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We investigate a minimal U (1)′ extension of the Standard Model with one extra complex scalar and 
generic gauge charge assignments. We use a type-I seesaw mechanism with three heavy right handed 
neutrinos to illustrate the constraints on the charges, on their mass and on the mixing angle of the 
two scalars, derived by requiring the vacuum stability of the scalar potential. We focus our study on 
a scenario which could be accessible at the LHC, by selecting a vacuum expectation value of the extra 
Higgs in the TeV range and determining the constraints that emerge in the parameter space. To illustrate 
the generality of the approach, specific gauge choices corresponding to U (1)B−L , U (1)R and U (1)χ are 
separately analyzed. Our results are based on a modified expression of one of the β functions of the 
quartic couplings of the scalar potential compared to the previous literature. This is due to a change in 
the coefficient of the Yukawa term of the right handed neutrinos. Differently from previous analysis, we 
show that this coupling may destabilize the vacuum.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

In the Standard Model (SM), it has been observed since long 
ago [1–4] that the requirement of vacuum stability up to the uni-
fication scale and beyond, and the absence of a Landau pole under 
the renormalization group (RG) evolution, constrain the value of 
the Higgs mass (mh) and the size of the Yukawa couplings of the 
heavy fermions [5,6]. Lower and upper bounds on mh have been 
derived and shown to depend more or less significantly on the 
size of Yt , the Yukawa of the top quark, which can drive the quar-
tic Higgs coupling to become negative beyond a certain scale. This 
situation can be ameliorated with the addition of extra scalars, ei-
ther in the form of SM singlets, in some cases even taking the 
role of dark matter components [7,8], or by a modification of the 
scalar potential. Crucial in this type of analysis is the sign and the 
size of the various contributions to the βλ function of the quar-
tic Higgs coupling (λ), which is negative for fermions and positive 
for scalars. At the same time, the size of the same coupling at the 
electroweak scale (v), i.e. at the starting scale of the evolution, 
turns out to be of extreme importance in driving λ either towards 

* Corresponding author.
E-mail addresses: claudio.coriano@le.infn.it (C. Corianò), luigi.dellerose@le.infn.it

(L. Delle Rose), carlo.marzo@le.infn.it (C. Marzo).
http://dx.doi.org/10.1016/j.physletb.2014.09.001
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
a non-perturbative region or to render the Higgs potential unstable 
in the far ultraviolet.

In this work we are going to investigate the constraints imposed 
by the condition of vacuum stability in a rather minimal extension 
of the SM enlarged by an extra U (1)′ symmetry and one extra 
Higgs scalar. This is a SM singlet which triggers the spontaneous 
breaking of the extra abelian symmetry with a vev v ′ assumed to 
lay around the TeV scale. Obviously, this specific choice selects an 
interesting subregion of parameter space with a heavy Higgs in the 
TeV range which could be explored at the LHC in the near future. 
In particular, we are going to examine how these constraints are 
modified by the inclusion of three right handed neutrinos, taken 
to be SM singlets. We require the mass of the SM neutrinos to be 
generated by a type-I seesaw mechanism [9–11], with a Majorana 
mass scale chosen in the TeV region and a Yukawa coupling Yν of 
the three SM neutrinos of � 10−6. Our results differ from previ-
ous interesting analysis of a similar model [12], investigated in the 
specific case of a U (1)B−L symmetry, being based on a recalcu-
lated expression of one of the β functions of the quartic couplings 
of the scalar potential, as specified below. We will see that the re-
quirement of vacuum stability under the evolution sets significant 
constraints on the mass of the right handed neutrinos. The result 
will also depend on the mixing angle θ between the heavy and the 
light Higgs and on the mass of the heaviest scalar mh .
2
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2. The model

The model that we consider has the family structure of the 
SM with three generations, and a gauge symmetry of the form 
SU(3)c × SU(2)w × U (1)Y × U (1)′ , which is the SM gauge group 
enlarged by a single extra U (1)′ . We allow a kinetic mixing be-
tween the two U (1) abelian fields, which can be reabsorbed in the 
definition of the gauge covariant derivative as

Dμ = ∂μ + ig3T aGa
μ + ig2ta W a

μ + igY Bμ

+ i
(

g̃Y + g′Y ′)B ′
μ, (1)

where g and g′ are the coupling constants associated with U (1)Y
and U (1)′ respectively and Y and Y ′ are the corresponding 
charges. The coupling g̃ describes the mixing.

Our choice for the scalar sector is deliberately minimal, char-
acterized by the usual SM SU(2)w Higgs doublet H enlarged just 
by an extra SM singlet complex scalar φ. In this case, the most 
general renormalizable scalar potential is given by

V (H, φ) = m2
1 H† H + m2

2φ
†φ + λ1

(
H† H

)2 + λ2
(
φ†φ

)2

+ λ3
(

H† H
)(

φ†φ
)

(2)

constrained by the following conditions on its quartic couplings

λ1 > 0, λ2 > 0, 4λ1λ2 − λ2
3 > 0, (3)

in order to ensure its stability. The ground state of the theory is 
characterized by the vacuum expectation values (vev) of the dou-
blet H and of the singlet φ fields

〈H〉 = 1√
2

(
0
v

)
, 〈φ〉 = v ′

√
2
, (4)

whose expressions, determined by the minimization conditions, 
take the form

v2 = m2
2λ3/2 − m2

1λ2

λ1λ2 − λ2
3/4

, v ′2 = m2
1λ3/2 − m2

2λ1

λ1λ2 − λ2
3/4

. (5)

After spontaneous symmetry breaking, the mixing between the 
two scalar fields can be removed by a rotation into the two mass 
eigenstates h1 and h2(

h1

h2

)
=

(
cos θ − sin θ

sin θ cos θ

)(
H
φ

)
(6)

where the mixing angle θ is given by

tan 2θ = λ3 v v ′

λ1 v2 − λ2 v ′ 2
, (7)

with −π/2 < θ < π/2. Their masses are given by

m2
h1,2

= λ1 v2 + λ2 v ′ 2 ∓
√(

λ1 v2 − λ2 v ′ 2
)2 + (

λ3 v v ′)2
, (8)

and the three quartic couplings are expressed in terms of these as

λ1 = m2
h1

4v2
(1 + cos 2θ) + m2

h2

4v2
(1 − cos 2θ),

λ2 = m2
h1

4v ′ 2
(1 − cos 2θ) + m2

h2

4v ′ 2
(1 + cos 2θ),

λ3 = sin 2θ

(m2
h2

− m2
h1

2v v ′

)
, (9)

which can be used to set the initial conditions on the scalar cou-
plings through the physical masses mh1,2 , the two vevs v , v ′ and 
the mixing angle θ .
Table 1
Charge assignment of fermions and scalars in the U (1)′ SM extension.

SU(3)c SU(2)w U (1)Y U (1)′

Q L 3 2 1/6 zQ

uR 3 1 2/3 zu

dR 3 1 −1/3 2zQ − zu

L 1 2 −1/2 −3zQ

eR 1 1 −1 −2zQ − zu

H 1 2 1/2 zH

νR,k 1 1 0 zk

φ 1 1 0 zφ

Table 2
Specific charge assignments in the U (1)B−L , U (1)R and U (1)χ models.

Q L uR dR L eR νR H φ

U (1)B−L 1/3 1/3 1/3 −1 −1 −1 0 2
U (1)R 0 −1 1 0 1 −1 −1 2
U (1)χ 1/5 −1/5 3/5 −3/5 −1/5 −1 −2/5 2

We show in Table 1 the charge assignments of a general non-
exotic U (1)′ extension [13]. The fermion charges are obtained by 
imposing the cancellation of all the anomalies, including the grav-
itational ones. We assume the charges of the U (1)′ to be family 
universal, with the equations for the gravitational anomalies im-
posed symmetrically respect to the three families, which sets the 
charges of the three right handed neutrinos to be equal (zk ≡ zν , 
k = 1, 2, 3). The solutions of the anomaly equations are parameter-
ized by two free U (1)′ charges, zQ and zu , of the left handed quark 
doublet Q L and of the right handed up quark uR . Notice that the 
generators of the extra abelian symmetry can be re-expressed, in 
general, as a linear combination of the SM hypercharge, Y , and the 
B − L quantum number, Y B−L ,

Y ′ = αY Y + αB−L Y B−L, (10)

where we have denoted with B and L the baryon and lepton num-
bers respectively. In Eq. (10) the coefficients αY and αB−L are 
functions of the set of the independent charges of each model real-
ization, as determined by the conditions of anomaly cancellations, 
and are explicitly given by

αY = 2zu − 2zQ , αB−L = 4zQ − zu . (11)

Concerning all those charges not constrained by the anomaly can-
cellation, we can use the U (1)′ gauge invariance of the Yukawa 
Lagrangian to fix them. In particular, the scalar doublet charge zH

is fixed by the SM Yukawa interactions to zH = zu − zQ . Other 
constraints on zk and zφ can be imposed from additional Yukawa 
terms which are introduced to implement the type-I seesaw mech-
anism and, therefore, play an important role in the generation of 
small neutrino masses for the SM neutrinos. Notice that we will 
consider only dimension-4 operators, namely the Yukawa interac-
tions which generate, through spontaneous symmetry breaking, a 
Dirac mass term for the SM neutrinos and a Majorana mass for the 
right handed ones

Lyuk = LSM yuk − Yν L · Hνc
R − Y NφνRνR + h.c. (12)

The requirement of their gauge invariance fixes the remaining 
charges to zν = −4zQ + zu and zφ = −2zν .

For definiteness, in the following, we will also consider three 
particular charge assignments, corresponding to the models
U (1)B−L , U (1)R and U (1)χ , obtained as special cases of the gen-
eral assignments given in Table 1. These are given in Table 2. 
The U (1)χ can emerge, for instance, from the SO(10) grand uni-
fied theory (GUT) via SO(10) → SU(5) × U (1)χ . We will consider 



C. Corianò et al. / Physics Letters B 738 (2014) 13–19 15
Fig. 1. (a) Maximum scale up to which the abelian gauge sector remains perturbative, as a function of the initial condition on g′ at the electroweak scale. The gauge mixing 
coupling g̃ is assumed to vanish at the same scale. (b) and (c) Running of the g′ and g̃ couplings with initial conditions g′ = 0.1 and g̃ = 0 at the electroweak scale.
these charge assignments simply as specific realizations of the ex-
tra abelian symmetry, stressing, for the rest, only on the general 
features that emerge from the requirement of vacuum stability in 
these models, with no reference to their GUT origin.

After spontaneous symmetry breaking, the effective Lagrangian 
describing the neutrino masses will contain Dirac (Md) and Majo-
rana (Mm) mass terms of the form

Lmν = −νL Md νc
R − 1

2
νR MmνR + h.c., (13)

where the mass matrices

Md = Yν
v√
2
, Mm = √

2Y N v ′ (14)

inherit the flavour index structure from the corresponding Yukawa 
ones. As a result of the seesaw mechanism, the mass of the heavy 
neutrino is of the order of the Majorana mass (mνh ∼ Mm) while 
the mass of the SM neutrinos (mν ∼ 1 eV) is given by the relation

mν ∼ 1

2
√

2

Y 2
ν v2

Y N v ′ . (15)

Being interested in a vev v ′ of the order of the TeV, the Yukawa Yν

must be � 10−6, which is essential to reproduce the light neutrino 
masses, and, therefore, can be neglected in the RG evolution. On 
the other hand, Y N , the Yukawa of the heavy right handed neutri-
nos, could be even of O (1) and, henceforth, it plays an important 
role.

All the couplings of the Lagrangian evolve with RG equations 
whose general expressions are too lengthy to be given here. We 
just report the expressions of the one-loop β functions related to 
the parameters λi , for the simpler case of U (1)B−L , having retained 
only the top quark and the right handed neutrino contributions in 
the fermion sector. They take the form

βλ1 = 24λ2
1 + λ2

3 + λ1
(
12Y 2

t − 3g2 − 3g̃2 − 9g2
2

)

− 6Y 4
t + 3g4

8
+ 3

4
g2 g̃2 + 3

4
g2 g2

2

+ 3g̃4

8
+ 3

4
g2

2 g̃2 + 9g4
2

8
,

βλ2 = 8λ2 tr
(
Y 2

N

) − 48λ2 g′ 2 − 16 tr
(
Y 4

N

) + 96g′ 4 + 20λ2
2 + 2λ2

3,

βλ3 = 4λ2
3 + 12λ1λ3 + 8λ2λ3 + λ3

{
4 tr

(
Y 2

N

) + 6Y 2
t − 3g2

2

− 3g̃2

− 9g2
2 − 24g′ 2

}
+ 12g′ 2 g̃2. (16)
2 2
Notice that βλ2 differs from the expression given in the previous 
literature in regards to the coefficient in front of Y 4

N (see for in-
stance [12]). This change impacts considerably the RG running of 
λ2, which, for certain values of Y N , does not stay positive along 
the entire evolution, as found in previous studies, compromising 
the vacuum stability requirements given in Eq. (3).

3. Numerical results

3.1. Weakly coupled evolution

In support of a perturbative picture, based on a weak coupling 
expansion, we start our analysis by demanding that the new gauge 
coupling constants, g′ and g̃ , introduced in the abelian extension, 
remains less than 

√
4π , up to some scale Q . Indeed, the param-

eters upon which the perturbative expansions are performed are 
usually of the form 

√
α = g/

√
4π , rather then g . This requirement 

gives

g′(Q ′) <
√

4π, g̃
(

Q ′) <
√

4π Q ′ ≤ Q , (17)

with the initial conditions at the electroweak scale given by 
g′(Q ew) = g′ and g̃(Q ew) = 0, where g′ is a free parameter and we 
have chosen Q ew ≡ mt . In the following we will always assume the 
vanishing of the abelian kinetic mixing g̃ at the electroweak scale, 
which is, however, reintroduced by the RG evolution at higher 
scales.

In Fig. 1(a) we have shown the maximum scale Q up to which 
the perturbative regime in the abelian sector is maintained as 
a function of the initial condition g′ . Results are shown for the 
three U (1)′ extensions discussed above, U (1)B−L , U (1)R , U (1)χ . 
For initial conditions g′ < 0.3, the plots show that a perturbative 
evolution is allowed up to the Planck scale for all the three mod-
els. A more sizeable value of g′ at the electroweak scale shows 
that the evolution violates the weak coupling conditions already at 
a scale of 106–107 GeV, questioning the use of a perturbative ex-
pansion beyond such a scale. This trend is quite different for the 
three models, with the U (1)R case more significantly affected by 
the large growth of the coupling and the U (1)χ case the least. In 
the case of U (1)B−L , the weak coupling condition is well respected 
in this model beyond the Planck scale, for initial conditions on the 
coupling up to g′ ∼ 0.35.

In Fig. 1(b) we assume the initial conditions g′ = 0.1 and 
g̃ = 0, which guarantee a perturbative evolution up and beyond 
the Planck scale for the three models, and investigate the changes 
induced by the evolution on the g′ coupling. Up to a large scale of 
1019 GeV these are found to be tiny, at the level of few per mille, 
showing that for this choice of initial condition, they are essen-
tially frozen. The running of g̃ , which quantifies the impact of the 
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Fig. 2. Allowed values of the U (1)′ charges, zQ and zu , for which the perturbative regime is preserved up to 105 GeV (blue region), 109 GeV (green region), 1015 GeV (yellow 
region) and 1019 GeV (red region). The first two plots refer to the type-I seesaw scenario for, respectively, g′ = 0.1 and g′ = 0.2 at the electroweak scale. The last one is given 
in terms of two combinations αY = 2zu − 2zQ and αB−L = 4zQ − zu for g′ = 0.1. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)
kinetic mixing on the evolution, is shown in Fig. 1(c), assuming its 
vanishing at the electroweak scale. It grows/decreases rather mod-
estly in the case of U (1)B−L and of U (1)R respectively, and stays at 
zero in the case of U (1)χ over the entire evolution, as it should be, 
being the SO(10)-inspired U (1)χ model the only orthogonal U (1)′
extension of the SM.

3.2. Weak coupling for a general U (1)′

It is also interesting to analyze the effects of the charge assign-
ments on the validity of perturbation theory in a general abelian 
gauge sector, extending the result discussed above. Indeed, choos-
ing a reference value of the initial condition on g′ , one can repeat 
the previous analysis, and investigate the weakly coupled region 
of the theory as a function of the two free U (1)′ charges zQ and 
zu , here taken as continuous parameters. In Fig. 2 we show the re-
gion in parameter space of the two independent charges in which 
perturbation theory is maintained up to 105 GeV (blue region), 
109 GeV (green region), 1015 GeV (yellow region) and 1019 GeV
(red region) for two different initial values (g′ = 0.1 and g′ = 0.2) 
at the electroweak scale. The left and the central panel show that 
the weak coupling expansion up to the Planck scale is tightly 
bound by charge values |zQ | � 1.5 and |zu | � 3. At the same time, 
the parameter region where the weak coupling conditions are pre-
served becomes narrower as the initial conditions on the coupling 
grows. We show in the right panel a plot of the same region in 
the variables αY and αB−L as defined by Eq. (11). Notice from this 
last plot that the U (1)B−L projection, obtained for αY = 0, covers 
the central (red) region characterized by the highest weak coupling 
scale with |αB−L | < 5.

3.3. The stability bounds

In the SM the analysis of the vacuum stability of the scalar po-
tential is particularly simple and coincides with the requirement 
of the positivity of the only quartic coupling of the model. In a 
more complex model with two or more scalars, the full structure 
of the interaction potential must be taken into account, which gen-
erally involves nontrivial relations among the quartic coefficients. 
In our case, for instance, one has to study the constraints on the 
three couplings λ1,2,3 given in Eq. (3). Their values at the elec-
troweak scale are deduced using Eq. (9) in terms of the physical 
scalar masses, the two vacuum expectation values and the mixing 
parameter θ .

In the following analyses we fix the mass of the light scalar 
mh1 at the SM Higgs mass of 125 GeV. In the SM Yukawa sector 
we retain only the top quark. Moreover, we use g′ = 0.1 and g̃ = 0
at the electroweak scale. The free parameters of our models are, 
therefore, the mass of the heavy scalar mh2 , the vacuum expec-
tation value v ′ of the SM singlet scalar, the scalar sector mixing 
angle θ and the Yukawa coupling Y N .

A lower limit on the v ′ vev can be deduced from the constraint

M Z ′/g′ ≥ 7 TeV (18)

obtained by LEP-II at 99% C.L. [14]. Indeed, assuming no-mixing in 
the neutral boson sector, g̃ = 0, the Z ′ mass is simply given by 
M Z ′ = |zφ |g′v ′ . Therefore, in our case, using the fact that in all 
the three models that we investigate |zφ | = 2, we adopt the lower 
bound v ′ ≥ 3.5 TeV.

The mixing in the scalar sector modifies the light scalar cou-
plings to fermions and bosons with respect to the SM Higgs by 
a factor cos θ . Therefore the electroweak precision measurements 
can be used to constrain the scalar-mixing angle θ through the S , 
T , U parameters [15], obtaining, for a mh1 = 125 GeV,

θ � 0.44 with mh2 ≥ 500 GeV. (19)

In the type-I seesaw scenario, the smallness of the light neutrino 
masses implies, as we have already seen, Yν � 10−6 which is too 
small to affect the RG equations of the scalar potential. This situa-
tion is typical of models with a type-I seesaw, and it is not shared 
by other cases, for instance by models with an inverse-seesaw 
mechanism where neither Yν nor Y N are constrained to small 
values. Regarding the heavy neutrinos, for the sake of simplicity, 
we assume their masses degenerate in flavour space, mνh ≡ m1,2,3

νh
. 

This assumption simplifies the structure of the Yukawa coupling 
Y N which becomes proportional to the unit matrix.

We are now going to analyze the RG evolution of the scalar 
sector imposing the vacuum stability conditions defined in Eq. (3)
together with the triviality constraints on the quartic scalar cou-
plings and on the abelian gauge couplings given in Eq. (17).
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Fig. 3. Regions in the (mh2 , θ) parameter space in which the stability conditions are preserved up to 105 GeV (blue), 109 GeV (green), 1015 GeV (yellow) and 1019 GeV (red) 
in the U (1)B−L (a), U (1)R (b) and U (1)χ (c) in the type-I seesaw scenario with v ′ = 3.5 TeV and mνh = 100 GeV. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 4. Regions of the (mh2 , mνh ) plane where the stability is preserved up to 105 GeV (blue), 109 GeV (green), 1015 GeV (yellow) and 1019 GeV (red) for a U (1)B−L extension. 
We have chosen v ′ = 3.5 TeV and θ = 0.05, 0.1, 0.15. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.)
3.3.1. Results
In Fig. 3 we show the stability regions in the (mh2 , θ) parame-

ter space. In this case the heavy neutrino masses have been fixed 
to mνh = 100 GeV. As usual the blue, green, yellow and red re-
gions indicate the parameter space in which the stability condition 
is maintained up to 105 GeV, 109 GeV, 1015 GeV and 1019 GeV
respectively. As we have already mentioned in the previous sec-
tions, the Yν Yukawa coupling is too small to affect the RG equa-
tions and can be neglected. Moreover, for a heavy neutrino mass 
mνh ∼ 100 GeV, Y N is also negligible. For a value of the mass of 
the heavy Higgs mh2 � 2 TeV, the stability regions of the potential 
are found to cover an interval characterized by small values of the 
mixing angle θ . Interestingly, the interval overlaps with the one 
predicted by the bound given in Eq. (19). This suggests that the 
smallness of the mixing between the two scalars can be inferred 
also from RG stability arguments, beside the indications coming 
from electroweak precision data. Such values of the mass of the 
heavy Higgs are necessary in order to achieve vacuum stability up 
to the GUT scale. From Fig. 3 it is also evident that the three charge 
assignments considered here do not provide very different results. 
Indeed, the shape of the allowed regions remain qualitatively the 
same. The only major difference between the three SM extensions 
analyzed here is in the U (1)R model, in which the stability regions 
up to 1015 GeV and 1019 GeV appear to be enlarged, with respect 
to the other two cases, and select smaller values of the mixing 
angle θ . This behaviour shows that the effects of the charge assign-
ments, which are in general quite small, can nevertheless influence 
the vacuum stability in specific regions of the parameter space.

In Fig. 4 we investigate the stability regions in the (mh2 , mνh )

parameter space. Stability of the potential along the RG evolu-
tion reaches the Planck scale even for a heavy neutrino up to 
mνh ∼ 1 TeV, for v ′ = 3.5 TeV. We observe that the heavy neu-
trino mass does not influence the upper bound on the heavy scalar 
mass, which essentially originates for the choice of v ′ and θ , as 
one can deduce from Fig. 3.

As we raise the masses of the heavy neutrinos, the effect 
of Y N quickly overcome all the other contributions in the run-
ning of λ2, driving it towards negative values and, therefore, 
compromising the stability of the scalar sector. This behaviour 
is due to the large and negative Y 4

N term in the β function of 
λ2 and can be exploited to extract upper bounds on the heavy 
neutrino masses. Fig. 5(a) illustrates the evolution of λ2 in the 
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Fig. 5. (a) The evolution of λ2 for different values of the heavy neutrino mass mνh with mh2 = 500 GeV. (b) The maximum scale up to which the stability conditions are 
fulfilled as a function of the heavy neutrino mass mνh . The type-I seesaw in the U (1)B−L extension is considered, with v ′ = 3.5 TeV and θ = 0.1.

Fig. 6. (a) Stability regions, up to the Planck scale, in a U (1)B−L extension with type-I seesaw, for three different vacuum expectation values of the heavy Higgs. (b) The 
maximum scale up to which the stability conditions are achieved as a function of mνh . The black (blue) lines correspond to v ′ = 3.5 TeV (v ′ = 7 TeV). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)
U (1)B−L extension for different values of the heavy neutrino 
mass, namely mνh = 100, 1000, 1500 GeV, which correspond, re-
spectively, to Y N  0.02, 0.2, 0.3. This clearly shows that the λ2
quartic coupling quickly turns to negative values as the neutrino 
mass increases. Indeed, a mνh ∼ 2 TeV, with v ′ ∼ 3.5 TeV, easily 
violates the vacuum stability requirement below the TeV scale.

It is then interesting to study the behaviour of the maximum 
scale, up to which the stability is maintained, as a function of Y N
or, equivalently, of mνh . This is shown in Fig. 5(b) for different 
values of the heavy Higgs mass. One can deduce that the heavy 
neutrino mass cannot be larger than 600–1000 GeV in order to 
achieve the stability up to the GUT or Planck scales. Notice that 
there are no significant changes on the limiting value of mνh be-
tween the two scales, due to the presence of an asymptote in the 
three curves, which shows a boundless stability. One can easily ob-
serve that the allowed region for mνh increases for a bigger mh2 . 
Indeed, a heavier h2 implies larger values for the quartic couplings 
at the electroweak scale, which compensate, at least in the range 
600–1000 GeV, the decreasing effect of a bigger mνh .

We conclude our analysis with some comments on the impli-
cations for the stability of the potential under a change in the vev 
of the extra SM singlet scalar φ, v ′ . In Fig. 6(a) we have depicted 
the regions in the (mh2 , θ) space in which stability is achieved up 
to the Planck scale for three different values of the v ′ vacuum ex-
pectation value. It is interesting to observed that a bigger v ′ only 
affects the small θ region, extending the maximum allowed values 
of the heavy scalar mass. On the other hand, as one can see from 
Fig. 6(b), the stability bounds on the heavy neutrino masses triv-
ially scale with v ′ . Indeed black curves correspond to v ′ = 3.5 TeV
while the blue ones are obtained for v ′ = 7 TeV. This is due to the 
fact that the RG equations depend explicitly on the dimensionless 
Y N and Y N = mνh /(

√
2v ′).

If v ′ is pushed well above the TeV scale, the SM particles would 
decouple from the new degrees of freedom introduced by the addi-
tion of the extra abelian gauge group and of the heavy scalar field. 
In such a case the evolution of the parameters of the scalar sec-
tor are controlled by the SM particle content alone only up to the 
U (1)B−L spontaneous symmetry breaking scale. Only at this scale 
the complete model should be taken into account, and the evolu-
tion would be driven by the β functions presented in Eq. (16). In 
this case, as pointed out in [16], the tree-level threshold correc-
tions in the scalar sector have to be included and this would help 
in stabilizing the scalar potential. On the other hand, as v ′ reaches 
higher scales, it would be possible to reproduce the small neutrino 
masses even with Yν ∼ O (1). In this situation, the larger values of 
the Yukawa’s of the light neutrinos would effect the RG evolution 
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and should be taken into account. The analysis of this scenario is 
beyond the scope of the present paper and it will be discussed in 
a separate work.

4. Conclusions

We have presented results of a numerical study of the RG equa-
tions for a generic U (1)′ extension of the SM with the inclusion of 
one extra complex scalar and three heavy right handed neutrinos. 
We have considered a type-I seesaw mechanism for the generation 
of the small masses of the three light SM neutrinos. The U (1)′
charges have been determined by requiring the cancellation of the 
gauge and gravitational anomalies. Our work has been based on a 
re-analysis of the evolution, which is drastically affected by the co-
efficient of the Yukawa’s of the right handed neutrinos. As we have 
pointed out in the introduction, a crucial change in the RG equa-
tion for the coefficient of the quartic coupling λ2 makes such a 
coupling negative even at the TeV scale, destabilizing the potential.

We have discussed, in the 2-parameter class of solutions that 
we have investigated, three specific charge assignments, corre-
sponding to U (1)B−L , U (1)R and U (1)χ , showing that their RG 
evolutions share similar behaviour. We have also focused our in-
terest on a specific scenario in which the vev of the extra Higgs 
is in the TeV scale, which could be studied at the LHC. We have 
shown that within this scenario, for a heavy Higgs in the TeV range 
and a right handed neutrino of mass between 100 and 1000 GeV, 
all the constraints coming from the vacuum stability of the scalar 
potential are satisfied. For this reason, larger mass values of the 
right handed neutrino do not allow to extend the validity of these 
models up to the Planck scale. More details of this analysis will be 
presented in a forthcoming work.

Acknowledgement

We thank Lorenzo Basso for correspondence.

References

[1] N. Cabibbo, L. Maiani, G. Parisi, R. Petronzio, Nucl. Phys. B 158 (1979) 295.
[2] M. Lindner, Z. Phys. C 31 (1986) 295.
[3] M. Lindner, M. Sher, H.W. Zaglauer, Phys. Lett. B 228 (1989) 139.
[4] C. Ford, D. Jones, P. Stephenson, M. Einhorn, Nucl. Phys. B 395 (1993) 17, 

arXiv:hep-lat/9210033.
[5] F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl, M. Shaposhnikov, J. High Energy Phys. 

1210 (2012) 140, arXiv:1205.2893.
[6] D. Buttazzo, et al., J. High Energy Phys. 1312 (2013) 089, arXiv:1307.3536.
[7] M. Kadastik, K. Kannike, A. Racioppi, M. Raidal, J. High Energy Phys. 1205 

(2012) 061, arXiv:1112.3647.
[8] C.-S. Chen, Y. Tang, J. High Energy Phys. 1204 (2012) 019, arXiv:1202.5717.
[9] M. Gell-Mann, P. Ramond, R. Slansky, Conf. Proc. C 790927 (1979) 315, 

arXiv:1306.4669.
[10] R.N. Mohapatra, G. Senjanovic, Phys. Rev. Lett. 44 (1980) 912.
[11] T. Yanagida, Conf. Proc. C 7902131 (1979) 95.
[12] A. Datta, A. Elsayed, S. Khalil, A. Moursy, Phys. Rev. D 88 (2013) 053011, 

arXiv:1308.0816.
[13] T. Appelquist, B.A. Dobrescu, A.R. Hopper, Phys. Rev. D 68 (2003) 035012, 

arXiv:hep-ph/0212073.
[14] G. Cacciapaglia, C. Csaki, G. Marandella, A. Strumia, Phys. Rev. D 74 (2006) 

033011, arXiv:hep-ph/0604111.
[15] S. Dawson, W. Yan, Phys. Rev. D 79 (2009) 095002, arXiv:0904.2005.
[16] J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee, A. Strumia, J. High Energy 

Phys. 1206 (2012) 031, arXiv:1203.0237.

http://refhub.elsevier.com/S0370-2693(14)00651-0/bib4361626962626F3A313937396179s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib4C696E646E65723A31393835756Bs1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib4C696E646E65723A313938387777s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib466F72643A313939326D76s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib466F72643A313939326D76s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib42657A72756B6F763A323031327361s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib42657A72756B6F763A323031327361s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib42757474617A7A6F3A32303133757961s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib4B6164617374696B3A323031316161s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib4B6164617374696B3A323031316161s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib4368656E3A32303132666161s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib47656C6C4D616E6E3A313938307673s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib47656C6C4D616E6E3A313938307673s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib4D6F686170617472613A313937396961s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib59616E61676964613A313937396173s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib44617474613A323031336D7461s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib44617474613A323031336D7461s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib417070656C71756973743A323030326D77s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib417070656C71756973743A323030326D77s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib4361636369617061676C69613A32303036706Bs1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib4361636369617061676C69613A32303036706Bs1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib446177736F6E3A323030397978s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib456C6961734D69726F3A323031326179s1
http://refhub.elsevier.com/S0370-2693(14)00651-0/bib456C6961734D69726F3A323031326179s1

	Vacuum stability in U(1)-prime extensions of the Standard Model with TeV scale right handed neutrinos
	1 Introduction
	2 The model
	3 Numerical results
	3.1 Weakly coupled evolution
	3.2 Weak coupling for a general U(1)'
	3.3 The stability bounds
	3.3.1 Results


	4 Conclusions
	Acknowledgement
	References


