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The main objective of this paper is to characterize flat group valued
functors. We obtain the following theorem, announced in [7]: Let X be a
small additive category with dual X° and § an object in [X°, AB], the
category of all additive functors from X to the category Ab of Abelian
groups. Then S is flat, i.e., the functor S ®y :[X, AB] — AB is exact
if and only if the fiber X/S of the Yoneda embedding X — [X?, AB] over S
is filtered from above, or if and only if S is a filtered direct limit of represent-
able functors. There are several other equivalent statements, and it is,
mutatis mutandis, enough to assume X preadditive.

A similar theorem has been obtained by B. Stenstrom in [11]. He proves
that a functor is flat if and only if it is a filtered direct limit of projective
(instead of representable) functors. For Abelian X the result was obtained
by J. Fisher [5]; in this particular case “flat” means “left exact,” and a short
proof is possible. Our result is a generalization of the well-known character-
ization of flat modules by means of generators and relations, and has applica-
tions in the study of the exactness of the direct limit functor [7], and in the
singular homology theory of sheaves [8].

Using the above characterization of flat functors we show in analogy to
the results of S. U. Chase [4] on coherent rings that the category [X°, AB]
is locally coherent, ie., has a family of coherent generators, if and only if
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a product of flat functors in [X, AB] is again flat. Moreover, if [X° AB]
is locally coherent, then the weak global dimension of X and the global
dimension of Coh[X? AB], the (Abelian) category of all coherent functors
from X° to AB, coincide, and X is a full subcategory of almost generating
projectives of Coh[X® AB]. This last result is due to P. Freyd [6], however
he does not use the coherence notion. If X is Abelian this weak global dimen-
sion of X is at most two; this case has been investigated by M. Auslander [/]
and ]. Fisher [5]. Without Abelianess hypotheses we show that [X° AB]
is locally coherent and the above dimension is at most two if and only if
flat functors are closed under inverse limits in [X, AB].

The first two sections of this paper contain preliminary material, the main
results on flatness resp. coherence are contained in the third resp. fourth
section. The proofs of the preliminary lemmas and of the corollaries of the
main results have mostly been omitted.

1. PRELIMINARIES

Let K be a commutative ring with unit, and Mod K the category of unital
K-modules. A K-preadditive category U is a preadditive category A together
with a unital ring homomorphism from K into the center of 2, i.e., the endo-
morphism ring of the identity functor of . If X and U are K-preadditive
categories a functor F: X — U is called K-additive if for all », y € X the
induced map

Fix, ) : X(x,9) — U(F=, Fy)

is K-linear. The category of all K-additive functors from X to U is denoted
by [X, ]. A category X is called K-additive if it is K-preadditive and
admits finite direct sums. If X is K-preadditive let X be the universal
K-additive category generated by X. The objects of X are m-tuples
(% yores %), m = 0, of objects in X. If & == (xy ,..., %) and ¥ = (¥ yoeey V)
are two such objects then a morphism from x to y is an 7 X m matrix (8;,)
of morphisms 8;; : #; — ¥, in X. The composition of such morphisms is the
matrix multiplication, the coefficients being composed as in X. Obviously X
contains X as a full subcategory and is K-additive. For any K-additive
category U the restriction

[X , U] — [X, U]
is an equivalence. We will identify [X, %] and [X, U] in the sequel. The use
of X instead of X has notational advantages; for if ¥ is K-additive then a

finite direct sum of representable functors in [¥, Mod K] is again represent-
able. Also remark that if X is a K-preadditive category then

[X, Mod K] = [X, 4B,
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where the K-structure of X has been forgotten on the right. For most of
the sequel the consideration of the case K = Z = ring of rational integers
would be enough; nevertheless we deal with a general K throughout since
this does not require any more work.

If Se[X% ModK], xeX, £€Sx,and a:y— x in X we write fa: =
(Sa)(€). Obviously, (£éa) B = £&(ap) if at least one side is defined. In the same
manner, if Fe[X,Mod K], xe X, £€Fy, and a:y — x we write af: =
(Fa)(£). Also, in the same situation, we write

f:X(—,x)-—»S,

for the unique morphism with £(x)(id,) = ¢, given by the Yoneda isomor-
phism j: [X° Mod K}(X(—, x), S) > Sx. Often we will simply write ¢
for £ If Fe[X,Mod K], x€ X, and if I is an ideal (i.., subobject) of
X(—, x) let IF be the submodule of Fx, generated by all «f, where a € I{ y),
ye X, éeFy. More generally, IF can be defined for functors F e [X, ]
where U is any K-additive Abelian category with arbitrary direct sums.
Indeed, one defines

IF: = Image(] [(Fy; y = « in I( ), y € X) ——=> Fx).

If X is a small K-preadditive category and if U is a K-additive Abelian
category with arbitrary direct sums then the tensor product
®yx: [X°, Mod K] X [X, U] U
(S,F) »S®x F
exists; it is defined by the isomorphism

(1.1) @ : U(S Ry F, ) = [X°, Mod K](S, A(F, 4)),

functorial in S e [X°, Mod K], Fe[X, U], and A4 € A. In the same way the
tensor product ®y : [X0 A X [X, Mod K] — U exists. If S e [X?, Mod K]
and Fe[X, U] one has the functorial isomorphism S @y F o2 F Ry S.
The tensor product is the unique right continuous functor satisfying the
normalization conditions X(—, ¥) Qx F =2 Fx, and then also

G ®x X(x, —) == Gx, for Ge[X° Mod K].

The latter isomorphisms follow from (1.1) and the Yoneda isomorphism. If
S € [X? Mod K] and F € [X, Mod K] the tensor product can be constructed
as

S @y F = [1(Sx @k Fx; x€ X)/B,
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where B is the K-submodule of [J(S¥ ®xFx;xe X) generated by all
noe ® ¢ —n @ «f, where a € X(x, y), n€ Sy, £ €Fx (see [12]). The image
of n® € Sx ®gFx in S ®y F is again denoted by n ® £. With this
notation the canonical isomorphism X(—, ) @y F — Fx, is given by
a® ¢~ af, xeX(y x), £cFy.

(1.2) LemMa. Let Fe[X, Mod K] and I an ideal of X(—, x), xe X.
Then the correspondence cl(a) @ & ~ cl(«€) defines an isomorphism

X(—, x)/I ®x F — Fu/IF.

(Here a € X(y, %), £ €Fy and cl(a) resp. cl(«f) denote the image of o resp.
of in X(y, x)/I( y) resp. Fx/IF).

The proof is easy. The preceding lemma also holds (with the obvious
changes) if F e [X, U].

2. CouerenNt FUNCTORS

Let K be a commutative ring and X a small K-preadditive category.
We consider finiteness properties for the functors in [X° Mod K]. The
following definitions are essentially contained in [2], Ch. 1, [4], and [10].

We say that a set has cardinality ¢ (for finite) if it is finite; ¢ is called “the”
finite cardinal, In the sequel *cardinal” means the finite cardinal ¢ or any
infinite cardinal in the usual sense, We define ¢ < 8, . If a is a cardinal in
this sense, an ordered set I is called a~directed (or o-filtered from above)
if every subset of I of cardinality at most « has an upper bound in I. An object
S e [X% Mod K] is called of type o if every a-directed set of subobjects of S
whose supremum is S contains S (same definition for any category). In
particular the objects of type ¢ are the finitely generated objects or objects of

finite type.

(2.1) Lemma. Let S€[X° Mod K] and let o be a cardinal. The following

statements are equivalent:

(1) Sisof typeo.

2) There is a family (x,; A€ A) of objects in X with | A | < o and an
exact sequence

LI(X(—, »); Ae 4) > § — 0.

(3) There are a family (x,; A € A) of objects in X and a family (§,; A€ A1)

of elements £, € Sx, such that | A| < o and such that for all x € X

Sx;:-_gz Eonlayix—~>x,,0, =0  for abmost all A}.
Aea
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The proof of the lemma is easy (see also [10], Prop. 1).
A functor Se[X° Mod K] is called finitely presented if there are finite
families (x;; i€ I) and ( y;;5 € J) of objects in X and an exact sequence

H(X(—, x); i€ ) > [1(X(—, 3,);5€ J) > S = 0.
A functor S € [X°, Mod K] is called coherent if S is of finite type and if for

every morphism f: 8" — S with S’ of finite type also the kernel of f is of
finite type.

(2.2) Lemma. Let S;, S, be two finstely presented subfunctors of a functor
Se[X% Mod K]. Then S, + S, is finitely presented if and only if S, N S,
is of finste type.

The proof of this lemma is analogous to that of [2], I. 1, Ex. 6, £.

(2.3) Lemma. (i) Let Se[X°% Mod K] be of finite type. Then the
following assertions are equivalent. '
(1) S is coherent.
(2) Every subobject of S of finite type is finitely presented.
(3) For every finite family (x;; i € I) of objects of X and every morphism
[ LI(X(—, x,); i€ I] — S the kernel of f is of finite type.
(i) The full subcategory Coh[X®, Mod K] of [ X, Mod K] of all coherent
Junctors is closed under finite limits and colimits in [X° Mod K]. Moreover
Coh[X?® Mod K] is equivalent to a small category.

This lemma originated in the theory of sheaves. For modules over a ring
it is contained in [2], I. 2, Ex. 11, or originally in [4].

(2.4) LemMA. Any Se[X° Mod K] is the direct limit of a filtered
direct system of finitely presented functors.

The proof of this lemma is along the lines suggested in [2], I. 2, Ex. 10.
This lemma is an improvement of Theorem 1.5 in [5] where it is assumed
that X is additive and admits cokernels.

3. FLaT FUNCTORS

If j: X — Y is a functor and y € Y then Xy, the fiber of j over y, is the
category whose objects are pairs (x, 8) of an x € X and a morphism 8 : j(x) — y.
In particular, if X is K-preadditive and .S € [X°, Mod K] then the fiber X/S
of the Yoneda embedding

X — [X° Mod K] : & ~ X(—, x),
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over S has objects (x, £), where x € X and £ € Sx. Here we identify £ € Sx
with £ : X(—, x) - S.
We say that a category X is filtered from above if it satisfies the conditions

(F1). Ifx,ye X thereisase X with
X(x,3) £ & # X(3, 3)
(F2). Any diagram x =% y can be extended to a commutative diagram

Xy —>2

(3.1) LemMma. Let K be a commutative ring and X a small K-preadditive
category. If n > 0 and Fe[X, Mod K], and if Tor,X(S,F) =0, for all
[initely presented S, then Tor,X = 0.

Here Tor,X is the nth left-derived functor of the biadditive, right-exact,
and balanced functor Xy .

This lemma follows from Lemma (2.4) since Tor commutes with filtered
direct limits.

(3.2) THEOREM. Let K be a commutative ring with unit X a small K-pre-
additive category. Let Se[X° Mod K]. Then the following statemenis are
equivalent:

(1) Sisflat, i.e., the functor
S ®y : [X, Mod K] — Mod X

is exact.

(2) For every K-additive Abelian category W, with exact filtered direct
limits, the functor

S Qy: [X, U —>A

is exact.

(3) For every z € X and every ideal I of X(z, ) : Tory*(S, X(=, )/I) =

4 If 2,8:3—y;,j=1,.,n, are in X and n;€ Sy;, all j, with
>iniBs = O then there are objects x;, i = 1,...,m, elements §£,€ Sx; and
morphisms oy : y; — x; , all 1, j, such that

Yboy=m;, allj
i

Z a;,ﬁ, = 0, all i,
i



FLAT AND COHERENT FUNCTORS 97

(5) The functor S is a filtered limit of finite direct sums of representable
Junctors, i.e., there is a small category ], filtered from above and a functor
J=>X:j=z
such that S ~ inj lim; X(—, x;).
(5') The statement of (5) is true with a filtered ordered set J.
(6) The fiber X|S of the Yoneda embedding

X — [X°, Mod K] : & = (% yeery %) = X(—, &) = [ X(—, %)),
over S is filtered from above.
Proof. We prove (1) = (4) = (3) = (1) = (6) = (5) = (5) = (2) = ().

(1) = (4). Given the data of (4) let I be the ideal of X(z, —), generated
bytheB;,j = 1,...,n,ie, forxe X

I(x) = 327:‘!3:'“’;:3’5—’” .

Since the functors X(-, x), x € X, form a system of generators of [ X, Mod K],
there is an exact sequence

0—KCF =[I(X(—, %);Ae 4) & S —0,

where (x) ; Ae A) is some family of objects of X. Let £, : X(—, x,) — S,
A€ A, be the Ath component of p, where £, € Sx, , Ae 4.
Since S is flat the sequence

0— K ®g X(z, —)/I - F ®y X(z, —)/I

is exact. By Lemma (1.2) we obtain that KI = Kz N FI.

Since p is an epimorphism there are elements o' € Fy; , j = 1,..., n, such
that p( ¥;)(;') = 7, , allj. The relation }; n;8; = 0implies that¥’; o;/8; € Kz,
and by definition of I we have Y ; o/8; € FI. Hence ¥, o;/'8; € Kz N FI = KI.
By definition of K7 and since I is generated by the §;, there are a; € Ky;,
J=1..,n with 3;0/8; =3, 0B;. Defining o; = o' — 0], j = 1,..., 1,
we obtain 3, a8; = 0, and p(3,)(es) = H(3)(e) = 7y, all .

But o =Y oy X(y;, %) =Fy;. Hence 34,8, =0, all Ae4,
and

=Y ey,  allf.
A

This is the desired result since there are only finitely many j; and hence one
needs only finitely many A.

481/14/1-7
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(4) = (3). Let 2 X and [ be an ideal of X(z, —). In order that
TorX(8, X(z, —)/I) = 0, it is necessary and sufficient that the map

S®XI—"33327I;'®,8;"‘*Z’?1‘55,
j j

is injective. But assume that 8;€1(y,) C X(2,3;), j = |,..., n, and n; € Sy;
such that 3; %,8; = 0. By (4) there are finitely many objects x; , = 1,..., m,
in X, elements ¢, € Sx; , and morphisms o, : ¥, — x, such thatn; =3, £,0,;,
allj, and ¥, «;;8; = 0, all i. This implies that

Z"?i@ﬁ:‘ 325;‘% ® B, m;&@(Z%&) =0,

A=

Levma. Let T : 0 — B be a half-exact functor beiween Abelian categories
Wand B.If 4, , A, € W, and if T vanishes on all factor objects of Ay and A, ,
then T vanishes on all factor objects of A, @ A4, .

The proof is easy, and known.

We apply the lemma to the half-exact functor Tor*(:S, —), and obtain
from (3) that Tor,*(S, —) vanishes on all functors of finite type. By Lemma
3.1 this implies that Tor,*(S, —) = 0, i.e,, Sis flat.

(1) = (6). Without loss of generality we assume that X = X, ie,
that X is additive. We show that X/S is filtered from above. The condition
(F1) is trivially satisfied since X and S are additive.

Let then B, : (2, £) — (¥, 1), / = 1, 2, be two morphisms in X/S where
& =B, = nP,, so y(B; — By) = 0. By (4) which is equivalent to (1) by
the above proof there are objects x,, ¢ == 1,...,,m, in X, elements £ € Sx,
and morphisms o; : ¥y ~> x; such that ¥, £ =, and o(f; — B,) =0,
all 4. Let o = [[;%;, &= ()€ Sx =[] S%;, and a:y-—x be the
morphism with components «; . Then o8, — 8;) = 0, and 5 = £a. This
implies that a:(y,4) —> (¥, £) is a morphism in X/S and o, = af,.
But this is the condition (F2).

(6) = (5) follows directly from the fact that X is additive and thus
S 2~ inj limg ¢ X(—, X).

(5) = (5') follows from the unpublished result of R. Swan, that for every
small category J, which is filtered from above, there is an ordered set [’
which is filtered from above and a cofinal functor ' — ].

(5) = (2). If S = injlim, X(—, &) then for every Fe[X, U] one has
S ®xF = inj llmJ X(—, E,) ®xF = inj limJFf’ .
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Since the filtered limits in U are assumed to be exact the functor
SRy: [ X, U ->UA

is exact.
(2) = (1) obvious.

Remark. The isomorphism S @y F o= F ®ye S and the Theorem (3.2)
show that a functor F e [X, Mod K] is flat if and only if, e.g., X%/F is filtered
from above.

Remark. The preceding theorem is essentially a generalization of {3],
Ch. VI, Ex. 6, to functor categories.

(3.3) CororLarY. Assumptions as in theorem. If X is K-additive, then
S is flat if and only if X|S is filtered from above.

(3.4) CoroLLARY ([5],24,2.9). Assumptions as in-Theorem 3.2. If in
addition X ts K-additive and admits cokernels then S is flat if and only if S
s left exact.

Theorem 3.2 can also be applied to non-additive functors. Let X be any
small category, and let KX denote the universal K-preadditive category
generated by X. The objects of KX are those of X. If x, y € X then (KX)(x, )
is the free K-mndule generated by X(x, y). The category X is a subcategory
of KX, and KX is characterized by the property that for every K-preadditive
category 2 the restriction

[KX, A} — UX

is an equivalence. Here AX denotes the category of all functors from X to 2L
We identify [KX, 0] = AX. With this identification, if S e (Mod K)*’ and
F e WX one has
S QxF =S Qxx F.
(3.5) CoroLLARY. Let X be any small category and S € (Mod K)* . Then
S is flat if and only if KX|[S is filtered from above.
Under special assumptions one can replace KX/S by KX/S in the pre-

ceding corollary.

(3.6) CororLLarY. Let X be a small category with a zero object e and
finite divect sums or finite direct products. Let S € (Mod K)X° such that Se = 0.
Then S is flat if and only if KX/S is filtered from above. If this is the case then
KX/S is cofinal in KX|S, and in particular

S o inj limgy ¢ KX(—, x).

481/14/x-7"
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Under the assumptions of the preceding corollary any functor
S e (Mod K)¥°can be written as S = S, @ S; , where Syx — Ker(Sx 22> Se)
and S,x =~ Se. This decomposition is functorial in S. Then S is flat if and
only if S; and S, are, and the preceding corollary can be applied to S .

The next corollary is similar to a result on functors into the category of
sets, due to A. Grothendieck (see, e.g., [8], p. 326).

(3.7) CoroLLArY. Let X be a small K-additive category. Let E be a
multiplicatively closed set of epimorphisms of X such that

(1) for all xe X, the ordered set I = {cl(¢); domain ¢ = x, e E} s
Artinian.

(Here cl(¢) means the quotient object i.e., the equivalence class of isomorphic
epimorphisms, which is represented by e. The set I is ordered by: cl(¢') < cl(e),
if there is a morphism « in X with ¢ = ae. An ordered set is called Artinian
if it satisfies the descending chain condition).

(2) every morphism of X is a product e of a monomorphism p and a
morphism ¢ c E.

Then a functor S € [X°, Mod K] is flat if and only if it is a filtered direct limit
of representable subfunctors.

Proof. (i) The condition is sufficient by Theorem 3.2.

(ii) Assume now that S is flat, i.e., that X/S is filtered from above.
We show first that any morphism X(—, ) 2> S can be factorized in the form
X(—,7) RN X(—,y) > S where 4 is a monomorphism (p € Sr, 1 € Sy).
Indeed let € : » — y be minimal among the epimorphisms in £ with domain »
such that there is a factorization j = 7.X(—, €). We show that any such 7
is a monomorphism. Let 2€ X and B,, 8, € X(z,y) such that (z)(8,) =
#(2)(Bs), i.e., nBy = nBy. Then B, and B, are morphisms in X/S from
(2, 78,) to (¥, 7). Since X/S is filtered from above there is a morphism
a:(y,m) — (» € in X/S with af; = af, . By (2), « = u8, where 3 € E and
p is a monomorphism. We first conclude 88, = 388,. Moreover n = éu
implies that

7 = £X(—, a), hence
P =7X(—, €) = (EX(—, u)) X(—, 5¢).
By the minimality of ¢ we obtain that 8 is an isomorphism, so 88, = 88,
implies 8, = B, . But this means that 7 is a monomorphism.
(iii) Since S = inj limy,s X(—, ) and by (ii), we get that S is the
sum of its representable subfunctors. Since the direct sum of two representable
functors is again representable and by (ii) we obtain that the set of repre-
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sentable subfunctors of S is filtered from above. Hence S is the filtered
union of its representable subfunctors.

ExampLe. Let R be right Noetherian and right hereditary ring. Let
Mod, R resp. Mod; R be the categories of all right- resp. left R-modules,
and let X be the full subcategory of Mod, R of all finitely generated projective
R-right modules. The category X is equivalent to a small category, and the
class E of all surjections, i.e., of all split epimorphisms, satisfies the conditions
of the preceding theorem ([3], I. 6, Prop. 6.2). Moreover the functors

[X,AB]— Mod; R:F ~ FR,
and :
[X° AB] — Mod, R: S ~ SR,

are equivalences such that
S Ry F SR ®, FR.

Hence an R-right module N is flat if and only if it is the filtered union of its
finitely generated, projective submodules. Of course, this result can also
be shown directly.

4, FraTnEss AND COHERENCE

This section represents a generalization of some of the results of S. U. Chase
[4] to functor categories. The proof of the next result is modelled after a
suggestion in [2], I. 2, Ex. 12. Let K be a commutative ring.

(4.1) TueoreM. Let X be a small K-preadditive category. Let R be a
cardinal such that for all x € X any ideal I of X(—, x) is of type X (see Section 2).
Then the following statements are equivalent.

(1) [X° Mod K] s locally coherent, i.e., admits a family of coherent
generators.

(2) For each x € X the functor X(—, x) is coherent.
(3) All finitely presented objects in [ X®, Mod K] are coherent.

(4) For any x € X the intersection of two ideals of finite type in X(—, x)
s again of finite type, and for anmy morphtsm a:x—y tn X the kernel of
X(—, o) is of finite type.

(5) The product of flat functors in [ X, Mod K] #s flat.

6) If (xs;AcA) is a family of objects in X with | A} <K, then
TI(X(x, , ~), Ae A) is flat.
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Remark that some such cardinal X always exists. Hence the statements (1)
to (5) are equivalent for any small K-preadditive category.
Proof. We show (1) <> (2) = (3) = (4) = (2) = (5) = (6) = (2).
(1) < (2) = (3) = (4) is easy by using Lemma (2.3).
(4) = (2). Let(x;;iel)be a finite family of objects in X and
[ X (=, x);ie D) > X(—, )

a morphism. By induction on the number # of elements in I, we show that
Im fis finitely presented. This is trivial for = 0, and true for n = 1 by the
hypothesis. Assume then that #n > 1, let j€ 1, and

Sl = Z f(X " xi))) and
t#j

Sy = f(X(—, %))).

Then Imf = S, 4+ S,. By induction hypothesis S; and S, are finitely
presented and S, N S, is of finite type by assumption (4), hence Imf is
finitely presented by Lemma (2.2). Hence any ideal of finite type in X(~, x)
is finitely presented. Thus X(—, x) is coherent.

2) = (5) (a) If Se[X% ModK] is finitely presented then for any
Abelian category U with exact direct products the functor
S Ry : [X, U] >A
commutes with direct products. The proof is analogous to [3], Ch. II, Ex. 1.

(b) Under the hypothesis (2) (and hence (3)) any finitely-presented
functor S has a projective resolution of finitely-presented functors. Using (a)
we obtain that the functors '

Tor,X(S, —) : [X, Mod K] — Mod K

commute with products.

(¢) Lemma (3.1) and (b) imply that the product of flat functors in
[X, Mod K] is flat.

(5) = (6). Obvious.

(6) = (2). For simplicity we assume that X is additive. Let 2 € Z. We
show that X(—, 2) is coherent by showing that for any morphism 8 : y — 2
the kernel S of X(—, B) is of finite type. By assumption there is a family
(y:; A€ A) of generators of S with {4 | < X, i.e., a family of morphisms
¥t 4y — ¥, A€ A, such that the morphism

H(X(_1 uA); Ae A) g X(*’ y):
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whose components are the X{—, y,) has image S. By (6) the functor F =
[I(X(#,, —);AeA) is flat, and (y,;AeA)eFy with ByyAed) =
(Byx; A€ A) = 0. Hence, by Theorem (3.2) and since X is additive, there are
an object x € X, a morphism a : ¥ — y, and (§,; A € A) € Fx such that

(yyred) =aofd;Acd) and Ba=0

The second of these relations shows that « € Sx; the first implies that S is
generated by «, and in particular is of finite type.

(4.2) CoROLLARY. Assume that the equivalent conditions of the preceding
theorem hold. Then X is a full subcategory of projectives of Coh[.X®, Mod K]
(up to equivalence) such that every object of Coh[X° Mod K] is an epimorphic
tmage of a finite direct sum of objects in X, Every additive functor from X into
an Abelian category can be extended to a right-exact functor on Coh[.X° Mod X7,
uniquely up to isomorphism.

This corollary essentially coincides with Corollary 1.6 in [6]; the conditions
in that corollary just mean that all functors X(—, x), ¥ € X, are coherent.
Remark that without any condition on X the category Coh[X? Mod K] is
abelian, the only question is whether X is contained in it.

Special instances where the equivalent conditions of the preceding theorem
are satisfied are

(1) X is K-additive and admits weak kernels ([6], Section 1).
(2) X is K-additive and admits kernels ([1], Section 2).

(3) There is a cardinal R such that X admits direct sums of families of
cardinal X, and such that every ideal of an X(—, x); x€ X, is of type R.
For then

[I(X(x, =) red) = X(II %, —)-
If X is a small K-preadditive category the weak global dimension of X is

the infimum of all nonnegative integers m, such that for all § € [X? Mod K]
and F e [X, Mod K], one has

Tory . 1(S, F) = 0.

It is clear that this dimension does not depend on K and that the weak
global dimensions of X and X* coincide.

(4.3) TueoreMm. Assume that the egqusvalent statements of Theorem 4.1
hold. Then the global dimension of Coh[X® Mod K1 equals the weak global
dimension of X.
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Proof. Let m resp. n be the global resp. weak global dimension of
Coh[X?,.Mod K] resp. X. Here m and n are nonnegative integers.

We show first that #n < m. Assume m <C 0. Let then S be a finitely
presented, hence a coherent functor in Coh[X?°, mod K]. By assumption there
is a projective resolution

0P, —>P,—>S—>0,

in Coh[.X*®, Mod K. This is also a projective resolution in [X° Mod K], so
TorX,,(S, —) = 0. But then, by Lemma 3.1, Tor),, = 0, and hence n < m.

Show now m < n. Assume n <C 00. Let S € Coh[X°, Mod K]. Then there
is an exact sequence

0—-P,—>P, > >P—>85->0
in Coh[X% Mod K], where P, is projective for 0 <{ 7 <{ n — 1. Then
Tor,¥(P, , —) = TorX, (S, —) = 0.

Hence P, is flat and finitely presented, so projective by [2], I. 2, Ex. 15, or [5],
Th. 4.4. This means that m < n.

(4.4) CoroLLARY. (See [4], Th. 4.1): Let X be a small K-preadditive

category. The following statements are equivalent.

(1) X° is semi-hereditary, i.e., every ideal of finite type of an X(—, x),
x € X, is projective.

(2) [X° Mod K] s locally coherent, and Coh[X°, Mod K] has global
dimension at most 1.

(3) A product of flat functors and a subfunctor of a flat functor in
[X, Mod K] are flat.

(4.5) CoroLLARY. Let X be a small K-additive category. The following
statements are equivalent.
(1) [X° Mod K] 4 locally coherent, and the global dimension of
Coh[X®, Mod K] ¢s at most 2.
(2) For every morphism o :x—y in X, the kernel of X(—, ) is of
finite type and projective.
(3) An inverse limit of flat functors in [X, Mod K] is flat.

ExameLE. ([7], Th. 2.2). If X is K-additive and admits kernels then the
statements of the preceding corollary are true; for a functor is flat if and only
if it is left-exact, and an inverse limit of left-exact functors is left-exact.
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