1, b2]. It follows that
β′ ∈ (b1, b2). We define φ(σ) = β′. Now φ is a one-to-one mapping since B is delineable
over (α, a2], by hypothesis.

Let β′ be a real root of B(a′2, y) in (b1, b2). Then (a′2, β
′) lies in some section σ of

B over (α, a2]. By Theorem 2.2, in which we take a2 = a′2, σ is adjacent to (α, β).
Clearly φ(σ) = β′. We have shown that φ is also an onto mapping, which completes the
correctness proof. 2

In an actual implementation of this algorithm we may wish to also have it return the
number of left adjacencies, namely the number of real roots of B(a′1, y) in (b1, b2). To
keep the exposition simple we have omitted throughout this paper the treatment of left
adjacencies.

Knowing how many sections of B(x, y) are adjacent to every (α, βi) does not, in general,
suffice to conclude which sections these are, because if the leading coefficient of B(x, y)
vanishes at α, some sections of B(x, y) may be adjacent to (α,−∞). That is, they may
approach (α,−∞) as x approaches α from the right. To determine how many sections
are adjacent to (α,−∞), we need a slightly modified version of the above algorithm to
determine the number of sections adjacent to (α,−∞). In this modification, the input
(b1, b2) is replaced by a rational number b which is less than all roots of B(α, y). Step 1
then refines (α, a2] to an interval (α, a′2] such that B contains no root of B(x, b), Step 2
sets n to the number of roots of B(a′2, y) in (−∞, b), the number of sections of B over
(α, a2] which are adjacent to (α,−∞). The local box adjacency algorithms of the following
sections of this paper also have similar modifications.

As suggested earlier, the algorithm of this section is a localized version of algorithm
SSADJ2 of Arnon et al. (1984b), so to speak. The availability of such a local adjacency
algorithm would leave open the possibility that one could make use of root multiplicity
information to determine some of the adjacencies in the plane. Use of root multiplicity
information for this purpose would be expected to speed up considerably the computation
of some of the cell adjacencies in the plane.

The local box adjacency of this section and its variations that we have discussed enable
us to determine all adjacencies between two sections in any cad of R2. From these all
other adjacencies can be inferred as discussed in Arnon et al. (1984b). For the reader’s
convenience we summarize here how this is accomplished. There are, first, the obvious
intrastack adjacencies, those between two cells in the same stack. Namely, any sector
in a stack is adjacent to any section immediately above or below it. Then there are the
interstack adjacencies. Let c0 be any section in the induced cad of R and c1 be an adjacent
sector. Let S0 and S1 be the stacks over c0 and c1, respectively. Let s be any sector of S1,
and let s1 and s2 be the sections in S1 that are immediately below and above s. Here we
imagine that each stack contains sections at −∞ and ∞. Let t1 and t2 be the sections
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in S0 that are adjacent to s1 and s2. Then, by Corollary 2.5 of Arnon et al. (1984b), the
cells in S0 that are adjacent to s are t1, t2 and all cells between t1 and t2.

3. Adjacencies in Three-space

In this section we first present in Section 3.1 a local box adjacency algorithm for
3-space. Following that in Section 3.2 we shall, for the reader’s convenience, outline how,
based on theorems from Arnon et al. (1988), all other cell adjacencies in three-space can
be deduced from the adjacencies between 0D cells and 1D cells.

3.1. a local box adjacency algorithm for three-space

Let A(x), B(x, y) and C(x, y, z) be irreducible integral polynomials of positive degrees
in their main variables and let (α, β, γ) be a point of R3 for which

A(α) = B(α, β) = C(α, β, γ) = 0

and C(α, β, z) 6= 0. We present a local box adjacency algorithm for determining the
number of sections of C adjacent to (α, β, γ) over each of the sections of B that are
adjacent to (α, β).

The following theorem is an analogue of Theorem 2.2, and is strongly suggestive of our
algorithm for cell adjacency determination in three-space. The theorem gives a criterion
for a section τ of C over a section of B to be adjacent to (α, β, γ): namely, τ is adjacent
to (α, β, γ) if and only if τ intersects a certain side (face) of a box in R3 satisfying certain
hypotheses. The theorem provides the basis for our local box adjacency algorithm for R3.

Theorem 3.1. Let A(x), B(x, y) and C(x, y, z) be real polynomials of positive degrees
in their main variables. Let (a1, a2), (b1, b2) and (c1, c2) be strong open isolating intervals
for roots α of A(x), β of B(α, y) 6= 0 and γ of C(α, β, z) 6= 0, respectively, such that B
is delineable over (α, a2], B has no zeros in [α, a2] × {b1, b2}, C is delineable over each
section of B over (α, a2], and B and C have no common zeros in [α, a2]×[b1, b2]×{c1, c2}.
Let σ be a section of B over (α, a2] and let τ be a section of C over σ. Then τ is adjacent
to (α, β, γ) if and only if τ and {a2} × [b1, b2]× [c1, c2] have non-empty intersection.

Proof. The section σ determines a continuous function y = f(x) on (α, a2]. Likewise
τ determines a continuous function z = g(x, y) on σ. We define h(x) = g(x, f(x)),
for x ∈ (α, a2]. Then h is continuous. First, assume that τ is adjacent to (α, β, γ). By
Theorem 2.1, (α, β, γ) is a limit point of τ . Therefore (α, β) is a limit point of σ; hence
σ is adjacent to (α, β), by Theorem 2.1. Now by Theorem 2.2 σ and {a2} × [b1, b2] have
non-empty intersection, that is, f(a2) ∈ [b1, b2]. Since (α, β, γ) is a limit point of τ there is
a point (α′, β′, γ′) of τ in the interior of the box [α, a2]× [b1, b2]× [c1, c2] (with β′ = f(α′)
and γ′ = h(α′)). We claim that h(a2) ∈ (c1, c2). Suppose that this is not the case.
Then, by continuity of h, there exists x0 ∈ (α, a2] such that h(x0) = c1 or h(x0) = c2.
Now by Theorem 2.2, in which we take a2 = x0, σ and {x0} × [b1, b2] have non-empty
intersection, that is, f(x0) ∈ [b1, b2]. Thus (x0, f(x0), h(x0)) is a common zero of B and
C in [α, a2] × [b1, b2] × {c1, c2}, contrary to hypothesis. The claim is proved. We have
shown that (a2, f(a2), h(a2)) ∈ {a2} × [b1, b2]× [c1, c2], so τ and {a2} × [b1, b2]× [c1, c2]
have non-empty intersection.
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To prove the converse, assume that τ and {a2} × [b1, b2] × [c1, c2] have non-empty
intersection, that is, f(a2) ∈ [b1, b2] and h(a2) ∈ [c1, c2]. Then σ and {a2} × [b1, b2]
have non-empty intersection, so σ is adjacent to (α, β) (Theorem 2.2). Let x ∈ (α, a2].
By Theorem 2.2, taking a2 = x, σ and {x} × [b1, b2] have non-empty intersection, that
is, f(x) ∈ [b1, b2]. We claim that h(x) ∈ (c1, c2). For if this were not the case then by
continuity of h there would exist x0 ∈ (α, a2] such that either h(x0) = c1 or h(x0) = c2;
so (x0, f(x0), h(x0)) would be a common zero of B and C in [α, a2] × [b1, b2] × {c1, c2},
contrary to hypothesis. It follows from what we have established that τ ⊂ (α, a2] ×
[b1, b2]× [c1, c2].

Since τ ⊂ (α, a2] × [b1, b2] × [c1, c2], σ is adjacent to (α, β) and the subset {(α, β)} ×
[c1, c2] of R3 is compact (Munkres, 1975), τ has a limit point (α, β, γ′) in {(α, β)}×[c1, c2].
By the closure of the real variety of C, C(α, β, γ′) = 0. But γ is the unique root of
C(α, β, z) in [c1, c2], by an hypothesis. Hence γ′ = γ. By Theorem 2.1 τ is adjacent to
(α, β, γ). 2

We now describe a new local adjacency algorithm for three-space based upon The-
orem 3.1. The inputs and outputs for the algorithm make sense in the context of the
computation of a cad of R3. All of the requirements on the inputs with the exception of
requirement 2b are fulfilled by the theory of cad construction. The requirement 2b could
be fulfilled by application of the local box adjacency algorithm described in Section 2.
As for the algorithm of Section 2, the following algorithm determines what we might call
the right adjacencies for (α, β, γ) (and the polynomials A,B,C). Unlike the algorithm
of Section 2, this algorithm requires irreducible integral polynomials as inputs; its cor-
rectness proof depends on the irreducibility of B. A more general three-space algorithm,
applicable to algebraic polynomials, is needed for some adjacency computations in four-
space. In Section 5 we describe an n-space algorithm for algebraic polynomials which can
be applied for n = 3.

In the following algorithm description, and elsewhere in this paper, we shall use the
convention that the resultant of two polynomials with respect to any variable such that
one of the polynomials, but not both, is of degree zero in that variable, is equal to
the polynomial of degree zero (regardless of the degree of the other polynomial in that
variable).

Local box adjacency algorithm in R3

Inputs:

1. A(x), B(x, y), C(x, y, z): irreducible integral polynomials of positive degrees in their
main variables.

2. (a1, a2), (b1, b2), (c1, c2): strong open isolating intervals with rational endpoints for
roots α of A, β of B(α, y) and γ of C(α, β, z) 6= 0 such that

(a) B is delineable over (α, a2],
(b) neither B(x, b1) nor B(x, b2) has any root in (α, a2], and
(c) C is delineable over each section of B over (α, a2].

Outputs:

1. (a′1, a
′
2): a subinterval of (a1, a2) with rational endpoints and containing α such that

B and C have no common zeros in [α, a′2]× [b1, b2]× {c1, c2}.
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2. L: the list of all lists (i, Ni) such that among the sections of B over (α, a2] that are
adjacent to (α, β), for the ith such section, σi, there are Ni > 0 sections of C that
are adjacent to (α, β, γ).

Steps:

1. Refine the isolating interval (a1, a2) for α to a subinterval (a′1, a
′
2) such that B and

C have no common zeros in [α, a′2]× [b1, b2]×{c1, c2}. To accomplish this, proceed
as follows. For k = 1, 2 do: set Rk(x)← resy(B(x, y), C(x, y, ck)), the resultant with
respect to y of B(x, y) and C(x, y, ck). Refine [α, a2] to an interval [α, a′2] such that
(α, a′2] contains no root of R1(x) or R2(x). [The correctness proof for this algorithm
will show that both R1(x) and R2(x) are non-zero polynomials, and that step 1 in
fact guarantees that B and C have no common zeros in [α, a′2]× [b1, b2]× {c1, c2}.]

2. Compute isolating intervals for the real roots β1 < β2 < · · · < βN of B(a′2, y) which
are contained in (b1, b2).

3. Set L← (), the null list. For i = 1, . . . , N do compute the number Ni of real roots
of C(a′2, βi, z) in (c1, c2), and if Ni > 0, append (i, Ni) to L.

4. Return (a′1, a
′
2) and L. 2

Figure 2 illustrates an example to which the three-space adjacency algorithm could be
applied. In this example, (α, β, γ) = (−1, 0, 0), A(x) = x + 1, B(x, y) = x2 + 2y2 − 1,
C(x, y, z) = x2+y2+z2−1, (a1, a2) = (−5/4,−3/4), (b1, b2) = (−1/2, 1/2) and (c1, c2) =
(−1/4, 1/4). Notice that this example is closely related to that illustrated in Figure 1.
In particular, requirement 2b is satisfied because the values of a1 and a2 used for this
example are the values of a′1 and a′2 constructed by the two-space adjacency algorithm
for the example of Figure 1. Figure 3 illustrates the three-space adjacency algorithm’s
output for this example: (a′1, a

′
2) = (−17/16,−15/16) and L = ((1, 2), (2, 2)).

Theorem 3.2. The above algorithm is correct.

Proof. We shall show that B and C have no common zeros in [α, a′2]× [b1, b2]×{c1}. A
symmetric argument will show that B and C have no common zeros in [α, a′2]× [b1, b2]×
{c2}. We first show that the polynomial R1(x) computed in step 1 is non-zero. Suppose
not. In case degyC(x, y, c1) = 0, R1(x) = C(x, y, c1), by definition. So C(x, y, c1) = 0. In
particular C(α, β, c1) = 0, contradicting the hypothesis that (c1, c2) is a strong isolating
interval for γ. In case degyC(x, y, c1) > 0, by Theorem 2 of Collins (1971), B(x, y) and
C(x, y, c1) would have a common divisor of positive degree in Q[x, y]. Since B(x, y) is
irreducible in Z[x, y], and hence in Q[x, y], B(x, y) itself would therefore be a divisor of
C(x, y, c1). Therefore C(α, β, c1) would vanish, contrary to the hypothesis that (c1, c2) is
a strong isolating interval for γ. The proof that R1(x) 6= 0 is complete.

Suppose first that degyC(x, y, c1) = 0, in which case R1(x) = C(x, y, c1), by definition.
Then (α, a′2] contains no root of C(x, y, c1). Therefore B and C have no common zeros
in (α, a′2]×R× {c1}. Suppose on the other hand that degyC(x, y, c1) > 0. Then (α, a′2]
contains no root of R1(x). Therefore there is no common zero of B(x, y) and C(x, y, z)
in (α, a′2] ×R × {c1}, by Theorem 5 of Collins (1971). It remains to show that B(α, y)
and C(α, y, c1), as polynomials in y, have no common zeros in [b1, b2]. This is so because
B(α, β′) 6= 0 for every β′ ∈ [b1, b2] with β′ 6= β, since (b1, b2) is a strong isolating interval
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Figure 2. The curves enter and leave through the bottom and top of the box.

Figure 3. The curves enter through the face x = − 15
16

, very close to the edges where this meets the top

and bottom faces.

for β as a root of B(α, y), and C(α, β, c1) 6= 0, since (c1, c2) is a strong isolating interval
for γ as a root of C(α, β, z) 6= 0. This completes the proof that B and C have no common
zeros in [α, a′2]× [b1, b2]× {c1}.
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By Theorem 2.2, in which we take a2 = a′2, there is a one-to-one correspondence
between the sections of B over (α, a2] adjacent to (α, β) and the βi that are isolated in
Step 2. Hence there are N sections σ1 < · · · < σN of B over (α, a2] adjacent to (α, β),
and (a′2, βi) ∈ σi. Let 1 ≤ i ≤ N . We can prove that C has Ni sections over σi adjacent to
(α, β, γ) by exhibiting a bijection between the real roots of C(a′2, βi, z) in (c1, c2) and the
sections of C over σi adjacent to (α, β, γ). The bijection is defined in the same manner
as in the proof of Theorem 2.3. The mapping definition and the proof of bijectivity use
Theorem 3.1. This completes the proof of the theorem. 2

Algorithm SSADJ3 from Arnon et al. (1988) is the key subalgorithm of Arnon et al.
(1988) for R3 adjacency determination. The algorithm of this section differs from SSADJ3
in at least two respects. First, the algorithm presented here is an algorithm localized
at a particular point (α, β, γ) of R3, in contrast with SSADJ3 which treats the entire
cylinder over a point (α, β) of the plane. Second, the strategy of SSADJ3 is to extract
cell adjacencies in three-space from adjacency information for a suitable plane projection
of three-space. The algorithm presented here, on the other hand, makes use of a suitable
three-dimensional box about (α, β, γ) for adjacency determination.

In principle an analogue of SSADJ3 could be obtained by applying the local box
algorithm for every root γ of C(α, β, z) and for the adjacencies at (α, β,−∞). As for the
algorithm of Section 2, the use of a local adjacency algorithm might permit the use of
root multiplicity information to determine some of the adjacencies in three-space.

Our local box adjacency algorithm for three-space determines adjacencies between a
point (α, β, γ) and sections of C over sections of B over a sector that is adjacent to α. We
also need to determine adjacencies between (α, β, γ) and sections of C over a sector in
R2 that is adjacent to (α, β). Substituting α for x reduces this to an adjacency problem
in the y, z-plane, determining the number of sections of C(α, y, z) that are adjacent to
(β, γ). We can apply the local box adjacency algorithm for R2 with input polynomials
B(α, y) and C(α, y, z) and strong isolating intervals (b1, b2) and (c1, c2).

We have proved the correctness of our local box adjacency algorithm for R3 under
the assumption that C(α, β, z) 6= 0. But if C(α, β, z) = 0 we may nevertheless wish to
determine points (α, β, γ) that are adjacent to sections of C over 1D cells in R2 that are
adjacent to (α, β). To do this, we may employ a technique used in Arnon et al. (1988),
Theorems 4.2 and 4.3. Let R(x, z) = resy(B(x, y), C(x, y, z)) and P (x, z) = ppz(R(x, z)),
the primitive part of R(x, z) with respect to z. If σ is a section of C over a section of
B that is adjacent to (α, β) over a sector adjacent to α then σ is adjacent to (α, β, γ)
where γ is either a real root of P (α, z), ∞ or −∞. Let γ be a real root of P (α, z) and let
(c1, c2) be a strong isolation interval for γ as a root of P (α, z). Slight modification to the
proofs of Theorems 3.1 and 3.2 shows that the local box adjacency algorithm for R3 is
applicable and will determine the number of sections of C that are adjacent to (α, β, γ).
In case σ is a section of C over a sector adjacent to (α, β), a similar technique applies.
We set R(y, z) = resx(A(x), C(x, y, z)) and P (y, z) = ppz(R(x, z)). Then we let (c1, c2)
be an isolating interval for a root γ of P (β, z).

3.2. determining all other adjacencies in three-space

As in R2, the intrastack adjacencies are obvious. The interstack adjacencies are those
between the two adjacent stacks over two adjacent cells in the induced cad of R2. We
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classify these by the dimensions of the cells in the induced cad, D′, which may be {0,1},
{0,2}, or {1,2}.

We begin with the case {0, 1}. Let ci be the cell in D′ of dimension i. We assume
that every section in the stack S1 over c1 is adjacent to a unique section in the stack S0

over c0, including possibly sections at ∞ and −∞. This requires that if any polynomial
C(x, y, z) is nullified by c0 that S0 has been refined by including the needed sections,
using the technique described in the last paragraph of Section 3.1. Then, as in R2, if
s is a sector in S1 with sections σ1 and σ2 immediately above and below, and if σi is
adjacent to section τi in S0, i = 1, 2, then s is adjacent to both τ1 and τ2 and all cells in
S0 between τ1 and τ2.

Next consider the case {1, 2}. Let ci be the cell in D′ of dimension i. Suppose first
that c1 is a section. If a section of C(x, y, z) over c2 is adjacent to a section over c1,
that section over c1 must also be a section of C(x, y, z). Suppose that the section of C
over c2 is a section of C(x, y, z) over a section of B(x, y) over a sector s. Let a be a
rational number in s. The adjacencies among sections of C over sections of B over s are
in one-to-one correspondence with the adjacencies of sections of C(a, x, y) over sections
of B(a, y) in R2. We can determine the latter adjacencies by applying the local box
adjacency algorithm for R2 with input polynomials B(a, y) and C(a, x, y) and strong
isolating intervals for the roots βi of B(a, y) and the roots γi,j of C(a, βi, z).

Now suppose that c1 is a sector. Consider any section σ2 of C(x, y, z) over c2. Again,
any section σ1 over c1 that is adjacent to σ2 must be a section of C. Let (α, b) be a point in
c1 with b rational. Let b1 and b2 be rational numbers such that b1 < b < b2, and such that
(α, b1) and (α, b2) are in c1. The adjacencies among sections of C over c2 and adjacencies
of C over c1 are in one-to-one correspondence with sections of C(α, y, z) over an interval
(b, , b2] or an interval [b1, b). Let B(y) = y− b be the minimal polynomial of b. Apply the
local box adjacency algorithm for R2 with input polynomials y − b and C(α, y, z), the
strong isolating interval (b1, b2) for b as the root of B(y) and strong isolating intervals
for roots of C(α, b, z).

Finally we consider the case {0, 2}. We now suppose that adjacencies for the cases {0, 1}
and {1, 2} have already been determined. Let c0 and c2 be cells in R2 of dimensions 0
and 2, respectively. Let s2 be a section of C(x, y, z) over c2. By Theorem 6.1 of Arnon
et al. (1988), if p and q are limit points of s2 in c0×R∗ then so is every point between p
and q. Suppose first that c0 does not nullify C. Then by the theorem just cited, s2 has
a unique limit point in c0 ×R∗. Let c1 be a section or sector of dimension 1 in R2 that
is adjacent to c2. Let s1 be the unique section of C over c1 that is adjacent to s2. Let s0

be the unique section of C over c0 that is adjacent to s1. Then s0 is the unique section
of C over c0 that is adjacent to s2.

Now assume that c0 nullifies C. In this case we may need to insert more sections
into the stack over c0. Let Cx denote the partial derivative of C with respect to x
and let B(x, y) = resz(C(x, y, z), Cx(x, y, z)) if Cx has positive degree in z, otherwise
B(x, y) = Cx(x, y, o). We need to augment our set of projection factors by including
B as a new bivariate projection polynomial. This will result in adding the irreducible
factors of B as new bivariate projection factors, and will also produce new univariate
projection factors. If c0 = {(α, β)} and (a1, a2) is the isolating interval for α, we need
to refine (a1, a2) to an isolating interval (a′1, a

′
2) whose closure contains no roots of the

new univariate projection factors. Consider the example C(x, y, z) = y3z +xy2−x3. The
original projection factors are y3z + xy2 − x3, y + x, y − x, y and x and (0, 0) nullifies
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C. Cx(x, y, z) = y2 − 3x2 so B(x, y) = y2 − 3x2, which is irreducible. Adding B to the
projection factor set does not introduce any new univariate projection factors.

Let c′2 = c2∩((a′1, a
′
2)×R). We need to identify sections of B that are interior to c′2 and

adjacent to (α, β). This can be done by isolating the roots of B(a′2, y) (assuming that c2 is
to the right of c0) and the roots of B′(a′2, y) where B′(x, y) is any original projection factor
having a section adjacent to c2. We omit details of this process, which depend on whether
c2 is bounded both below and above. Applications of the local box adjacency algorithm
for R2 at (α, β) with isolating interval (a′1, a

′
2) and polynomials Bi will be required.

Suppose that a section σ of B over c′2 that is adjacent to (α, β) has been identified. We
now need to find the limit point (α, β, γ) in the stack over c0 of the section of C over σ.
We cannot do this directly, but if we compute G(x, z) = resy(B(x, y), C(x, y, z)), then γ
will be among the roots of G(α, z) if γ is finite. For our example let c0 = {(0, 0)} and let
c2 be the sector bounded on the left by the y-axis and bounded below by the line y = x.
There is a unique section of B(x, y) that is interior to c′2 = c2 and adjacent to c0, namely
a portion of the line y =

√
3x. G(x, z) = x6(27z2 − 4).

Let (b1, b2) be an isolating interval for the root β′ of B(a′2, y) such that (a′2, β
′) is in σ.

Let γj be one of the roots of G(α, z) and let (c∗1, c
∗
2) be an isolating interval for γj . With

(c∗1, c
∗
2) in place of an isolating interval for a root of C(α, β, z), we can then use the local

box adjacency algorithm in R3 to determine the number of sections of C over σ that
are adjacent to (α, β, γj). We can also determine the number adjacent to (α, β,−∞). If
we repeat this procedure for each γj , we can determine which sections of C over σ are
adjacent to which (α, β, γj)s. Now suppose that we have found all points (α, β, γ) that
are adjacent to some section of C over some section of some Bi that is adjacent to (α, β)
and interior to c′2. Call these γ1, . . . , γn. For each section or sector in R2 that is adjacent
to both c2 and c0, add an additional γi such that (α, β, γi) is the limit of the section of
C over that section or sector. For every such γi make (α, β, γ1) a section of the stack
over c0. Now let τ be any particular section of C over c2. Let γ1 (possibly −∞) be least
such that the section of τ over some section of some Bi has (α, β, γ1) as limit point; let
γ2 (possibly ∞) be greatest. Then by Theorem 6.1 of Arnon et al. (1988), τ is adjacent
to (α, β, γ1), (α, β, γ2) and all sections and sectors between in the stack over c0. The
process we have outlined for finding the γis follows from Theorems 6.2, 6.3 and 6.4 of
Arnon et al. (1988). In our example, the limit of the section of C over the sector that
bounds c2 on the left is 0. Also the limit of the section of C over the section of y−x that
bounds c2 below is 0. There are two γis, namely 2/3

√
3 and −2/3

√
3. By application of

the modified local box adjacency algorithm for 3-space we find that the section of C over
the section of y2− 3x2 that is interior to c2 is adjacent to (0, 0,−2/3

√
3). Therefore c2 is

adjacent to the section (0, 0, 0), the section (0, 0,−2/3
√

3), and the sector between these
two sections.

4. A Local Box Adjacency Algorithm for Four-space

Let A(x), B(x, y), C(x, y, z) and D(x, y, z, w) be irreducible integral polynomials of
positive degrees in their main variables. Let (α, β, γ, δ) be a point of R4 for which

A(α) = B(α, β) = C(α, β, γ) = D(α, β, γ, δ) = 0,

C(α, β, z) 6= 0 and D(α, β, γ, w) 6= 0. We present a local box adjacency algorithm for
determining the number of sections of D adjacent to (α, β, γ, δ) over each of the sections
of C adjacent to (α, β, γ) over each of the sections of B adjacent to (α, β).
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We begin with a four-dimensional analogue of Theorem 3.1. This theorem provides
the basic idea for the algorithm for cell adjacency determination in four-space which is
described subsequently.

Theorem 4.1. Let A(x), B(x, y), C(x, y, z) and D(x, y, z, w) be real polynomials of pos-
itive degrees in their main variables. Let (a1, a2), (b1, b2), (c1, c2) and (d1, d2) be strong
open isolating intervals for roots α of A(x), β of B(α, y) 6= 0, γ of C(α, β, z) 6= 0 and δ of
D(α, β, γ, w) 6= 0 such that B is delineable over (α, a2], B has no zeros in [α, a2]×{b1, b2},
C is delineable over each section of B over (α, a2], B and C have no common zeros in
[α, a2]×[b1, b2]×{c1, c2}, D is delineable over each section of C over each section of B over
(α, a2] and B, C and D have no common zeros in [α, a2]× [b1, b2]× [c1, c2]×{d1, d2}. Let
σ be a section of B over (α, a2], let τ be a section of C over σ and let ρ be a section of D
over τ . Then ρ is adjacent to (α, β, γ, δ) if and only if ρ and {a2}×[b1, b2]×[c1, c2]×[d1, d2]
have non-empty intersection.

We omit the proof of this theorem since it follows the same pattern as the proofs of
Theorems 2.2 and 3.1, and because the theorem is a special case of Theorem 5.1 in the
following section.

While this theorem suggests the strategy we might wish to employ for cell adjacency
determination in four-space, we have found that the simplest method of achieving one of
the key hypotheses of the theorem—namely, that “B, C and D have no common zeros in
[α, a2]×[b1, b2]×[c1, c2]×{d1, d2}”—is by no means obvious. We have discovered what we
think is a relatively simple and elegant method of ensuring this hypothesis. The method
itself is described in steps 1 and 2 of the adjacency algorithm which will shortly follow.
The complete validity of the method, which will be established as part of the correctness
proof for the adjacency algorithm, depends upon the following result which is stated and
proved by McCallum (1999). Recall from McCallum (1988) or McCallum (1998) that an
r-variate real polynomial (or analytic function) f is said to be order-invariant in a subset
S of r-space if the order of f is the same at every point of S.

Theorem 4.2. Let r ≥ 2, let f(x1, . . . , xr) and g(x1, . . . , xr) be real polynomials of
positive degrees in the main variable xr, let R(x1, . . . , xr−1) be the resultant of f and
g with respect to xr, and suppose that R 6= 0. Let S be a connected subset of Rr−1 on
which f is delineable and in which R is order-invariant. Then g is sign-invariant in each
section of f over S.

We now describe a new local adjacency algorithm for four-space based upon Theo-
rem 4.1. The inputs and outputs for the algorithm make sense in the context of cad
computation in R4. All of the requirements on the inputs except for 2c and 2e are ful-
filled by the theory of cad construction with improved projection, for which the reader
can consult either McCallum (1988) or McCallum (1998). Requirements 2c and 2e can
be fulfilled by application of the adjacency algorithms from Sections 2 and 3.

Local box adjacency algorithm in R4

Inputs:

1. A(x), B(x, y), C(x, y, z), D(x, y, z, w): irreducible integral polynomials of positive
degrees in their main variables.
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2. (a1, a2), (b1, b2), (c1, c2), (d1, d2): strong open isolating intervals with rational end-
points for roots α of A, β of B(α, y), γ of C(α, β, z) 6= 0 and δ of D(α, β, γ, w) 6= 0
such that

(a) B is delineable over (α, a2],
(b) B is order-invariant in each of its sections over (α, a2],
(c) neither B(x, b1) nor B(x, b2) has any root in (α, a2],
(d) C is delineable over each section of B over (α, a2],
(e) B and C have no common zeros in [α, a2]× [b1, b2]× {c1, c2} and
(f) D is delineable over each section of C over each section of B over (α, a2].

Outputs:

1. (a′1, a
′
2): a subinterval of (a1, a2) with rational endpoints and containing α such that

B, C and D have no common zeros in [α, a′2]× [b1, b2]× [c1, c2]× {d1, d2}.
2. L: a list of all lists (i, j, Ni,j) such that

(a) there are at least i sections of B over (α, a2] that are adjacent to (α, β); let σi

be the ith such section,
(b) there are at least j sections of C over σi that are adjacent to (α, β, γ); let τi,j

be the jth such section,
(c) there are Ni,j > 0 sections of D over τi,j that are adjacent to (α, β, γ, δ).

Steps:

1. The goal of the first two steps is to refine the interval (a1, a2) to an interval (a′1, a
′
2)

such that B, C and D have no common zeros in [α, a′2]× [b1, b2]× [c1, c2]×{d1, d2}.
The first step is to perform the following simple loop:
for k = 1, 2 carry out the following sequence of operations:

(a) if degzD(x, y, z, dk) = 0 then

set Qk(x, y)← D(x, y, z, dk)

else

set Qk(x, y)← resz(C(x, y, z), D(x, y, z, dk))

[end “if-then-else”];
(b) Q̄k ← Qk;

while B | Q̄k do

set Q̄k ← Q̄k/B

[end “while”];
if degyQ̄k = 0 then

set Rk(x)← Q̄k(x, y)

else

set Rk(x)← resy(B, Q̄k)

[end “if-then-else”].

[end “for”].
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2. Refine (a1, a2) to an interval (a′1, a
′
2) such that (α, a′2] contains no root of R1(x) or

R2(x). [The correctness proof for this algorithm will show that steps 1 and 2 in fact
guarantee that B, C and D have no common zeros in [α, a′2] × [b1, b2] × [c1, c2] ×
{d1, d2}.]

3. Compute isolating intervals for the real roots β1 < β2 < · · · < βN of B(a′2, y) that
are contained in (b1, b2).

4. For i = 1, . . . , N do compute isolating intervals for the Ni real roots γi,1 <
γi,2 < · · · < γi,Ni

of C(a′2, βi, z) in (c1, c2).
5. Set L← the null list. For i = 1, . . . , N do for j = 1, . . . , Ni do compute the number

Ni,j of real roots of D(a′2, βi, γi,j , w) in (d1, d2) and, if Ni,j > 0, append the list
(i, j, Ni,j) to L. 2

Theorem 4.3. The above algorithm is correct.

Proof. We shall show that B, C and D have no common zeros in [α, a′2] × [b1, b2] ×
[c1, c2]×{d1}. A symmetric argument will show that B, C and D have no common zeros
in [α, a′2] × [b1, b2] × [c1, c2] × {d2}. Let D1(x, y, z) = D(x, y, z, d1). First, we show that
Q1(x, y) 6= 0. Suppose not. In case degzD1 = 0, we would have D1 = 0. So, in particular,
D(α, β, γ, d1) = 0, contrary to the hypothesis that (d1, d2) is a strong isolating interval
for δ as a root of D(α, β, γ, w) 6= 0. In case degzD1 > 0, we would have resz(C,D1) = 0,
which would imply C | D1, since C is irreducible. This would imply D1(α, β, γ) = 0, since
C(α, β, γ) = 0, by hypothesis. Again we have reached a contradiction. The proof that
Q1(x, y) 6= 0 is complete. We remark that the property Q1 6= 0 ensures the termination
of the “while” loop in step 1b.

Second, we show that R1(x) 6= 0. Suppose not. In case degyQ̄1 = 0, we would have
Q̄1 = 0, contrary to the property proved above. In case degyQ̄1 > 0, we would have
resy(B, Q̄1) = 0. This would imply that B is a divisor of Q̄1, since B is irreducible. But
this contradicts the property that B is not a divisor of Q̄1, which is the condition for the
termination of the “while” loop in step 1b. The proof that R1(x) 6= 0 is complete.

Now Q1 = BnQ̄1, for some n ≥ 0, by construction of Q̄1. We observe that Q̄1 6= 0
throughout each section of B over (α, a′2], by construction of a′2. So Q̄1 is (rather trivially)
order-invariant in each such section of B. Moreover B is order-invariant in each of its
sections over (α, a′2] by input hypothesis 2b. Therefore, by Lemma A.3 of McCallum
(1988), Q1 is order-invariant in each section of B over (α, a′2].

Suppose that B, C and D1 have some common zero (α′, β′, γ′) in (α, a′2] × [b1, b2] ×
[c1, c2]. Then (α′, β′, γ′) lies in some section τ of C over some section σ of B over (α, a′2], by
input hypotheses 2a and 2d. As shown previously, Q1 is order-invariant in σ. Therefore, by
Theorem 4.2, D1 is sign-invariant in τ . Hence, since D1 vanishes at the point (α′, β′, γ′)
of τ , D1 vanishes throughout τ . By input hypotheses 2(a,c,d,e), and Theorem 3.1, in
which we take a2 = α′, τ is adjacent to (α, β, γ). Therefore, by the closure of the real
variety of D1, D1(α, β, γ) = 0. This contradicts the hypothesis that (d1, d2) is a strong
isolating interval for δ as a root of D(α, β, γ, w) 6= 0. The proof that B, C and D have
no common zeros in (α, a′2]× [b1, b2]× [c1, c2]× {d1} is complete.

Output condition 1 has almost been completely established. It remains to show that
B(α, y), C(α, y, z) and D1(α, y, z) have no common zeros in [b1, b2] × [c1, c2]. This is
so because B(α, β′) 6= 0 for every β′ ∈ [b1, b2] with β′ 6= β, C(α, β, γ′) 6= 0 for every
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γ′ ∈ [c1, c2] with γ′ 6= γ, and D1(α, β, γ) 6= 0 (since (b1, b2), (c1, c2) and (d1, d2) are
strong isolating intervals for β, γ and δ, respectively).

Output condition 2 can be proved by exhibiting, for each i in range 1 ≤ i ≤ N
and each j in range 1 ≤ j ≤ Ni, a one-to-one correspondence between the real roots of
D(a′2, βi, γi,j , w) in (d1, d2) and the sections of D over τi,j that are adjacent to (α, β, γ, δ).
The proof is a straightforward application of Theorem 4.1, and is analogous to the proof
of output condition 2 of the algorithm of Section 3. 2

As already mentioned in the previous section, the following section will present an
n-space algorithm for algebraic polynomials. The algorithm above, however, will be much
more efficient for the numerous adjacency computations in 4-space involving only irre-
ducible integral polynomials.

We observed in Section 3 the considerable complexity of computing all cell adjacencies
in three-space. A comparable treatment of all cell adjacencies in four-space is therefore
beyond the scope of this paper, as the complexity of this task in four-space would certainly
be considerably greater. It is reasonable to expect, however, that consideration of all
the required cases, would show how to reduce this to applications of the algorithms of
Sections 2 and 3, the above algorithm, and the n-space algorithm of the following section
for n = 3.

5. A Local Box Adjacency Algorithm for n-Space

Let A1(x1), A2(x1, x2), . . . , An(x1, . . . , xn) be irreducible integral polynomials of posi-
tive degrees in their main variables. Let (α1, . . . , αn) be a point of Rn for which

A1(α1) = A2(α1, α2) = · · · = An(α1, . . . , αn) = 0,

and suppose that A2(α1, x2), . . . , An(α1, . . . , αn−1, xn) are all non-zero polynomials. We
shall present in this section a local box adjacency algorithm whose output can be de-
scribed as follows. Let σ2 be a section of A2 over (α1, b1] adjacent to (α1, α2) and, for
3 ≤ i < n, let σi be a section of Ai over σi−1 which is adjacent to (α1, . . . , αi). The algo-
rithm’s output comprises, for every such sequence of sections σ2, . . . , σn−1, the number
of sections of An over σn−1 which are adjacent to (α1, . . . , αn).

As in the previous sections, we begin with a theorem, which provides the basis for our
cell adjacency algorithm.

Theorem 5.1. Let n ≥ 2. Let A1(x1), A2(x1, x2), . . . , An(x1, . . . , xn) be real polyno-
mials of positive degrees in their main variables. Let (a1, b1), (a2, b2), . . . , (an, bn) be
strong open isolating intervals for roots α1 of A1(x1), α2 of A2(α1, x2) 6= 0, . . . , αn of
An(α1, . . . , αn−1, xn) 6= 0, respectively. Suppose that, for 2 ≤ i ≤ n, the polynomials
A2, A3, . . . , Ai have no common zeros in [α1, b1] × [a2, b2] × · · · × [ai−1, bi−1] × {ai, bi}.
Suppose that A2 is delineable over (α1, b1] and let σ2 be a section of A2 over (α1, b1]. For
3 ≤ i ≤ n, suppose that Ai is delineable over σi−1 and let σi be a section of Ai over σi−1.
Then σn is adjacent to (α1, . . . , αn) if and only if σn and {b1} × [a2, b2] × · · · × [an, bn]
have non-empty intersection.

Proof. The theorem is proved by induction on n. The induction base (that is, the
case n = 2) is Theorem 2.2, proved in Section 2. Let n > 2. Assume as the induction
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hypothesis that the assertion to be proved holds with n replaced by n− 1. We must now
establish the truth of the assertion, making use of the induction hypothesis. The section
σ2 determines a continuous function x2 = f2(x1) on (α1, b1]. Likewise, for 3 ≤ i ≤ n, σi

determines a continuous function fi(x1, . . . , xi−1) on σi−1. For 2 ≤ i ≤ n we define
hi(x1) = fi(x1, h2(x1), . . . , hi−1(x1)), for x1 ∈ (α1, b1]. Then, for 2 ≤ i ≤ n, hi is
continuous.

First, assume that σn is adjacent to (α1, . . . , αn). By Theorem 2.1, (α1, . . . , αn) is a
limit point of σn. Therefore (α1, . . . , αn−1) is a limit point of σn−1, hence adjacent to σn−1

by Theorem 2.1. By the induction hypothesis, σn−1 and {b1}× [a2, b2]×· · ·× [an−1, bn−1]
have non-empty intersection. That is, for 2 ≤ i ≤ n−1, hi(b1) ∈ [ai, bi]. Since (α1, . . . , αn)
is a limit point of σn, there is a point (α′

1, . . . , α
′
n) of σn in the interior of the box

[α1, b1] × [a2, b2] × · · · × [an, bn] (with α′
i = hi(α′

1), for 2 ≤ i ≤ n). We claim that
hn(b1) ∈ (an, bn). Suppose that this is not the case. Then, by continuity of hn, there
exists x ∈ (α1, b1] such that hn(x) = an or hn(x) = bn. Now by the induction hypothesis,
in which we take b1 = x, σn−1 and {x} × [a2, b2] × · · · × [an−1, bn−1] have non-empty
intersection. That is, for 2 ≤ i ≤ n − 1, hi(x) ∈ [ai, bi]. Thus (x, h2(x), . . . , hn(x)) is a
common zero of A2, . . . , An in [α1, b1]× [a2, b2]× · · · × [an−1, bn−1]× {an, bn}, contrary
to an hypothesis. The claim is proved. We have shown that (b1, h2(b1), . . . , hn(b1)) is an
element of {b1} × [a2, b2] × · · · × [an, bn], so σn and {b1} × [a2, b2] × · · · × [an, bn] have
non-empty intersection.

To prove the converse, assume that σn and {b1}×[a2, b2]×· · ·×[an, bn] have non-empty
intersection. That is, for 2 ≤ i ≤ n, hi(b1) ∈ [ai, bi]. Then σn−1 and {b1} × [a2, b2] ×
· · · × [an−1, bn−1] have non-empty intersection, so σn−1 is adjacent to (α1, . . . , αn−1), by
the induction hypothesis. Let x′ ∈ (α1, b1]. By the induction hypothesis, in which we
take b1 = x′, σn−1 and {x′} × [a2, b2] × · · · × [an−1, bn−1] have non-empty intersection.
That is, for 2 ≤ i ≤ n − 1, hi(x′) ∈ [ai, bi]. We claim that hn(x′) ∈ (an, bn). For if
this were not the case then by continuity of hn there would exist x ∈ (α1, b1] such that
either hn(x) = an of hn(x) = bn. So (x, h2(x), . . . , hn(x)) would be a common zero of
A2, . . . , An in [α1, b1]× [a2, b2]× · · · × [an−1, bn−1]×{an, bn}, contrary to an hypothesis.
It follows from what we have established that

σn ⊂ (α1, b1]× [a2, b2]× · · · × [an, bn].

By this relation, the observation noted above that σn−1 is adjacent to (α1, . . . , αn−1)
and the compactness of the subset {(α1, . . . , αn−1)} × [an, bn] of Rn (Munkres, 1975),
σn has a limit point (α1, . . . , αn−1, α

′
n) in {(α1, . . . , αn−1)} × [an, bn]. By the closure

of the real variety of An, An(α1, . . . , αn−1, α
′
n) = 0. But αn is the unique root of

An(α1, . . . , αn−1, xn) in [an, bn], by an hypothesis. Hence α′
n = αn. By Theorem 2.1,

σn is adjacent to (α1, . . . , αn). 2

We now describe our n-space local adjacency algorithm based upon Theorem 5.1. The
inputs and outputs for the algorithm make sense in the context of cad computation
in Rn. The algorithm inputs A1(x1), . . . , An(x1, . . . , xn) are required to be algebraic
polynomials, by which we mean polynomials with coefficients in some algebraic number
field. The requirement on inputs 2b is fulfilled by the theory of cad construction. The
requirement 2a could be fulfilled by successive application of the algorithm for dimensions
n = 2, 3, . . . , n− 1.
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Local box adjacency algorithm in Rn

Inputs:

1. A1(x1), A2(x1, x2), . . . , An(x1, . . . , xn): algebraic polynomials of positive degrees in
x1, x2, . . . , xn, respectively, where n ≥ 2.

2. (a1, b1), (a2, b2), . . . , (an, bn): strong open isolating intervals with rational endpoints
for roots α1 of A1(x1), α2 of A2(α1, x2) 6= 0, . . . , αn of An(α1, . . . , αn−1, xn) 6= 0,
respectively, such that:

(a) for 2 ≤ i ≤ n− 1, A2, . . . , Ai have no common zeros in [α1, b1]× [a2, b2]× · · · ×
[ai−1, bi−1]× {ai, bi}, and

(b) A2 is delineable over (α1, b1] and, for 3 ≤ i ≤ n, Ai is delineable over each
section of Ai−1 over . . . over each section of A2 over (α1, b1].

Outputs:
either “failure” or both 1 and 2 described as follows:

1. (a′1, b
′
1): a subinterval of (a1, b1) with rational endpoints and containing α such that

A2, . . . , An have no common zeros in [α1, b
′
1]× [a2, b2]×· · ·× [an−1, bn−1]×{an, bn}.

2. L: a list of all sequences (i2, . . . , in−1, N) such that, with σ1 denoting (α1, b1],
we have for 2 ≤ j ≤ n − 1, Aj has at least ij sections over σj−1 adjacent to
(α1, α2, . . . , αj), with σj denoting the ijth such section; and N > 0 is the number
of sections of An over σn−1 which are adjacent to (α1, . . . , αn).

Steps:

1. The goal of the first two steps is to refine the interval (a1, b1) to an interval (a′1, b
′
1)

such that A2, . . . , An have no common zeros in [α1, b
′
1]×[a2, b2]×· · ·×[an−1, bn−1]×

{an, bn}. First, carry out the following loop:

set i← n− 1;
set success← true;
set R← An(x1, . . . , xn−1, an);
while i ≥ 2 and success do

set R← resxi
(Ai, R);

if R = 0 then

set success← false;

set i← i− 1;

if success = false then

report “failure” and exit;

2. Refine (a1, b1) to an interval (a′1, b
′
1) such that (α1, b

′
1] contains no root of R(x1).

[The correctness proof for this algorithm will show that steps 1 and 2 guarantee that
A2, . . . , An have no common zeros in [α1, b

′
1]× [a2, b2]× · · · × [an−1, bn−1]× {an}.]

Steps 1 and 2 must be repeated exactly once, with “an” replaced by “bn”. Before
repeating step 2 set b1 ← b′1.
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3. Set L ← (). Set β1 ← b′1. Set T ← a tree with one node β1. Compute isolating
intervals for the real roots γ1 < γ2 < · · · < γN of A2(β1, x2) which are contained in
(a2, b2). Store in T as the children of the root every γk. If N > 0 then set L← ((N)).

4. For l = 2, . . . , n− 1 do

set L′ ← ();
while L 6= () do

set λ← the first element of L;

[λ is a sequence of the form (i2, . . . , il−1, N)]

remove the first element from L;

for j = 2, . . . , l − 1 do

set βj ← the ijth real root of Aj(β1, . . . , βj−1, xj) in (aj , bj), previously
stored in T ;

for i = 1, . . . , N do

set βl ← the ith real root of Al(β1, . . . , βl−1, xl) in (al, bl), previously
stored in T ;

compute isolating intervals for the real roots γ1 < γ2 < · · · < γN ′ of
Al+1(β1, . . . , βl, xl+1) in (al+1, bl+1);

store in T as the children of the node containing βl every γk;

if N ′ > 0 then

append (i2, . . . , il−1, i, N
′) to L′;

set L← L′;

5. Return b′1 and L. 2

Theorem 5.2. The above algorithm is correct.

Proof. We shall show that, if the algorithm does not report failure, then A2, . . . , An

have no common zeros in [α1, b
′
1] × [a2, b2] × · · · × [an−1, bn−1] × {an}. A symmetric

argument will show that, if failure is not reported, then A2, . . . , An have no common zeros
in [α1, b

′
1]× [a2, b2]× · · · × [an−1, bn−1]×{bn}. Assume that failure is not reported. Then

step 1 successively computes a sequence of non-zero polynomials Rn−1(x1, . . . , xn−1), . . . ,
R1(x1), which are the successive values of the program variable R.

Now step 2 ensures that R1(x1) has no root in (α1, b
′
1]. Assume that there is some

common zero (β1, . . . , βn) of the polynomials A2, . . . , An in (α1, b
′
1]×R×· · ·×R×{an}.

Then, for 2 ≤ i ≤ n− 1, Ai(β1, . . . , βi) = 0, and Rn−1(β1, . . . , βn−1) = 0. Therefore, for
i = n− 2, n− 3, . . . , 1, Ri(β1, . . . , βi) = 0, by Theorem 5 of Collins (1971). In particular,
R1(β1) = 0. But β1 ∈ (α1, b

′
1], contradicting the property that (α1, b

′
1] contains no root of

R1(x1). We conclude that A2, . . . , An have no common zeros in (α1, b
′
1]×R×· · ·×R×{an},

hence in [α1, b
′
1]× [a2, b2]× · · · × [an−1, bn−1]× {an}.

It remains to show that A2, . . . , An have no common zeros in {α1} × [a2, b2] × · · · ×
[an−1, bn−1]×{an}. Assume that there is some common zero (β1, . . . , βn) of A2, . . . , An in
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{α1}× [a2, b2]×· · ·× [an−1, bn−1]×{an}. Then, for 2 ≤ i ≤ n−1, Ai(α1, β2, . . . , βi) = 0.
Hence, for i = 2, 3, . . . , n − 1, βi = αi, because (ai, bi) is a strong isolating interval
for αi as a root of Ai(α1, . . . , αi−1, xi) 6= 0. Therefore An(α1, . . . , αn−1, an) = 0, con-
trary to the hypothesis that (an, bn) is a strong isolating interval for αn as a root of
An(α1, . . . , αn−1, xn) 6= 0. We conclude that {α1} × [a2, b2] × · · · × [an−1, bn−1] × {an}
contains no common zeros of A2, . . . , An. The proof that A2, . . . , An have no common
zeros in [α1, b

′
1]× [a2, b2]× · · · × [an−1, bn−1]× {an} is complete.

In order to prove that the algorithm correctly delivers a list L according to the speci-
fication stated as output assertion 2, we need to consider the following assertion, which
we will denote by I. It will be shown that I is an invariant of the main loop of step 4.

l ≥ 2; T is a tree of algebraic numbers such that T has root β1 = b′1 and T has
height at most l; L is a list of (l− 1)-tuples such that (i2, . . . , il−1, N) belongs to
L if and only if, with σ1 denoting (α1, b1], there exists a path β1, . . . , βl−1 in T
such that:

for 2 ≤ j ≤ l−1, Aj has at least ij sections over σj−1 adjacent to (α1, . . . , αj),
with σj denoting the ijth such section, βj is the ijth real root of Aj(β1, . . . , βj−1,
xj) in (aj , bj), and the point (β1, . . . , βj) belongs to σj ; N > 0 is the number of
sections of Al over σl−1 which are adjacent to (α1, . . . , αl), the children of βl−1

are the N real roots of Al(β1, . . . , βl−1, xl) in (al, bl); for 1 ≤ i ≤ N , if βl denotes
the ith child of βl−1 and σl denotes the ith section of Al over σl−1 adjacent to
(α1, . . . , αl), then (β1, . . . , βl) ∈ σl.

Assertion I is established by step 3, if the reader allows the first statement of step 4,
namely the assignment of 2 to the variable l, to be considered as part of step 3. [That N
is equal to the number of sections of A2 over σ1 which are adjacent to (α1, α2) is proved
by exhibiting a bijection φ between the set of sections of A2 over σ1 adjacent to (α1, α2)
and the set of real roots of A2(β1, x2) in (a2, b2). The mapping φ is defined and proved
bijective by analogy with the definition and proof of bijectivity of the mapping φ in the
proof of Theorem 2.3.]

Let us now show that our assertion I is indeed an invariant of the outermost loop (“for
l = 2, . . . , n − 1 do . . .”) of step 4. Assume that I is true prior to an iteration of this
outermost loop. The “while” loop (“while L 6= () do . . .”) processes every element of L,
in turn. Let us consider what happens for a typical element (i2, . . . , il−1, N) of L. By the
assertion I, there is a path β1, . . . , βl−1 in T such that, for 2 ≤ j ≤ l − 1, βj is the ijth
real root of Aj(β1, . . . , βj−1, xj) in (aj , bj). So the first “for” loop (“for j = 2, . . . , l − 1
do . . . ”) works correctly.

Let 1 ≤ i ≤ N , let βl be the ith child of βl−1 and let σl be the ith section of Al over
σl−1 adjacent to (α1, . . . , αl). [Note that βl and σl are well defined, by the assertion I.]
We compute isolating intervals for the real roots γ1 < · · · < γN ′ of Al+1(β1, . . . , βl, xl+1)
in (al+1, bl+1). We must prove that Al+1 has N ′ sections over σl which are adjacent to
(α1, . . . , αl+1). We shall do this by exhibiting a bijection φ from the set of sections of
Al+1 over σl adjacent to (α1, . . . , αl+1) to the set of real roots of Al+1(β1, . . . , βl, xl+1)
in (al+1, bl+1).

Let σl+1 be a section of Al+1 over σl which is adjacent to (α1, . . . , αl+1). By The-
orem 5.1, in which we take n = l + 1 and b1 = β1(= b′1), σl+1 and {β1} × [a2, b2] ×
· · · × [al+1, bl+1] have non-empty intersection. That is, there is a point (β1, β

′
2, . . . , β

′
l+1)

of σl+1 such that β′
j ∈ [aj , bj ], for all j in the range 2 ≤ j ≤ l + 1. It follows from the

assertion I that β′
j = βj , for all j, 2 ≤ j ≤ l + 1. Therefore β′

l+1 ∈ (al+1, bl+1). We
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define φ(σl+1) = β′
l+1. Now φ is a one-to-one mapping since Al+1 is delineable over σl,

by hypothesis.
Let β′

l+1 be a real root of Al+1(β1, . . . , βl, xl+1) in (al+1, bl+1). Then the point
(β1, . . . , βl) lies in σl, by assertion I, and hence the point (β1, . . . , βl, β

′
l+1) lies in some sec-

tion σl+1 of Al+1 over σl. By Theorem 5.1, in which we take n = l+1 and b1 = β1(= b′1),
σl+1 is adjacent to (α1, . . . , αl+1). Clearly φ(σl+1) = β′

l+1. We have shown that φ is also
an onto mapping, completing the proof of bijectivity of φ, and of the assertion that Al+1

has N ′ sections over σl which are adjacent to (α1, . . . , αl+1).
Therefore, the “for” loop (“for i = 1, . . . , N do . . . ”) extends T and L′ in precisely the

manner required so that, when every element of L has been processed, the assertion I
will be valid, with l + 1 in place of l and L′ in place of L. Since the last two actions of
the outermost loop body set L equal to L′ and (effectively) l equal to l + 1, the truth of
assertion I is restored at the end of the loop iteration being considered.

We have shown that assertion I is established by step 3, and is preserved by each
iteration of the main loop of step 4. Hence I is true upon termination of step 4, at which
point l = n. The required assertion about L can now be read off from part of the invariant
assertion I (in which we put l = n). 2

We can give an intuitive argument that this algorithm is unlikely to fail. It suffices to
argue that none of the resultants computed in Step 1 of the algorithm is likely to be zero.
Let us call these successive resultants Rn−2, Rn−3, . . . , R1. An−1 has only a finite number
of irreducible factors. There is no relation between An and An−1 that would lead one to
expect that one of these irreducible factors would also be a factor of A(x1, . . . , xn−1, an),
and thus Rn−2 is unlikely to be zero. (An−1 might be a factor of the discriminant of An,
or a factor of the resultant of An with some other polynomial, but there is no reason to
expect that this would lead to a common factor after the rational number an has been
substituted for xn in An.) Continuing, there is similarly no reason to expect that An−2

and Rn−2 would have a common factor. The argument is the same for n− 3, . . . , 1.
In spite of the probabilities, the algorithm might fail. But then there is an easy remedy:

simply change the isolating interval [an, bn], for example, by refining the interval.
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