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1. Introduction 

Gluconeogenesis in rat renal cortex is stimulated 

by catecholamine hormones through an @type 
receptor [ 1,2]. Basal gluconeogenesis is stimulated by 
addition of extracellular Ca* [3-51 and Cap has 
been assigned the possible role of an intracellular 
messenger in other systems responding to a-adrenergic 
stimuli [6-91. To propose that the catecholamine 
hormones could stimulate renal gluconeogenesis 
simply by movement of Cap across the plasma mem- 

brane is probably too simplistic. Removal of extra- 
cellular Ca* does not completely abolish adrenaline 

[2] or noradrenaline [lo] stimulation of the process. 
On the other hand, stimulation by the synthetic 
imidazoline derivative oxymetazoline (a selective 
a-agonist) is abolished by removal of extracellular 
Ca* [2]. aAdrenergic stimulation of some other 

systems is associated with changes in K+ as well as 
Ca*+ flux [6,1 l-141. Furthermore, movement of 

Ca*’ across biological membranes in exchange for 
Na+is now a well documented phenomenon in various 
tissues [15-211 including the proximal tubule of 

kidney [22,23], the site of renal gluconeogenesis 

[241. 
We have therefore investigated the effects of the 

Na’/K’ ATPase inhibitor ouabain and of K’ removal 
on a-adrenergic stimulation of gluconeogenesis. Both 
treatments were found to greatly diminish the hor- 
monal effect without appreciably perturbing the basal 
rate of the process. Although both ouabain and K+ 
removal have been shown to diminish catecholamine 
stimulation of rat adipocyte lipolysis [25] (a 
fl-adrenergic effect [26]) and to block &adrenergic 

effects on contractility and K’ flux in smooth muscle 
[27], we are unaware of reports of these treatments 
affecting a-adrenergic responses: 

2. Materials and methods 

Chemicals were obtained as in [2]. In addition, 

noradrenaline bitartrate was from Sigma, ouabain 
from Boehringer and oxymetazoline was a gift from 
Merck. Renal cortical tubule fragments were isolated 

by collagenase treatment of cortex pieces obtained 
from fed male Sprague-Dawley rats (160-l 80 g body 
wt) in [2]. Portions of tubules were continuously 
gased with O2 + CO2 (95:5%) and shaken for 1 h at 

37°C in Krebs-Ringer bicarbonate buffer containing, 
unless otherwise stated, 6 mM K+, 1.27 mM Caz+, 
fatty acid-poor albumin (10 mg/ml) and 5 mM sodium 

L-lactate. Incubations were deproteinised and glucose 
assayed as in [2]. DNA was estimated by the Burton 
method [28]. Statistical significance was determined 
by Student’s I-test on a paired basis. 

3. Results and discussion 

Noradrenaline at 1 PM maximally stimulates 
gluconeogenesis in rat tubule fragments ([ 1,2] and see 

fig.2). Ouabain at 150 E.tm abolished the effect of the 
hormone without appreciably altering the basal rate 
of the process (fig.1 a). On the other hand, this con- 
centration of ouabain was not sufficient to abolish 
the effect of oxymetazoline (fig.1 b), which was also 
added at its optimal concentration of 10 nM [2]. The 
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Fig. 1. Effect of ouabain on gluconeogenesis and its stimula- 
tion by noradrenaline (1 MM), oxymetazoline (10 nM) and 
3’,5’-cyclic AMP (0.1 mM). The values are means f SEM for 
the indicated number of separate tubule preparations. Where 
not shown, error bars lie within the symbols. (o) Basal rate; 
(0) with agonist; (m) increase due to agonist. (a) Agonist = 
noradrenaline; 5 measurements; 193 f 2 pg tubule DNA/ml 
flask contents. (b) Agonist = oxymetazoline; 4 measurements; 
184 + 6 wg tubule DNA/ml flask contents. (c) Agonist = 
3’,5’-cyclic AMP; measurements; 173 ? 3 Mg tubule DNA/ml 
flask contents. 

reason for this difference between these agonists is 
unclear at present, but their actions differ in other 
respects; i.e., oxymetazoline is ineffective in the 
absence of extracellular Ca” [2] and, unlike 
noradrenaline, does not stimulate release of 45Ca from 
tubular tissue preloaded with this isotope [ 1 O]. 
Stimulation of gluconeogenesis by added 3’,5’-cyclic 
AMP presumably is not mediated by a cell-surface 
receptor linked to some intracellular messenger 
system. Ouabain was considerably less effective in 
opposing the stimulatory action of 100 PM 3’,5’- 
cyclic AMP (fig.1~). It is unlikely that ouabain is 
acting as an &receptor competitive antagonist since 
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Fig.2. Effect of ouabain (150 nM) on noradrenaline dose 
curve. The values are mean f SEM for 4 separate tubule 
preparations. The mean tubule DNA was 173 f 3 pg/ml flask 
contents. (0) Without ouabain; (0) with ouabain. 

ouabain diminished the stimulatory effect of 
noradrenaline at all tested concentrations of the 
catecholamine (fig.2). 

Table 1 shows that omission of K+ from the incu- 
bation medium did not alter the basal rate of gluconeo- 
genesis from that found with the normal K+ con- 

centration of 6 mM. K’ removal did however abolish 
the effects of both noradrenaline and oxymetazoline. 

With the intermediate K’ concentration of 1.5 mM, 
basal gluconeogenesis was greater than at 6 mM K+. 
A similar effect has been reported in [29]. Both 
noradrenaline and oxymetazoline stimulated gluconeo- 
genesis in 1.5 mM K+, but the effect of noradrenaline 
was slightly blunted, whereas that of oxymetazoline 

was slightly enhanced. 
During this study ouabain was reported to abolish a 

stimulatory effect of angiotensin II on gluconeogenesis 
in tubule fragments from 24 h fasted rats [29]. This 
may imply some similarity in the mechanisms of 
cu-adrenergic and angiotensin stimulation of this 
process, although the dose of ouabain required to 
abolish angiotensin action was considerably higher 

(1 mM) [29]. Small increases in renal gluconeogenesis 
have been observed when tissue from fasted rats is 
incubated with ouabain [29,30]. Whether our inability 
to observe a stimulation of basal gluconeogenesis with 

ouabain reflects differences in dietary status between 
this study and [29,30] is unclear. 

In conclusion, it is suggested that the effect of 

noradrenaline is dependent on ‘normal’ cellular levels 
of K’ and/or Na+. Alternatively, or additionally, move- 
ments of one or both of these ions (possibly in asso- 
ciation with Ca2+) is involved in message transfer 
from the cell surface when the tubular cell is stimu- 
lated by a-adrenergic agonists. These possibilities are 
the subject of further study. 

Table 1 
Effect of K’ concentration on gluconeogenesis and its stimulation by 

noradrenaline (1 PM) and oxymetazoline (10 nM) 

K’ (mM) Glucose formation bmol .h-’ .mg DNA-‘) 

Basal + Noradrenaline + Oxymatazoline 

0 2.71 ? 0.20 2.84 f 0.25 2.87 + 0.31 
1.5 3.26 i: 0.16b 4.00 f 0.25ayC 4.37 f 0 24a*d 
6 2.88 2 0.168 3.89 f 0.20a,f 3.68 f 0:21ate,g 

a IndicatesP < 0.01 for effects of agonists versus the apropriate basal value 
bbd Indicate P < 0.05,0.01,0.001, respectively, for comparison of 0 and 1.5 mM 

K+ 
eyf Indicate P < 0.05, 0.01, respectively, for comparison of 0 and 6 mM K+ 

g Indicates P < 0.01 for comparison of 1.5 and 6 mM K+ 

The values are means f SEM for 5 separate tubule preparations. The mean tubule 
DNA was 15 1 f 2 pg/ml flask contents 
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