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Abstract. A decision procedure is presented for the equivalence problem for regular almost- 
confluent Thue systems. On the other hand, the equivalence problem for regular preperfect systems 
is shown to be undecidable. 

1. Introduction 

There has been much interest in recent years in semigroup presentations or Thue 
systems both from algebraic and computational points of view [1, 2, 5, 9, 11]. Since 
Nivat initiated the study of Thue systems along with his colleagues Benoit and 
Cochet [9, 12], most of the studies so far have concentrated on finite Thue systems. 
Infinite Thue systems started getting attention only very recently, with the pioneering 
work of Book, Jantzen and Wrathall [3] and O'Dfinlaing [10]. Book, Jantzen and 
Wrathall consider context-free Thue systems and 0'Dfinlaing considers regular Thue 
systems; these are infinite Thue systems finitely specified using context-free languages 
and regular sets respectively. 

One of the problems considered by O'Dfinlaing is the following: under what 
conditions can we check two regular Thue systems for equivalence? It was shown 
that if the systems are monadic and Church-Rosser, then the equivalence problem 
is decidable. This result was extended in [7] where it was shown that the equivalence 
problem is decidable for regular Church-Rosser Thue systems. Here we extend this 
result to regular almost-confluent systems. On the other hand we show the problem 
to be undecidable for regular preperfect systems. (Note the contrast with the case 
where the Thue systems are finite: the equivalence problem is decidable for finite 
preperfect systems.) 

2. Definitions 

2.1. Strings over an alphabet 

Let .Y be any finite alphabet and .Y* the set of all possible strings over 2~, including 
the null string A. For a string w in .Y*, ]w] denotes its length. Given strings u and 
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v, their  p roduc t  uv is ob ta ined  by conca tena t ing  v onto u. A string x is said to be 

a prefix (respectively,  suffix) of  y if  there exists z such that  y = xz (respectively,  zx). 
A string x is a proper prefix (respectively,  suffix) of  y if x is a prefix (respectively. 

suffix) of  y and  Ix I < lY[- Two strings are sa id  to overlap if a p roper  prefix of  one is 

a proper  suffix of  the other.  

2.2. Thue systems 

A Thue  system T over ~ is a set of  pairs  o f  words  over ,~*. The elements  of  7 

are cal led rules (or relations). The Thue  congruence  ~--~* defined by T is the  reflexive. 

t ransit ive closure of  the re la t ion ~ defined as follows: if (u, v) is an e lement  of  Y 

then,  for all x, y, xuy ,--> xvy and  xvy ~ xuy. I f  x ~--~* y, then x and  y are said to b~ 

congruent modulo T. We write 

x---~y 

xl"qy 

x~---~y 

if  x ~ y and  Ixl > lYl, 

if  x ~ y and  Ixl = lyl, 

if  x ~ y and  Ixl ~> lyl- 

The reflexive, t ransit ive closure of  ~ ( t--4, ~ )  is denoted  by ---~* (respectively,  t--4" 

~ * ) .  W h e n  more than  one Thue  system is u n d e r  considerat ion,  we of ten use thes~ 
relat ions wi th  subscripts  to avoid confusion.  

Two strings x and  y are said to be joinable i f  there exists a z such tha t  x ---~* ; 
and  y ---~* z. They  are almost-joinable if  there  exist  u and v such that  x ---~* u, y ---~* v 

and  u H *  v and  they are resolvable if  there  exists z such tha t  x ~--~* z and  y,--~* z. ,~ 

Thue  system T is said to be Church-Rosser (almost-confluent, preperfect) if  x ~-~* j 

implies x and  y are jo inab le  (respectively,  a lmost- joinable ,  resolvable) .  

A rule (u, v) in a Thue  system T is said to be length-reducing i f  lul Ivh we ofter 

represent  such a rule as (u ~ v) if  lul > Ivl and  (v ~ u) otherwise.  For  a l eng th  

reducing rule (u ~ v), u is called the left-hand side (lhs) of the  rule and  v is calico 

the right-hand side (rhs). A rule (u, v) is length-preserving i f  lul = Ivl and  is ofter 

r ep re sen t ed  as (u H v). Both  these representa t ions  abuse the no ta t ion  somewhat  
but  make  the  exposi t ion a lot easier. 

A string x is said to be reducible by the rule (L--, R) if  there  exist strings u, 

such that  x = uLv and reducible (mod  T) i f  it is reducible  by  some length-reducin!  

rule in T. A string x is irreducible (mod T) i f  it is not  reducible  by  any  rule in 7 

or, equivalent ly ,  there is no  y such tha t  x ~ y. I R R ( T )  denotes  the  set o f  all string: 
tha t  are i r reducible  modu lo  T. I f  x ---~* y and  y ~ I R R ( T ) ,  then  y is cal led a norma 
form of  x. It  can be shown  that  in a C h u r c h - R o s s e r  system every str ing has  a uniqu~ 

normal  form. This is not  t rue in general  for a lmost-confluent  systems;  however ,  th~ 
fol lowing holds :  for every x, y, z such tha t  y and  z are normal  forms of  x rood 7 
y I---!* z. 

A Thue  sys tem T is said tO be reduced .if, for  all (u, v ) ~  T, ne i ther  u nor v i: 
reducible  mod(  T -  {(u, v)}). 



On the equivalence problem for regular Thue systems 239 

2.3. Regular Thue systems 

A Thue system T is said to be regular if it can be represented as {(F~, xl), 
(/ '2, x 2 ) , . . . ,  (Fn, x,)} where the F,'s are regular sets and x~'s are strings. It can be 
looked upon as a (possibly) infinite system, finitely specified using regular sets. 
Each rule (Fi, x~) is a meta-rule which stands for 'every y in F, is congruent to x{. 
It is easy to see that a regular Thue system can have only finitely many length- 
preserving rules. Let LP(T)  be the set of length-preserving rules in T and LD(T)  
be the set of length-decreasing rules. By reversing all the length-increasing rules, of 
which there are only finitely many,  T can be represented as LP(T) u LD(T) ,  where 
LP(T)  is finite and LD(T)  is regular. 

Throughout  the rest of this note, we assume a regular Thue system T to be 
specified in the following way: 

L D ( T ) = { ( F , , x ~ ) ,  (F2, x 2 ) , . . . ,  (F,, ,  x,,,)}, 

where the F~ are regular expressions and 

Vi Vy: [(F~, x~)E LD(T)  ^ y c  r, lyl > Ix, I],. 

and 

LP(T) = {(u, H Vl), . . . , (Un H Vn)}. 

3. Almost-confluent Thue systems 

We-first review some important  results about almost-confluent Thue systems and 
show how to apply them to regular almost-confluent Thue systems. The following 
lemmas were proved in [6]. 

Lemma 3.1. Let T be an almost-confluent Thue system and ( L--> R)  be a rule in it 
such that R is reducible. Then the Thue system T ' = ( T - { ( L , R ) } ) u { ( L , R ' ) }  is 

equivalent to T and almost-confluent, where R'  is a normal form of  R. 

Lemma 3.2. Let T be an almost-confluent Thue system and ( L--* R) be a rule in it 
such that L is reducible modulo ( T - { ( L , R ) } ) .  Then the Thue system T '= 

( T - { ( L ,  R)}) is equivalent to T and almost-confluent. 

Lemma 3.3. Let T be an almost-confluent Thue system and (u H v) be a rule in it 

such that u is reducible. Then the Thue system T' = ( T - { ( u, v)}) is equivalent to T 
and almost-confluent. 

Thus, we can conclude that the following theorem holds. 

Theorem 3.4. Every almost-confluent Thue system has an equivalent reduced almost- 
confluent Thue system. 
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Proof. In the light of the above lemmas, such a reduced system is determined by 
the following steps: 

(1) (REP) For every length-reducing rule (L--~ R), if  R is reducible, then replace 
the rule by (L--> R'), where R' is a normal form of R. 

(2) (REM1) For every length-preserving rule (u, v), if  either u or v is reducible, 
then delete the rule. 

(3) (REM2) Delete every length-reducing rule whose left-hand side is reducible 
by some other rule in the system. 
(REP and REM stand for 'replacement' and 'removal' respectively.) [] 

The following important theorem is proved in [5, 6]. 

Theorem 3.5. Two reduced almost.confluent Thue systems T~ and T2 are equivalent if 
and only if  the following holds: 

(a) LP(TI) is equivalent to LP(T2); 
(b) for every rule (L--> R) in LD(TI) there exists a rule (L--> R') in LD(T2) such 

that R F-I* R'  and vice versa. 

Consider a regular Thue system T. Let LD(T) = {(/'1, xl), (F2, Xe), . . . ,  (Fro, x,,,)}. 
Let RED(T) be the set of all reducible strings. Clearly, 

RED(T) = ,Y*Ft,Y* u .  • • u ,Y*FmZ* 

and, hence, RED(T) (and IRR(T)) is a regular set. 

Theorem 3.6 ([10]). There is an algorithm that, from a given regular Thue system T 
and string x, computes a normal form of x mod T. 

We now proceed to show that, given a regular almost-confluent Thue system T, 
we can effectively compute an equivalent reduced almost-confluent system. That 
the first step (P.mP) can be done easily follows from Theorem 3.6. Since every regular 
Thue system can have only finitely many length-preserving rules, REM 1 can also be 
performed. 

The third step (REM2) is the most crucial one. To do that, we first observe that 
the number of meta-rules is always finite. For two given meta-rules, say (/'1 --* xl) 
and (F2--> x2), we can remove all the rules in the former that are reducible by the 
latter in the following way: replace F~ with its intersection with the complement of 
Z*F2,Y*. (Note that -Y*F2-Y* is the set of all strings that are reducible by the 
meta-rule (/'2 --+ x2). Also, the order in which the meta-rules in the pair are considered 
is immaterial since if z ~ F~ c~ F2, then it does not matter which of the two ,'ules, 
(z --> xl) or (z --> x2), is removed.) This step can now be repeated with every such 
pair of meta-rules in a sequential manner. The important observation to be made 
here is that every pair of meta-rules has to be considered only once. 
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There is also another  case we have to consider. Take for instance the meta-rule 
(F1--~ x~). There may be rules within this meta-rule whose left-hand sides can be 

reduced by the left-hand sides of other rules within the same meta-rule. (An example 
would be (ab+---~ a), where every left-hand side of  the form ab i, i>-2, can be 

reduced by the rule (ab--~ a).) These can be removed by replacing /'1 with the 

intersection of  the complement of  ,~ +FI,T, * u 2 * F ~ ,  + with it. The following example 

will illustrate this step. Consider the meta-rule (a +, A) over the alphabet {a}. The 
complement of  a+a+a*u a*a+a + is the set {a, A}. Thus, the new rule we get is 
(a --~ A}, which is the only rule in the meta-rule whose lhs is not reducible by other 

rules. ~ 
Thus, the procedure for performing the step REM2 can be formulated as follows: 

Procedure REM2PROC 

for all i from 1 to m do 

endfor; 
for all i from 1 to m do 

for all j from 1 to m do 

if i ~ j  then 
F, := F, 

endfor; 
endfor; 

It should not be hard to see that the procedure REM2PROC is indeed correct. The 

only important  observation one has to make is the following property of reduction: 
if a string u is reducible by the rule L ~ R and L is reducible by the rule L' ~ R', 
then u is also reducible by the rule L' ---* R'  (in other words, removing rules whose 

left-hand sides are reducible by other rules does not  affect IRR(T)) .  Thus, we have 
the following theorem. 

Theorem 3.7. There is an algorithm that, from a given regular almost-confluent Thue 
system T, computes an equivalent reduced almost-confluent Thue system. 

The only other result we need is about the decidability of  equivalence of  reduced 
regular almost-confluent systems. Before we go into that we show how to perform 
another step which would make our  task a little easier. We call this a "compression' 
step. What we do is this: if F~ ---> xl a n d / ' 2  ---> x2 are two meta-rules and x~ ~---t* x2, 
then we merge the two meta-rules into one, namely, (/'1 u F2) ---> x~ (or x2). Clearly, 

this does not  affect almost-confluence, reducedness or regularity. 

Theorem 3.8. Let 7"1 and T2 be two reduced regular almost-confluent systems that are 
also 'compressed'. Then they are equivalent if and only if 

(a) LP(T~) is equivalent to LP(T=) and 
(b) for every meta-rule (F--', x)  in LD(T~), there exists a meta-rule (F---> x') in 

LD(T2) such that x F--t* x'  and vice versa. 
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The proof is easy using Theorem 3.5. The important thing to note is this: suppose 
(L1 ~ R) and (L2--~ R) belong to the same meta-rule in T~. Then compression 
prevents their getting mapped onto (L~ --* R') and (L2 ~ R") respectively, say, where 
R ' # R " .  

Theorem 3.9. Let T~ and T2 be two reduced regular almost-confluent systems. Then it 
is decidable whether LP(T1) is equivalent to LP(T2). 

Proof. Both LP(T~) and LP(T2) are finite, as mentioned before. Furthermore, the 
word problem for finite Thue systems that have only length-preserving rules is 
decidable since they are (trivially) almost-confluent. Hence the result. [] 

Thus, condition (a) in Theorem 3.8 can be effectively checked. Checking whether 
condition (b) holds is decidable too since equivalence of regular sets is decidable 
and, as mentioned before, LP(T1) and LP(T2) have decidable word problems. Thus, 
we have the following theorem. 

Theorem 3.10. The equivalence problem for regular almost-confluent Thue systems is 
decidable. 

4. Regular preperfect systems 

Recall that a Thue system T is called preperfect if and only if, for all x and y, x 
congruent to y implies x and y are resolvable. In this section, we give a proof that 
the equivalence problem is undecidable for regular preperfect systems, by reducing 
the emptiness problem for languages accepted by deterministic linear bounded 
automata to it. 

Throughout this discussion, familiarity with the concept and notation of Turing 
machines is assumed. A deterministic linear bounded automaton (DLBA) is a deter- 
ministic Turing machine with the additional property that the computation is 
restricted to that part of the tape where the input string is initially written. This is 
ensured by enclosing the input string between end-markers--say ¢ and S--and not 
allowing the head to move left of the ¢ or right of the $. In other words, a DLBA ~0~ 
is an 8-tuple (K, ,Y, A, ¢, $, 8, q0, F), where K is the (finite) set of states including 
the unique initial state qo and the set of final states F; Z is the set of input symbols, 
A is the set of tape symbols which include the left endmarker ¢ and the fight 
endmarker $, and 8 is the transition function. 

Configurations of a DLBA ~ are represented by strings of the form uqiv, where 
q~ stands for the state the machine is in, u the contents of the tape to the left of the 
symbol currently being scanned and v the contents of the tape to the fight, including 
the current symbol. (Thus, ~ is in state q~ scanning the first symbol of v.) A 
configuration is said to be final if the state symbol in it corresponds to a final state. 
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The language L(~lY~) accepted by a DLBA ~ is defined as the set of  all strings w 
such t h a t a  final configuration can be reached from the initial state qoew$. In the 
discussion that follows we assume that none of  the DLBA's under  consideration 
accepts the empty string A. 

Theorem 4.1 ([4, p. 281]). It is undecidable whether a language accepted by a DLBA 
is empty (and, hence, it is undecidable whether a language accepted by a DLBA over 
an input alphabet A is A+). 

Starting from any DLBA~Y~I we can construct an equivalent DLBA ~ 2  (i.e., 
L(~9~1) = L(~9~2) ) with the following properties: 

(1) ~IR2 has a unique final state qf and comes to halt at the very left end of  the 
tape (i.e., at the ¢ symbol) if the input is accepted. 

(2) If  the input is accepted, then ~-~2 reconstructs the input before coming to a 
halt. In other words, if a string w is accepted, then the final configuration will be 

qf~w$. 
Let ~ = (K, Z, A, ¢, $, 8, qo, F) be a DLBA with the above two properties. We 

show how to simulate ~ with a Thue system T consisting of only (finitely many) 

length-preserving rules. The construction is similar to that given in [8]; the alphabet 

of T is (A w K) (We assume A n K =0) and we have rules for every state and 

tape-symbol pair for which the transition function 8 is defined. Motion of the 
tape-head is simulated by moving the state-symbols accordingly. Thus, we have 

( qia, bqj) ~ T 

( cqia, cbcb) ~ T 

( qia, qjb ) ~ T 

if 8(qi, a) = (qj, b, RIGHT), 

for all c ~ A if 8 (qi, a) = (qj, b, LEFT), 

if 8(qi, a) = (qj, b, SAME). 

The above remarks are sufficient to verify the following claim. 

Claim 4.2. For all w e Z * ,  qo¢W$1--q* qfew$ if and only if  we  L(~iY~). 

We now corfstruct regular Thue systems 7"1 and 7"2 such that ?'1 and T2 are 
equivalent if and only if  ~ accepts every nonempty string over the input alphabet. 
Let C be a new symbol and let {C} u A u K be the alphabet over which the two 
Thue systems are defined. Define T~ as 

LD(T1)={(Cqo¢.,Y,+$C-* CC)} and LP(T1)= T 

and T2 as 

LD(T2)={(CqF¢.,Y,+$C --* CC)} and LP(T2) = T. 

It is not h a r d t o  see that  LD(T1) and LD(T2) are Church-Rosser .  Furthermore, 
LD(Ti) ,  LD(T2), LP( T1),. and LP(T2) neither create nor destroy C's .  Note also that 
for both T1 and 7"2 the length-preserving rules do not interact with the C's. To put 
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it more precisely, if u = u lCu2C. . .Cu , ,  where the ui's do not contain the letter C, 

and u l--q'v, then v can be written as ihCv2C.. .Cv,. ,  Where u~H*  v~ for 1<~ i<~n. 

Furthermore, all that the length-reducing rules in T1 (and 7"2) do is to erase strings 

between two C's. 

Claim 4.3. 7"1 and T2 are preperfect. 

Proof.  We only give the proof  in the case of Tl. The case of 7"2, being similar, is 
left to the reader. 

Assume T~ is not preperfect. Then it can be shown that there must be strings u, 

v, x, and y such that u H *  v, u ~ x, v --> y, and x and y are not resolvable (see 

[8]). The following cases have to be considered: 

Case 1. u = v: This is clearly impossible since LD(T~) is Church-Rosser.  

Case 2. u # v: Assume u gets reduced to x by the rule (CotC --> CC)  and v gets 
reduced by (C/3C --> C C ) ,  where neither a nor/3 conta!ns C. Then there existstrings 
u~ and u2 such that u = u~ CaCu2 and x = u~ CCu2. Similarly, there exist strings/3, 
vl, v2 such that v = vl C[3Cv2 and y = vl CCv2. 

Case 2(a). Ul H *  vl: Then it must be that C a C  H*'Cf lC,  a H*/3,  u2m* v2, and 
thus, x H *  y. 

Case 2(b). u~ ~-kq* vl: Since C is an 'inert' symbol across which there can be no 
interaction, either 

(i) u~ H *  D1C/3CD21 and C o t C u  2 H* V22 for some v2! and V22 where 021022 : V2, or 
(ii) u~CaCu21 H *  vl and u22 H *  C/3Cv2, where u21u22= u2. 

Without loss of generality, assume (i). Then 

X = U 1 C C u  2 H *  v 1 C~CI321 C C u  2 ---> D 1CCD21 C C u  2 

and 

and we have reached a contradiction. 

Y = D1CCv21 v22 H *  v I CCD21 ColCu~ ---> v I C C D 2 1 C C u  2 

[] 

Claim 4.4. Tl and 7"2 are equivalent i f  and only i f  L(~tR)= Z +. 

Thus, we have the following theorem. 

Theorem 4.5. The equivalence problem for regular preperfect Thue systems is 
undecidable. 
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