
Theoretical Computer Science 44 (1986) 237-245
North-Holland

237

N O T E

ON T H E E Q U I V A L E N C E P R O B L E M FOR
R E G U L A R T H U E SYSTEMS

Paliath NARENDRAN
G.E. Corporate Research and Development Center, Schenectady, N Y 12345, U.S.A.

Communicated by M. Nivat
Received October 1985

Abstract. A decision procedure is presented for the equivalence problem for regular almost-
confluent Thue systems. On the other hand, the equivalence problem for regular preperfect systems
is shown to be undecidable.

1. Introduction

There has been much interest in recent years in semigroup presentations or Thue
systems both from algebraic and computational points of view [1, 2, 5, 9, 11]. Since
Nivat initiated the study of Thue systems along with his colleagues Benoit and
Cochet [9, 12], most of the studies so far have concentrated on finite Thue systems.
Infinite Thue systems started getting attention only very recently, with the pioneering
work of Book, Jantzen and Wrathall [3] and O'Dfinlaing [10]. Book, Jantzen and
Wrathall consider context-free Thue systems and 0'Dfinlaing considers regular Thue
systems; these are infinite Thue systems finitely specified using context-free languages
and regular sets respectively.

One of the problems considered by O'Dfinlaing is the following: under what
conditions can we check two regular Thue systems for equivalence? It was shown
that if the systems are monadic and Church-Rosser, then the equivalence problem
is decidable. This result was extended in [7] where it was shown that the equivalence
problem is decidable for regular Church-Rosser Thue systems. Here we extend this
result to regular almost-confluent systems. On the other hand we show the problem
to be undecidable for regular preperfect systems. (Note the contrast with the case
where the Thue systems are finite: the equivalence problem is decidable for finite
preperfect systems.)

2. Definitions

2.1. Strings over an alphabet

Let .Y be any finite alphabet and .Y* the set of all possible strings over 2~, including
the null string A. For a string w in .Y*,]w] denotes its length. Given strings u and

0304-3975/86/$3.50 (6) 1986, Elsevier Science Publishers B.V. (North-Holland)

238 P. Narendran

v, their p roduc t uv is ob ta ined by conca tena t ing v onto u. A string x is said to be

a prefix (respectively, suffix) of y if there exists z such that y = xz (respectively, zx).
A string x is a proper prefix (respectively, suffix) of y if x is a prefix (respectively.

suffix) of y and Ix I < lY[- Two strings are sa id to overlap if a p roper prefix of one is

a proper suffix of the other.

2.2. Thue systems

A Thue system T over ~ is a set of pairs o f words over ,~*. The elements of 7

are cal led rules (or relations). The Thue congruence ~--~* defined by T is the reflexive.

t ransit ive closure of the re la t ion ~ defined as follows: if (u, v) is an e lement of Y

then, for all x, y, xuy ,--> xvy and xvy ~ xuy. I f x ~--~* y, then x and y are said to b~

congruent modulo T. We write

x---~y

xl"qy

x~---~y

if x ~ y and Ixl > lYl,

if x ~ y and Ixl = lyl,

if x ~ y and Ixl ~> lyl-

The reflexive, t ransit ive closure of ~ (t--4, ~) is denoted by ---~* (respectively, t--4"

~ *) . W h e n more than one Thue system is u n d e r considerat ion, we of ten use thes~
relat ions wi th subscripts to avoid confusion.

Two strings x and y are said to be joinable i f there exists a z such tha t x ---~* ;
and y ---~* z. They are almost-joinable if there exist u and v such that x ---~* u, y ---~* v

and u H * v and they are resolvable if there exists z such tha t x ~--~* z and y,--~* z. ,~

Thue system T is said to be Church-Rosser (almost-confluent, preperfect) if x ~-~* j

implies x and y are jo inab le (respectively, a lmost- joinable , resolvable) .

A rule (u, v) in a Thue system T is said to be length-reducing i f lul Ivh we ofter

represent such a rule as (u ~ v) if lul > Ivl and (v ~ u) otherwise. For a l eng th

reducing rule (u ~ v), u is called the left-hand side (lhs) of the rule and v is calico

the right-hand side (rhs). A rule (u, v) is length-preserving i f lul = Ivl and is ofter

r ep re sen t ed as (u H v). Both these representa t ions abuse the no ta t ion somewhat
but make the exposi t ion a lot easier.

A string x is said to be reducible by the rule (L--, R) if there exist strings u,

such that x = uLv and reducible (mod T) i f it is reducible by some length-reducin!

rule in T. A string x is irreducible (mod T) i f it is not reducible by any rule in 7

or, equivalent ly , there is no y such tha t x ~ y. I R R (T) denotes the set o f all string:
tha t are i r reducible modu lo T. I f x ---~* y and y ~ I R R (T) , then y is cal led a norma
form of x. It can be shown that in a C h u r c h - R o s s e r system every str ing has a uniqu~

normal form. This is not t rue in general for a lmost-confluent systems; however , th~
fol lowing holds : for every x, y, z such tha t y and z are normal forms of x rood 7
y I---!* z.

A Thue sys tem T is said tO be reduced .if, for all (u, v) ~ T, ne i ther u nor v i:
reducible mod(T - {(u, v)}).

On the equivalence problem for regular Thue systems 239

2.3. Regular Thue systems

A Thue system T is said to be regular if it can be represented as {(F~, xl),
(/ '2, x 2) , . . . , (Fn, x,)} where the F,'s are regular sets and x~'s are strings. It can be
looked upon as a (possibly) infinite system, finitely specified using regular sets.
Each rule (Fi, x~) is a meta-rule which stands for 'every y in F, is congruent to x{.
It is easy to see that a regular Thue system can have only finitely many length-
preserving rules. Let LP(T) be the set of length-preserving rules in T and LD(T)
be the set of length-decreasing rules. By reversing all the length-increasing rules, of
which there are only finitely many, T can be represented as LP(T) u LD(T) , where
LP(T) is finite and LD(T) is regular.

Throughout the rest of this note, we assume a regular Thue system T to be
specified in the following way:

L D (T) = { (F , , x ~) , (F2, x 2) , . . . , (F,, , x,,,)},

where the F~ are regular expressions and

Vi Vy: [(F~, x~)E LD(T) ^ y c r, lyl > Ix, I],.

and

LP(T) = {(u, H Vl), . . . , (Un H Vn)}.

3. Almost-confluent Thue systems

We-first review some important results about almost-confluent Thue systems and
show how to apply them to regular almost-confluent Thue systems. The following
lemmas were proved in [6].

Lemma 3.1. Let T be an almost-confluent Thue system and (L--> R) be a rule in it
such that R is reducible. Then the Thue system T ' = (T - { (L , R) }) u { (L , R ') } is

equivalent to T and almost-confluent, where R' is a normal form of R.

Lemma 3.2. Let T be an almost-confluent Thue system and (L--* R) be a rule in it
such that L is reducible modulo (T - { (L , R) }) . Then the Thue system T '=

(T - { (L , R)}) is equivalent to T and almost-confluent.

Lemma 3.3. Let T be an almost-confluent Thue system and (u H v) be a rule in it

such that u is reducible. Then the Thue system T' = (T - { (u, v)}) is equivalent to T
and almost-confluent.

Thus, we can conclude that the following theorem holds.

Theorem 3.4. Every almost-confluent Thue system has an equivalent reduced almost-
confluent Thue system.

240 P. Narendran

Proof. In the light of the above lemmas, such a reduced system is determined by
the following steps:

(1) (REP) For every length-reducing rule (L--~ R), if R is reducible, then replace
the rule by (L--> R'), where R' is a normal form of R.

(2) (REM1) For every length-preserving rule (u, v), if either u or v is reducible,
then delete the rule.

(3) (REM2) Delete every length-reducing rule whose left-hand side is reducible
by some other rule in the system.
(REP and REM stand for 'replacement' and 'removal' respectively.) []

The following important theorem is proved in [5, 6].

Theorem 3.5. Two reduced almost.confluent Thue systems T~ and T2 are equivalent if
and only if the following holds:

(a) LP(TI) is equivalent to LP(T2);
(b) for every rule (L--> R) in LD(TI) there exists a rule (L--> R') in LD(T2) such

that R F-I* R' and vice versa.

Consider a regular Thue system T. Let LD(T) = {(/'1, xl), (F2, Xe), . . . , (Fro, x,,,)}.
Let RED(T) be the set of all reducible strings. Clearly,

RED(T) = ,Y*Ft,Y* u . • • u ,Y*FmZ*

and, hence, RED(T) (and IRR(T)) is a regular set.

Theorem 3.6 ([10]). There is an algorithm that, from a given regular Thue system T
and string x, computes a normal form of x mod T.

We now proceed to show that, given a regular almost-confluent Thue system T,
we can effectively compute an equivalent reduced almost-confluent system. That
the first step (P.mP) can be done easily follows from Theorem 3.6. Since every regular
Thue system can have only finitely many length-preserving rules, REM 1 can also be
performed.

The third step (REM2) is the most crucial one. To do that, we first observe that
the number of meta-rules is always finite. For two given meta-rules, say (/'1 --* xl)
and (F2--> x2), we can remove all the rules in the former that are reducible by the
latter in the following way: replace F~ with its intersection with the complement of
Z*F2,Y*. (Note that -Y*F2-Y* is the set of all strings that are reducible by the
meta-rule (/'2 --+ x2). Also, the order in which the meta-rules in the pair are considered
is immaterial since if z ~ F~ c~ F2, then it does not matter which of the two ,'ules,
(z --> xl) or (z --> x2), is removed.) This step can now be repeated with every such
pair of meta-rules in a sequential manner. The important observation to be made
here is that every pair of meta-rules has to be considered only once.

On the equivalence problem for regular Thue systems 241

There is also another case we have to consider. Take for instance the meta-rule
(F1--~ x~). There may be rules within this meta-rule whose left-hand sides can be

reduced by the left-hand sides of other rules within the same meta-rule. (An example
would be (ab+---~ a), where every left-hand side of the form ab i, i>-2, can be

reduced by the rule (ab--~ a).) These can be removed by replacing /'1 with the

intersection of the complement of ,~ +FI,T, * u 2 * F ~ , + with it. The following example

will illustrate this step. Consider the meta-rule (a +, A) over the alphabet {a}. The
complement of a+a+a*u a*a+a + is the set {a, A}. Thus, the new rule we get is
(a --~ A}, which is the only rule in the meta-rule whose lhs is not reducible by other

rules. ~
Thus, the procedure for performing the step REM2 can be formulated as follows:

Procedure REM2PROC

for all i from 1 to m do

endfor;
for all i from 1 to m do

for all j from 1 to m do

if i ~ j then
F, := F,

endfor;
endfor;

It should not be hard to see that the procedure REM2PROC is indeed correct. The

only important observation one has to make is the following property of reduction:
if a string u is reducible by the rule L ~ R and L is reducible by the rule L' ~ R',
then u is also reducible by the rule L' ---* R' (in other words, removing rules whose

left-hand sides are reducible by other rules does not affect IRR(T)) . Thus, we have
the following theorem.

Theorem 3.7. There is an algorithm that, from a given regular almost-confluent Thue
system T, computes an equivalent reduced almost-confluent Thue system.

The only other result we need is about the decidability of equivalence of reduced
regular almost-confluent systems. Before we go into that we show how to perform
another step which would make our task a little easier. We call this a "compression'
step. What we do is this: if F~ ---> xl a n d / ' 2 ---> x2 are two meta-rules and x~ ~---t* x2,
then we merge the two meta-rules into one, namely, (/'1 u F2) ---> x~ (or x2). Clearly,

this does not affect almost-confluence, reducedness or regularity.

Theorem 3.8. Let 7"1 and T2 be two reduced regular almost-confluent systems that are
also 'compressed'. Then they are equivalent if and only if

(a) LP(T~) is equivalent to LP(T=) and
(b) for every meta-rule (F--', x) in LD(T~), there exists a meta-rule (F---> x') in

LD(T2) such that x F--t* x' and vice versa.

242 P. Narendran

The proof is easy using Theorem 3.5. The important thing to note is this: suppose
(L1 ~ R) and (L2--~ R) belong to the same meta-rule in T~. Then compression
prevents their getting mapped onto (L~ --* R') and (L2 ~ R") respectively, say, where
R ' # R " .

Theorem 3.9. Let T~ and T2 be two reduced regular almost-confluent systems. Then it
is decidable whether LP(T1) is equivalent to LP(T2).

Proof. Both LP(T~) and LP(T2) are finite, as mentioned before. Furthermore, the
word problem for finite Thue systems that have only length-preserving rules is
decidable since they are (trivially) almost-confluent. Hence the result. []

Thus, condition (a) in Theorem 3.8 can be effectively checked. Checking whether
condition (b) holds is decidable too since equivalence of regular sets is decidable
and, as mentioned before, LP(T1) and LP(T2) have decidable word problems. Thus,
we have the following theorem.

Theorem 3.10. The equivalence problem for regular almost-confluent Thue systems is
decidable.

4. Regular preperfect systems

Recall that a Thue system T is called preperfect if and only if, for all x and y, x
congruent to y implies x and y are resolvable. In this section, we give a proof that
the equivalence problem is undecidable for regular preperfect systems, by reducing
the emptiness problem for languages accepted by deterministic linear bounded
automata to it.

Throughout this discussion, familiarity with the concept and notation of Turing
machines is assumed. A deterministic linear bounded automaton (DLBA) is a deter-
ministic Turing machine with the additional property that the computation is
restricted to that part of the tape where the input string is initially written. This is
ensured by enclosing the input string between end-markers--say ¢ and S--and not
allowing the head to move left of the ¢ or right of the $. In other words, a DLBA ~0~
is an 8-tuple (K, ,Y, A, ¢, $, 8, q0, F), where K is the (finite) set of states including
the unique initial state qo and the set of final states F; Z is the set of input symbols,
A is the set of tape symbols which include the left endmarker ¢ and the fight
endmarker $, and 8 is the transition function.

Configurations of a DLBA ~ are represented by strings of the form uqiv, where
q~ stands for the state the machine is in, u the contents of the tape to the left of the
symbol currently being scanned and v the contents of the tape to the fight, including
the current symbol. (Thus, ~ is in state q~ scanning the first symbol of v.) A
configuration is said to be final if the state symbol in it corresponds to a final state.

On the equivalence problem for regular Thue systems 243

The language L(~lY~) accepted by a DLBA ~ is defined as the set of all strings w
such t h a t a final configuration can be reached from the initial state qoew$. In the
discussion that follows we assume that none of the DLBA's under consideration
accepts the empty string A.

Theorem 4.1 ([4, p. 281]). It is undecidable whether a language accepted by a DLBA
is empty (and, hence, it is undecidable whether a language accepted by a DLBA over
an input alphabet A is A+).

Starting from any DLBA~Y~I we can construct an equivalent DLBA ~ 2 (i.e.,
L(~9~1) = L(~9~2)) with the following properties:

(1) ~IR2 has a unique final state qf and comes to halt at the very left end of the
tape (i.e., at the ¢ symbol) if the input is accepted.

(2) If the input is accepted, then ~-~2 reconstructs the input before coming to a
halt. In other words, if a string w is accepted, then the final configuration will be

qf~w$.
Let ~ = (K, Z, A, ¢, $, 8, qo, F) be a DLBA with the above two properties. We

show how to simulate ~ with a Thue system T consisting of only (finitely many)

length-preserving rules. The construction is similar to that given in [8]; the alphabet

of T is (A w K) (We assume A n K =0) and we have rules for every state and

tape-symbol pair for which the transition function 8 is defined. Motion of the
tape-head is simulated by moving the state-symbols accordingly. Thus, we have

(qia, bqj) ~ T

(cqia, cbcb) ~ T

(qia, qjb) ~ T

if 8(qi, a) = (qj, b, RIGHT),

for all c ~ A if 8 (qi, a) = (qj, b, LEFT),

if 8(qi, a) = (qj, b, SAME).

The above remarks are sufficient to verify the following claim.

Claim 4.2. For all w e Z * , qo¢W$1--q* qfew$ if and only if we L(~iY~).

We now corfstruct regular Thue systems 7"1 and 7"2 such that ?'1 and T2 are
equivalent if and only if ~ accepts every nonempty string over the input alphabet.
Let C be a new symbol and let {C} u A u K be the alphabet over which the two
Thue systems are defined. Define T~ as

LD(T1)={(Cqo¢.,Y,+$C-* CC)} and LP(T1)= T

and T2 as

LD(T2)={(CqF¢.,Y,+$C --* CC)} and LP(T2) = T.

It is not h a r d t o see that LD(T1) and LD(T2) are Church-Rosser . Furthermore,
LD(Ti) , LD(T2), LP(T1),. and LP(T2) neither create nor destroy C's . Note also that
for both T1 and 7"2 the length-preserving rules do not interact with the C's. To put

244 19. Narendran

it more precisely, if u = u lCu2C. . .Cu , , where the ui's do not contain the letter C,

and u l--q'v, then v can be written as ihCv2C.. .Cv,. , Where u~H* v~ for 1<~ i<~n.

Furthermore, all that the length-reducing rules in T1 (and 7"2) do is to erase strings

between two C's.

Claim 4.3. 7"1 and T2 are preperfect.

Proof. We only give the proof in the case of Tl. The case of 7"2, being similar, is
left to the reader.

Assume T~ is not preperfect. Then it can be shown that there must be strings u,

v, x, and y such that u H * v, u ~ x, v --> y, and x and y are not resolvable (see

[8]). The following cases have to be considered:

Case 1. u = v: This is clearly impossible since LD(T~) is Church-Rosser.

Case 2. u # v: Assume u gets reduced to x by the rule (CotC --> CC) and v gets
reduced by (C/3C --> C C) , where neither a nor/3 conta!ns C. Then there existstrings
u~ and u2 such that u = u~ CaCu2 and x = u~ CCu2. Similarly, there exist strings/3,
vl, v2 such that v = vl C[3Cv2 and y = vl CCv2.

Case 2(a). Ul H * vl: Then it must be that C a C H*'Cf lC, a H*/3, u2m* v2, and
thus, x H * y.

Case 2(b). u~ ~-kq* vl: Since C is an 'inert' symbol across which there can be no
interaction, either

(i) u~ H * D1C/3CD21 and C o t C u 2 H* V22 for some v2! and V22 where 021022 : V2, or
(ii) u~CaCu21 H * vl and u22 H * C/3Cv2, where u21u22= u2.

Without loss of generality, assume (i). Then

X = U 1 C C u 2 H * v 1 C~CI321 C C u 2 ---> D 1CCD21 C C u 2

and

and we have reached a contradiction.

Y = D1CCv21 v22 H * v I CCD21 ColCu~ ---> v I C C D 2 1 C C u 2

[]

Claim 4.4. Tl and 7"2 are equivalent i f and only i f L(~tR)= Z +.

Thus, we have the following theorem.

Theorem 4.5. The equivalence problem for regular preperfect Thue systems is
undecidable.

Acknowledgment

I wish to thank Bob McNaughton for his guidance throughout the writing of this

paper. I am also:grateful tO Dave Musser and Colm O'Dfnla ing for their comments
and suggestions.

On the equivalence problem for regular Thue systems 245

References

[1] R.V. Book, Confluent and other types of Thue systems, J. Assoc. Comput. Mach. 29 (1982) 171-182.
[2] R.V. Book, Thue systems and the Church-Rosser property: A survey, in: L.J. Cummings, ed., Prec.

1st Internat. Conf. on Co.mbinatorics of Words, University of Waterloo, 1982.
[3] R.V. Book, M. Jantzen and C. Wrathall, Monadic Thue systems, Theoret. Comput. Sci. 19 (1982)

231-251.
[4] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Computation

(Addison-Wesley, Reading, MA, 1979).
[5] D. Kaput and P. Narendran, The Knuth-Bendix completion procedure and Thue systems, SIAM

J. Comput., 14 (1985) 1052-1072.
[6] D. Kapur and P. Narendran, Almost-confluence and related properties of Thue systems, Rept. No.

83CRD258, G.E. Corporate Research and Development Center, Schenectady, NY, 1983.
[7] P. Narendran, Church-Rosser and related Thue systems, Doctoral Dissertation, Rensselaer Poly-

technic Institute, Troy, NY, 1984.
[8] P. Narendran and R. McNaughton, The undecidability of the prepeffectness of Thue systems,

Theoret. Comput. Sci. 31 (1984) 165-174.
[9] M. Nivat (with M. Benois), Congruences parfaites et quasi-parfaites, S6minaire Dubreil, 25e Ann6e,

1971-1972.
[10] C. 6"Dtlnlaing, Finite and infinite regular Thue systems, Doctoral Dissertation, University of

California at Santa Barbara, CA, 1981.
[11] F. Otto, Deciding algebraic properties of monoids presented by finite Church-Rosser Thue systems,

Prec. Ist lnternat. Conf. on Rewriting Techniques and Applications, Dijon, France, 1985.
[12] Y. Cochet and M. Nivat, Une g6n6ralisation des ensembles de Dyck, IsraelJ. Math. 9 (1971) 389-395.

