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ABSTRACT

Hankel and Toeplitz mosaic matrices are block matrices with Hankel or Toeplitz blocks,
respectively. It is shown that Hankel and Toeplitz mosaic matrices possess reflexive gener-
alized inverses which are Bezoutians. Furthermore the Bezoutian structure of the Moore-
Penrose and group inverses is investigated.

1. INTRODUCTION

Hankel matrices [s;1;] and Toeplitz matrices [#;—;] occur in signal processing,
systems theory (partial realization), approximation theory (Padé approximation),
moment problems, orthogonal polynomials, numerical solution of integral equa-
tions, and many other fields. A striking feature of this class is that their structure
can be exploited in order to construct fast inversion algorithms. One basic fact
which is behind these constructions is that the inverses of these matrices have the
structure of a Bezoutian (for the definition see below). In particular, this leads to
formulas of Gohberg-Semencul type. With their help Hankel and Toeplitz sys-
tems can be solved fast (see [16], [11], and references therein). Similar results
are known for block Hankel and Toeplitz matrices [6], which also occur in many
applications.

It is natural to ask whether generalized inverses of Hankel and Toeplitz matrices
have also a Bezoutian or at least a Bezoutian-like structure. An affirmative answer
was given in [11] for (1,2)-generalized inverses in [9] for the Moore-Penrose
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inverse. These results led to the question of the block matrix case. It turned out
that, in order to give an answer to this question, it is natural to consider a slightly
larger class than block Hankel and Toeplitz matrices, namely Hankel and Toeplitz
mosaic matrices.

A matrix A is said to be a Hankel (Toeplitz) mosaic matrix if it can be partitioned
into blocks A = [A,1] ¢ such that the blocks A;; are Hankel (Toeplitz) and p and g
are small compared with the size of the matrix. By rearranging columns and rows,
block Hankel and Toeplitz matrices can be transformed into Hankel and Toeplitz
mosaic matrices with equal block sizes. In this sense the classes of Hankel and
Toeplitz mosaic matrices are more general than the classes. of the corresponding
block matrices.

Note that in many applications one encounters Hankel and Toeplitz mosaic ma-
trices with unequal block sizes, i.e. matrices which cannot be transformed straight-
forwardly into corresponding block matrices. For example, Moore-Penrose in-
verses of scalar Hankel matrices are related to certain Hankel mosaic matrices
(see [9]). The resultant matrix in classical algebra is a special Toeplitz mosaic
matrix. More general, systems of polynomial (called Bezout or Diophantine)
equations

q
D a5 =5 (i=1,...,p),

i=1

where a;;(A) and b;()\) are given and x;()\) are unknown polynomials with fixed
degrees, are equivalent to certain Toeplitz mosaic systems. The coefficient ma-
trix is obtained by comparing the coefficients of the polynomials. Furthermore,
convenient discretizations of integral equations

o) - /ﬂ k(t — s)p(s)ds = (1) (1€ D)

over a convex domain £ in the plane R? lead to Toeplitz mosaic matrices, the
blocks of which have equal size only if £ is a rectangle. The application of
the reduction method for singular integral equations on the unit circle includes
the solution of so-called paired systems which are special Toeplitz mosaic sys-
tems (see [5]). Moreover, generalized Padé-Hermite approximation problems are
related to Hankel mosaic matrices. In fact, let us consider the following prob-
lem.

Given integers p; (i = 1,...,p)and v; j = 1,. .., g) and formal power series

o0

Fiy =Pk,

k=0
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The problem is to find polynomials P; with degree less than v; j = 1,...,¢q)
such that

q
S THOPN) =00")  (i=1,...,p). (1.1)

=1
Comparing the coefficients in (1.1), one obtains a homogeneous system of equa-
tions with a Hankel mosaic coefficient matrix [ffjk—’)] k=0,...,;, - 1,1 =

0,...,v;—1)and asolution vector consisting of the coefficients of the polynomials
P;. For the special cases p = 1 and g = 1 this problem is called the Padé-Hermite
approximation problem. It is widely discussed in the literature (see for example
[2, 4, 13, 16, 18-20]). Very similar to the Padé approximation problems is the
realization problem in systems theory (see [14] and references therein).

The aim of this paper is to investigate the structure of generalized inverses of
Hankel and Toeplitz mosaic and block Hankel and Toeplitz matrices, generalizing
the corresponding results for scalar Hankel and Toeplitz matrices presented in [11]
and [9].

To begin with let us recall some definitions. Throughout the paper we consider
matrices with complex entries. Let A be an m X n matrix. An n X m matrix B is
said to be a reflexive generalized inverse (g-inverse) or (1,2)-generalized inverse
of A if

ABA =A (1)

and
BAB =B. (2)

If only (1) is satisfied, then B is called an inner g-inverse of A (or 1-inverse or von
Neumann g-inverse).
If in addition to (1) and (2) the equalities

(AB)* = AB 3)
and
(BA)* = BA )

hold, then B is called the Moore-Penrose inverse or pseudoinverse of A. It is well
known that the pseudoinverse always exists and is unique. We shall denote it by
AT,

If m = n and B is a reflexive g-inverse of A satisfying the additional condition

AB =BA, &)
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then B is called a group inverse of A. The group inverse exists if and only if the
kernel and range of A are direct complements, and the group inverse is always
unique. We shall denote it by A*.

For A € C, let ,(M\)(n = 1,2,...) denote the column vector [,(A) :=[1 A ---
X*~1T If A is an m x n matrix, then the polynomial

A\ 1) = LW AL (1)

is called the generating function of A. For a column vector x € C" we write X(\)
instead of X(\, u), since there is no dependence on p.

A matrix B is said to be a Hankel Bezoutian if it has a generating function of
the form

- 1 <
BOww=5—; > aMbiu) (12)
i=1

for r = 2, where a;()\) and b; (i) are polynomials; it is said to be a Toeplitz
Bezoutian if

- 1 !
B\, )= > ai\biu) (1.3)
i=1

1— A
forr = 2.

The nx n Hankel [ Toeplitz] Bezoutian is called classical in the case thatb; = a;
and by = —ay [bi(N) = a(A"HA, by(A) = —a;(A~HA"]. Any nonsingular
Bezoutian and any symmetric Bezoutian is classical (see [11]).

It can be easily checked that the Moore-Penrose inverse of a scalar Hankel
matrix is, in general, no Bezoutian, but it is a certain generalized Bezoutian in
sense of the following definition.

DEFINITION. A matrix is said to be a Hankel (Toeplitz) r-Bezoutian, for
a nonnegative integer r, if its generating function has the form (1.2) or (1.3),
respectively.

In this paper we shall formulate all results only for Hankel matrices. In every
case there is a corresponding Toeplitz analogue, which can be formulated and
proved in the same way.

Concerning scalar Hankel matrices the following is known.

THEOREM 1.1. Let H be an m x n Hankel matrix. Then

(1) [11] There exists a Bezoutian which is a reflexive generalized inverse of H.
In the case m = n this g-inverse can be chosen as a classical Bezoutian.

(2) [11] There is a matrix consisting of the first n rows and first m columns of
a nonsingular Bezoutian of order m + n — rank H which is an inner inverse of H.
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(3) [9] The Moore-Penrose inverse of H is a 4-Bezoutian. Moreover, form = n,
it is the sum of two classical Bezoutians.

(4) [unpublished] The group inverse of H provided that it exists, is the sum of
two classical Bezoutians.

Actually in [11] parts (1) and (2) are proved only for the case when H does not
have full rank, but the general case is covered by the results below. The proof of
(4) is completely analogous to that of (3) in [9].

The aim of the present paper is to generalize Theorem 1.1, except for the
assertions containing the word “classical,” to Hankel and Toeplitz mosaic matrices.

Let us agree upon calling a partitioned matrix with < p block rows and < g
block columns a (p, g)-mosaic matrix. In this sense a (p, g)-Hankel (Toeplitz)
mosaic matrix is a partitioned matrix with < p Hankel (Toeplitz) block rows and
< g Hankel (Toeplitz) block columns.

Let A = [A;]17] be a (g, p)-mosaic matrix with blocks A; € C™*%. Then the
generating function of A is, by definition, the g x p matrix polynomial

A\ 1) = [Ai(O0, I, oy

A (g, p)-mosaic matrix B is said to be a (g, p)-Hankel (or Toeplitz) Bezoutian
if its generating function admits a representation

- 1 o~ =
B(A,p) = :\-_—”-U(A)V(M)T

or

B = TV ()T,

1
1—Au
respectively, where U(\Visa g% (p+q)and ?()\) isap X (p+q) matrix polynomial.
This Bezoutian concept is a slight generalization of the one introduced by B. D.
O. Anderson and E. L. Jury in [1] (see also [22]). The Anderson-Jury Bezoutian
corresponds to the case that all integers m; and n; are equal.

The following result, generalizing Lander’s theorem and some results on block
Toeplitz matrices in [6], is proved in [12].

THEOREM 1.2. The inverse of a nonsingular (p, q)-Hankel (Toeplitz) mosaic
matrix is a (q, p)-Bezoutian; the inverse of a nonsingular (q,p)-Bezoutian is a
(p, q)-Hankel matrix.

The organization of the paper is easily described. In Section k + 1, part (k)
of Theorem 1.1 will be generalized to the mosaic case. Similarly to the scalar
case, for the first part a restriction approach will be applied, and for the second
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part an extension approach. In order to describe the Bezoutian structure of the
pseudoinverse we also exploit the extension approach and some kernel structure
properties for Hankel mosaic matrices generalizing the corresponding results for
block Hankel matrices (see [10]).

Let us note that in the paper [22] of H. Wimmer a similar problem is treated. It
is shown in principle that (p, p)-Bezoutians possess under some conditions gener-
alized inverses which are (p, p)-Hankel matrices, and it is shown how these Hankel
matrices are, related to the Bezoutians. It is now very natural to conjecture that
every (g, p)-Bezoutian possesses a generalized inverse which is a (p, g)-Hankel
matrix. However, this problem is still open.

2. RESTRICTION APPROACH

In this section we prove the following result.

THEOREM 2.1. Let H be a (p, q)-Hankel mosaic matrix (Toeplitz mosaic
matrix). Then there exists a reflexive generalized inverse B of H which is a (q, p)-
Bezoutian.

COROLLARY 2.1.  For any block Hankel matrix H there exists an Anderson-
Jury Bezoutian which is a reflexive generalized inverse of H.

For the proof we employ the familiar restriction idea which is formulated
next.

LEMMA 2.1. Let A be a given m X n matrix with rankr, and let C, €
C"X",Cy € C™™ be matrices such that A:= C,AC, is nonsingular. Then B :=
C1A™! C, is a reflexive generalized inverse of A.

Proor. We have
BAB = CiA~'C,ACLA™'C, = C1A™'C, =B

and B
ABAC) = ACIA™'C,AC, = AC,.

Hence ABA coincides with A on the range of Cy. Furthermore, ABA = A trivially
holds on the kernel of A. Since kerAC; = {0}, we have kerANimC; = {0}. It
follows by a dimension argument that im C) is a direct complement of ker A. Thus
we have ABA = A on the whole space. |



is again a (p, q)-Hankel mosaic matrix.

Dy = diag(Dm,—, (v}, D, = diag(Dy,_,,(u)), (2.5)

H = D,HDT,
whoro

LEMMA 2.3. (1) Let H be a (p, q)-Hankel mosaic matrix with m; X n; blocks,
and let uj € Ci*t',v; € Ct! where r; < nj, t; < m;. Then
— WD\, VL) -

Lemma 2.2 generalizes to (p, g)-Hankel mosaic matrices and (p, q)-Bezoutians.

BOWK) = L) Due i (u) BD e i (V)(10)

=
— TNADIN LT -

PROOF. The first assertion can be immediately checked. The second one

follows from
B = D, _fu) BDpy_(V)

is again a Bezoutian.
IS r1ankei again.

(2) Let B be an (n — r) x (m — t) Hankel Bezoutian, and u,v as above. Then

- s TR

H:=D,_(HD,_ ()

[N 5 SN NG SRSURRE

LEMMA 2.2. (1) Let H be an m x n Hankel matrix, u € C't!,y € C*1,
where r < nandt < m. Then

D) = k: o . :)jk,rows. 2.4)
O PR 0 uo ul o e ur

Ug Uy e U, O e 0
0 Uy u e U e 0
For expository reasons let us consider first the case p = g = 1.

Letu € C™t! be a given vector, u = (u)p, and k a natural number. Then we

denote by Dy (u) the k x (r + k) matrix
Our aim is to find convenient matrices C;, Cz such that, for a (p, g)-Hankel

mosaic matrix H, the matrix H = C,HC, is a nonsingular Hankel mosaic matrix
and C;H~1C, is a Bezoutian.

i~ an
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(2) Let Bbea (g, p)-Hankel Bezoutian and u;, vi, D1, D, as above. Then
B:=DTBD,
is again a (q, p)-Bezoutian.

The matrices D;, D, will be constructed successively. We shall utilize the fact
that, for u € C™+1, Di(u)7 is the matrix of the operator of multiplication by the
polynomial %()\), i.e.

(D) x)" = TARN).

A consequence of this fact is that, for suitable choices of j, k, and /,

Di(w)D;(v) = Dy(w), (2.6)

where W = %v. This multiplication rule generalizes to block diagonal matrices
with blocks of the form D;(u) of feasible size.

The construction of Dy, D, is based on the following fact.

LEMMA 2.4. Let A be an m x n matrix such that ket AT # {0}, and let A be

represented in the form
Al *
A = =
( * ) (Az)’

where A1,Ay € C"=UX2 Then for all ¢ € C with the possible exception of a
finite number of points the equality

kerA = ker (4, — £A)) 2.7
holds.

PrOOF. Obviously, ker(A; — £Ay) 2 kerA forall £&. Letw = (W)l #0
belong to ker A7, and let

wE:= ) wit ! £ 0. 28)

k=1

We show that in this case (2.7) is fulfilled.
Letf; denote the ithrow of A (i = 1,...,m). Then the equation (A —£A;)x = 0
is equivalent with

firix—&x=0 i=1,...,m—1).
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Hence .
fix = c€™!
for a certain ¢ € C. That means
Ax = cl(€), 2.9
where I(£) :=col(¢~1)?. Since wTl(€) = w(£) # O by assumption, the vector
I(€) does not belong to im A. Hence (2.9) implies Ax = 0. That means we have
ker(A; — £€A1) C ker A,
‘We have proved that (2.7) is true for all £ with the possible exception of the
roots of w, which is a finite set. [ ]
REMARK 2.1. Itis important to observe that
Ay — EA; = Dy (WA,
where u(\) = A —&.

Applying Lemma 2.4 successively, we obtain the following conclusion.

COROLLARY 2.2. Suppose that A € CP*9 and r = rank A. Then there are
polynomials u and vV with deg = p — r, degV = q — r such that

Ao =D, (wAD,(v)

is nonsingular.

We shall need a slight generalization of Lemma 2.4.

LEMMA 2.5. Suppose that A € C"" and 1 < m; < my < m, and let
A| denote the (m — 1) x n matrix obtained from A by removing the mth row,
and A, the matrix obtained by removing the myth row. Assume that there exists
aw = (wp)!" € ker AT such that (wip2 # 0. Then for all £ € C with the possible
exception of a finite number of points the equality

ker A = ker(A; — £A;)

holds.

The proof is analogous to that of Lemma 2.4.
We also need the following elementary fact.
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LEMMA 2.6. Suppose that A, is obtained from A after removing the
myth row. Assume that there existsaw = (W) € ker AT such that W, # 0.
Then

kerA = KkerA;. (2.10)

ProOOF. Obviously, kerA C kerA,. Now let Ajx = 0. Then Ax = ce,,, for
a certain ¢ € C. Here ¢, denotes the kth unit vector. Since wTe,,,l = Wy, # 0, we
have e,,, & imA. Hence x € ker A, which implies (2.10). [ ]

Now we are able to prove the main result of this section.

Proof of Theorem 2.1. Let H be a (p, g)-Hankel mosaic matrix with block
sizesm; xmj(i=1,...,p; j=1,...,q). Our goal is to find matrices D; € C"™*"
and D, € C™™, r = rankH, n = )_nj,m = ) m;, such that H:= D,HDT is
a nonsingular Hankel mosaic matrix. In view of Lemma 2.3 we have to look
for matrices D, and D; of the form (2.5). These matrices will be constructed
successively by applying Lemma 2.5 or Lemma 2.6 and taking Remark 2.1 and
(2.6) into account.

Suppose that ker HY # {0} and w = (w))T € ker HT (w; € C™, w # 0). We
choose i = iy such that w;, # 0. In case m;, > 1 we form matrices H; and H,
by removing the first or the last row, respectively, of the iyth block row and apply
Lemma 2.5 According to this lemma there exists a £ such that ker H = ker(H, —
&H,). Now we form the matrix H = D,H, where Dy = diag(Dyy, . .., Dap):

Do = Imi if i # iO’
7 D1 @) ifi=1ip

for (\) = A — £. By construction, the kernels of H and H coincide and the kernel
dimension of H” is one less than that of H.

In case m;, = 1, we form the matrix H by removing the igth block row of
H. According to Lemma 2.6 we have again ker H = ker H and dimker H =
dimker HT — 1. _ _

If now dimker H” > 0, we repeat the construction after replacing H by H.
After a finite number of steps we arrive at a matrix H = D,H with trivial kernel
of HT and D, of the form (2.5). In case the kernel of H is nontrivial, we repeat
the construction for the transpose of H and get a matrix D; of the form (2.5) such
that the matrix H :=D,HDY has the desired properties, i.e., it is a nonsingular
(p, 9)-Hankel mosaic matrix.

By Theorem 1.2, B := H~!is a (g, p)-Bezoutian, and by Lemma 2.3, B :=
DITE D, is also a (g, p)-Bezoutian. According to Lemma 2.1, B is a generalized
inverse of H. This proves the theorem. |
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3. EXTENSION APPROACH

In this section we employ the familiar extension approach for generalized
inversion, which is described in the following lemma.

LEMMA 3.1. Let A be an m x n matrix, o = dimker A, and 3 = dimker A7.
Furthermore, let A) be an m x (3 matrix the columns of which span a direct
complement to the range of A,Al an n x a matrix the columns of which span a
direct complement to the range of AT, and A; an arbitrary o x (3 matrix. Then

~ A A

is nonsingular. Suppose that
Z_l — B «x
* x|

for B of appropriate size. Then B is an inner inverse of A. In case A3 = 0,Bisa
reflexive generalized inverse of A.

With the help of this lemma we shall prove the following theorem.

THEOREM 3.1. Let H be a (p, q)-Hankel mosaic matrix of size m X n,a =
dimker H, 8 = dimker HT. Then there exists a nonsingular (q, p)-Bezoutian B of
order m + « = n+ (3 such that an inner inverse of H can be obtained by removing
0 rows and o columns of B.

In order to prove this theorem we start with a nonsingularity criterion. For this
we introduce some notation.

For a Hankel matrix H = [s(k + l)];:';ol 1"=_0] , let g(H) denote the column
vector [s(n) - -+ s(m + n — 2)0)7. If H is a Hankel mosaic matrix H = [Hy]7,
then we define g;(H) := [g(Hy;)T, ..., 8(H,)T1". Furthermore we denote by E; the
vector consisting of p block components which are equal to zero except for the ith
component, which is equal to the last unit vector e, in C™.

We consider the following p + g systems of equations

Hx; = E; i=1,...,p), (3.11)

LEMMA 3.2. Ifthe equations (3.11) and (3.12) are solvable, then H has full
row rank, i.e., the kernel of HT is trivial.
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PROOF. Suppose that wH = 0,w = (W), w; = (wa){,. Then, due to the
solvability of (3.11), we have

0=wHx =wE =wp,. (3.13)

Let Z,, denote the forward shift in C™. We set w} :=Z,w; and w’ = (w}){. It s
easily seen that (w')” H vanishes with the possible exception of the last component
of each block. The last components of the blocks are equal to w” g;(H). But we
have w’ gj(H) = w'Hy; = 0. Thus w"H = 0. Repeating the arguments above
with w replaced by w', we conclude w; ,—1 = 0 and («'YTH = 0. Proceeding in
this way, we shall arrive at w = 0. That means H has full row rank. u

Clearly, an analogous lemma holds with H replaced by its transpose.
We shall apply the following consequence of Lemma 3.2.

COROLLARY 3.1.  Suppose that the (p, q)-Hankel mosaic matrix H = [Hy1} 1
has no full row rank. Then there exists a one column extension of H to a (p,q)-
Hankel mosaic matrix H = [Hz1{%, where, for a certain jo,

ﬁ" — Hljv j?éj07
v (Hjgl, j=Jjo’

and g is equal to gj,(H) plus a multiple of one of the vectors E; (i = 1, ..., p), such
that _
rank H = rank H + 1. (3.14)

Proor. Let H have no full row rank. Then by Lemma 3.2 at least one of the
equations (3.11) or (3.12) is not solvable. Hence there are j = jo,i = ip, andt € C
such that g := gj,(H) + tE;, does not belong to the range of H. The corresponding
extension H fulfills (3.14). [ ]

If we apply Corollary 3.1 successively to H and its transpose, we arrive at
the following theorem. In order to simplify the formulation of the theorem, let
us agree upon calling a Hankel matrix H a (u, v)-extension of the Hankel matrix
H=I[stk+Dlg~' o if

H = [sk + pyte! atv-

for certain s(m+n—1),...,5(m + n + p + v — 2) € C. A (p, g)-Hankel mosaic
matrix H will be called a (11, v)-extension of the (p, g)-Hankel mosaic matrix H if
the (i,7) block of Hisa (i, vy)-extension of the (7,j) block of H and ) p; = p
and Y vy =v.
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THEOREM 3.2. Let H be a (p, q)-Hankel mosaic matrix, a:= dim ker H,
and B := dimker H'. Then there exists an (o, 3)-extension H of H which is a
nonsingular (p, q)-Hankel mosaic matrix.

- Proof of Theorem 3.1.  We extend H according to Theorem 3.2 to a nonsingu-
lar (p, q)-Hankel mosaic matrix. Due to Theorem 1.2, H~! is a (g, p)-Bezoutian.
In view of the construction of H, the assumptions of Lemma 3.1 are fulfilled. It
remains now to apply this lemma in order to get the assertion of the theorem. W

4. MOORE-PENROSE INVERSES

It is easily checked that the Moore-Penrose inverse of a Hankel matrix is, in
general, not a Bezoutian, but according to Theorem 1.1 it is an r-Bezoutian for
r = 4. In order to generalize this result we have to define a Bezoutian concept
generalizing both the concepts of r-Bezoutian and of (g, p)-Bezoutian.

A (g, p)-mosaic matrix Bissaid to be a (generalized, Hankel) (g, p, r)-Bezoutian
if its generating function admits a representation

o~ I~ =
B = 3= UV,

where (7()\) isapx(p+q+ r)and V()\) isap X (p + g + r) matrix polynomial.
That means the (g, p)-Bezoutians in the usual sense are (g, p, 0)-Bezoutians.
The scalar r-Bezoutians are (1, 1, r — 2)-Bezoutians. Bezoutian concepts of this
generality were introduced in [17] and [8].
In this section we prove the following.

THEOREM4.1. The Moore-Penrose inverse of a (p, q)-Hankel mosaic matrix
is a (q,p,p + q)-Bezoutian.

In order to prove this theorem we apply the following well-known lemma (see
for example [3]).

LEMMA 4.1. Let A be an m X n matrix with ¢« = dimkerA and § =
dimker A*, where A* denotes the adjoint (i.e. conjugate transpose) matrix. Fur-
thermore, let U be a matrix the columns of which span the kernel of A, and V a
matrix the columns of which span the kernel of A*. Then the matrix

~ (A Vv
A=[U* 0] (4.15)
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is nonsingular, and A~ has the form

~1 Al (U*)T
A _[vf 0 ]

where the dagger indicates the Moore-Penrose inverse.

Lemma 4.1 tells us that in order to describe the Moore-Penrose inverse of
Hankel mosaic matrices one has to study the kernel structure of such matrices.
This will be done next. In that way we shall generalize some results of [10].

Our aim is to find bases of ker H and ker H* consisting of shift chains. Recall
that a sequence of vectors x, Z,x, . .., Z,~ 1x € C™ where Z,, is the forward shift,
is called a shift chain of length v. A sequence of block vectors will be said to be
a shift chain if all its block components form shift chains.

In order to motivate the subsequent considerations, let us briefly explain the
idea of our proof of Theorem 4.1. Suppose that there is a basis of ker H consisting
of a shift chains, and a basis of ker H* consisting of & shift chains. Then the
matrices V and U occurring in Lemma 4.1, which are formed from these bases (in
reverse order), are (p, a)- and (¢, b)-Hankel mosaic matnces, respectively. Hence
His (p + a,q + b)-Hankel mosaic matrix. Therefore H'is, by Theorem 1.2, a
(g + b,p + a)-Bezoutian. This implies that the restriction H' is a (g, p,a + b)-
Bezoutian. That means it remains to show thata+ b < p + g.

We introduce some notation. For an m x n Hankel matrix H = [s(k+D]g~ ! o Y
let H® (k = 0,41, 42, ...) denote the (m + k) x (n — k) Hankel matrix

H® .— [s(k + l)]6n+k-1 8+k+l‘

If H = [H;]}  is a (p, q)-Hankel mosaic matrix, then we set H® = [H{]7.

Besides the kernel of H, we study the kernels of the matrices H®. For their
description it is convenient to use polynomial language. Define Cy := {#(\) 1 u €
ker H®}. The advantage of the polynomial notation is that we have natural imbed-
dings---CC CCCCy C

Note that the sequence {x;} forms a shift chain if and only if $;(A) = ¥Xo()).
Furthermore, one has, for k¥ > 0, x € C; if and only if the elements of the shift
chainX, )%, . .., A*"1x belong to Cy. It can also easily be checked that ACyy1 C Ci
for all k. Hence

Ciy1 + MCiy1 C Gy 4.16)

Another relation which is immediately verified is

Cr N ACk = ACyr- “.17)
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We introduce now nonnegative integers a; := dim C; — dim Ci1;. Obviously,
a; < p + q. From (4.16) and (4.17) we get

0

IA

dim C; — dim(Cy; + ACit1)
dim C; — 2 dim Cyq1 + dim Cey1 N ACkyg

= ag — Qg41-

We choose now, for each £ < 0 with 6 :=a;y — ay41 > 0, linearly independent

vector polynomials Xi1, . . . , X5, Spanning a direct complement of Cit1 + ACry1
in Cy. In this way we obtain a system of ag = 3, 6 < p+ ¢ vector polynomials
such that the vector polynomials A% (i =0..., k—1; j=1, ..., &) form a

basis of Cy. Translating this into vector language, we obtain the following.

LEMMA4.2. Thekernel of a (p, q)-Hankel mosaic matrix H possesses a basis
consisting of ag := dim ker H — dim ker HV < p + g shift chains.

Analogously, the kernel of the adjoint matrix H* is spanned by by := dim ker
H* — dimker(H*)V) (< p + g) shift chains. It is remarkable that there is a relation
between the numbers of shift chains spanning ker H and ker H*.

LEMMA 4.3. Let ay and by be defined as above. Thenay + by < p + q.

PROOF. We introduce the abbreviations oy := dimker H®, 8, := dimker
(H®y = dimker(H*)—® and, for the index of the matrix H®, k; =y — Gi.
Then we have

ko1 =fKo+p+q and K =Ko—p—gq. (4.18)
With the help of (4.18) we obtain

ap+by = ap—a1+ fo— B
= op—ar+a—Ko— (-1 — Ko —p—q)
= p+g—(a_1 —ap)+ (o — o)
= p+q—(a-1 —ap).

Since ag < a_;, we get from this the estimate ag + bg < p + g. [ ]

Proof of Theorem 4.1. We choose a basis of ker H consisting of ag shift
chains and form from them in reverse order a (g, ap)-Hankel mosaic matrix U.
Analogously we form from a basis of ker H* consisting of by shift chains a (p, bo)-
Hankel mosaic matrix V. Now we define H according to (4.15). Hisa (p+ag, g+
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bo)-Hankel mosaic matrix. By Theorem 1.2, H lisa (g + bo, p + ap)-Bezoutian.
It remains to apply Lemnma 4.1. |

5. GROUP INVERSES

In order to describe the group inverses of Hankel mosaic matrices we apply
the following lemma (see [21]).

LEMMA 5.1. Let A be an m X n matrix, U a matrix the columns of which
form a basis of ket A, and V a matrix the columns of which form a basis of ker A”.
Then A possesses a group inverse if and only if the matrix

~ A U
A= [VT U ]
is nonsingular. Furthermore, ifZ is nonsingular, then A~ admitsa representation
Z_] _ A# *
* x|

With the help of this lemma and the arguments of the proof of Theorem 4.1
one can prove the following.

THEOREM 5.1. The group inverse of a (p, q)-Hankel mosaic matrix is, pro-
vided that it exists, a(q,p,p + q)-Bezoutian.

The author thanks Frank Hellinger and the referee for helpful comments.
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