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Let (X,, U,) be i.i.d., X, real valued and U, vector valued, bounded random variables or governed by a 
finite state Markov chain. Assuming that E[X] < 0 and P(X > 0) > 0, central limit theorems are derived 

for 1, CJ, on segments conditioned that 1, X, is increasingly high, going to +CO. While these segments 

are exponentially rare, they are of importance in many models of stochastic analysis including queueing 

systems and molecular sequence comparisons. Particular applications give central limit theorems for the 

empirical frequencies over such segments and for their length. 
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Introduction 

Many random structures of theoretical and practical importance are associated with 

sequences of real random variables of high aggregate values having small probability, 

often exponentially small. In this context we set forth a class of Gaussian distribu- 

tional limit theorems conditioned on rare events. The results can be construed as a 

central limit theorem in the context of large deviation theory. Examples relate to 

the maxima1 waiting time in stable queueing systems, and with reference to maxima1 

riskless insurance epochs, see Iglehart (1972, 1974), Siegmund (1975), Kao (1978), 

Asmussen (1982), Arantharam (1988). Our motivation stems from biomolecular 

sequence comparisons, Karlin and Altschul (1990), Karlin et al. (1990). 

In the simplest formulation let X,, X,, . . . ,X,, be i.i.d. real valued bounded 
random variables obeying the conditions 

E[X]=p.<O and Pr{X>O}>O (1) 

so that unrestricted the partial sum process {S,, = 0, S, = I:=, X;} entails a negative 

drift. Let CJ, , U,, . . . , U,, be i.i.d. bounded random vectors, lJ, generally dependent 

Correspondence to: Dr. Samuel Karlin, Department of Mathematics, Stanford University, Stanford, 
CA 94305-2125, USA. 

* Research supported in part by NIH grants GM 39907-02, GM 10452-27 and NSFgrant DMS 86-06244. 

0304-4149/93/$06.00 0 1993-Elsevier Science Publishers B.V. All rights reserved 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82323658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


260 A. Dembo, S. Karlin / CLTfor partial sums 

on X,. Define T(0, y) to be the first passage time (index) when the process {S,}~=, 

first departs the open interval (0, y), y > 0 and designate Z!?i,? as the event STCO,J, ? y. 

On the basis of (1) it is simple to see that 

Pr{ %i,,.} + 0 as y + cg. (2) 
. . 

For the reahzattons of Z5;,_” (increasingly rare events as y+c~) we establish a 

central limit theorem for the partial sums W(y) = ET:;‘) U,. When properly normal- 

ized, the precise statement for the i.i.d. model is stated in Theorem 1 and for the 

case of Markov dependence in Theorem 2. To this end we determine the following 

quantities. Let 

~(0, t) = log Hexp{oXr +(C uJ)l (3) 

where (t, U) is the standard inner product of the indicated vectors. Designate by 

0* > 0 the unique positive root of the equation p( 0*, 0) = 0 (existence and uniqueness 

ensue on account of (1)). Set 

rt’*=$(8*,O)=E[X,exp(B*X,)] and u*=E[U,exp(B*X,)]. (4) 

The value w* is positive. 

Theorem 1. Conditioned on gi,,., 

converges in distribution (y+o~) to a multivariate normal distribution of zero mean 

vector and covariance matrix C = 11 cii [I where 

c,,=~,(e*,O)=E((u,-U*)i(a,-~*)jexp(H*X,)). 
1 I 

(6) 

For applications, specifying U,, = X, (so u* = w*) and since conditioned on %‘&,, 

S TCO,J,j - y is bounded (because Xi are bounded) we get: 

Corollary 1. Conditioned on Z?&., Jw*/y{y - w*T(O, y)} converges in distribution as 

Y+co to a normal random variable of zero mean and variance u2= 

E[(X - w*)’ exp{e*X}]. 0 

This corollary was first obtained by Siegmund (1975). The method of proof is 

different from ours. 

Corollary 2. Let A be a Bore1 set in the range of X. Define U, = Za(Xk), where 

IA(X) = 1 for X E A, 0 for X G! A. Conditioned on the event Z?g,_,, the empirical distribu- 

tion of samples p(A; y) satisfies m[p(A; y) -p*(A)] + N(0, c”), where 

p*(A) = E[I,(X) exp{0*X>] and c* = p*(A)-p*(A)=. 0 
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For the applications in molcular biology we need to adapt Theorem 1 with the 

conditioning put in the following form. Let (T(Y) be the one-sided first passage time 

that some segment (S, - S,) reaches a level my. This event occurs with probability 

1 (Dembo and Karlin, 1991a). Let K(Y) be the largest index <a(y) with the property 

that S, -SK,,., >O for k=~(y)+l,..., a(y) and S~r(,,j-SK(l.jZy. Set L(y)= 

(T(Y) - K(y). Then 

converges in distribution to a normal random vector of mean 0 and convariance 

matrix as displayed in (6). 

For the Markov development of Theorem 1 we consider an underlying irreducible 

Markov chain (M.C.) governed by the transition probability matrix P = 11 pup 11 on r 

states with stationary frequency vector m = ( rra). Consider, with each transition 

(Y to p, i.i.d. real valued bounded random variables {X+}. We focus on those 

realizations {an} of the M.C. and corresponding sample paths of S,,,, = 

1:;’ X<,,,,+, (a0 = a) with the property that S,,,, first departs the open interval (0, y) 

through the upper level. Denote this first passage time by T,,(O, y) where LY is the 

initial state of the M.C. (We suppress a when no ambiguity is possible.) Again we 

denote the event S-rco,Y, my by g;,,(a). The assumptions corresponding to the 

requirements (1) are 

(8) 

and for some cycle of states for every initial state cy the condition 

k-l 

Pr &,= 1 X,,,,,+,>O, k=l,..., m-l CY~=(Y,,,=CY >O. 
,=” 

holds. 

To achieve the analog of Theorem 1 in the M.C. case we construct the irreducible 

non-negative matrix family 

q,(R t) =p,,E[exp{eX,,,,u,+(r, u))Ia0= i, aI =A. (10) 
Let A (8, t) be the spectral radius of the matrix Q( 0, t) = 11 q,( 0, t) 11 which is strictly 

log convex, see Dembo and Karlin (1991b) and form 

p( 0, t) = log A (0, f). (11) 

Because of (8) and (9), there is a unique positive 0* satisfying p(B*, 0) = 0 (Dembo 

and Karlin, 1991b). The computations of (4) in the M.C. case have the form 

~‘*=;p(H*,o) and u*=V,p(B*,O) (12) 

where V, signifies the gradient vector extracted from ~(0, t) in the t variable. 

We are now prepared to state our main result of the conditioned central limit 

law in the M.C. setting. For each realization of the M.C. let U, , U2,. . . be a bounded 
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vector sequence U, = IJ,,,,,, +, depending on the M.C. transition (Ye to ak+, and 

X llj.~~*l+, and form the partial sums W,,, = I;“=, U,. 

Theorem 2. Conditioned on %:&(a) for any initial state a, 

(13) 

where the covariance matrix C = I/q, 11 has c,, = (d2/ati at,)p( 0*, 0). 

The analogs of Corollary 1 and 2 hold as well in the M.C. framework. 

We conclude this introduction and statement of results with some genera1 com- 

ments on the organization of the paper and method of proof. 

In the i.i.d. univariate case we rely foremostly on properties of the Wald Martingale 

family 

exp[e&+(t, WJ-np(R t)l (14) 

and expanding about (0*, 0) coupled to an implicit function argument leading to 

the following weighted central limit theorem. 

Lemma 1. Assume u* = E[ U exp( 0*X)] = 0. Then 

lim Hexp{tJw*ly WT,n,yJ ew{~*(STcn,,., -Y)> I %Yi,rl 

E[exp{~*(STtO,r, -Y)) I %,?,I 
= exp{$t2v*} (15) 

,.“X 

where v* = E[ U2 exp( f3*X)] = (a’/at’) log E[exp(BX + tU)] for 0 = 8*, t = 0. 

The proof of Theorem 1 is completed by establishing the asymptotic independence 

of W,,,, ,‘) and ST(~,~) -y conditioned on 8&.. The multivariate version is reduced 

to the univariate case by a standard procedure. 

The M.C. case of Theorem 1 relies on the generalized Martingale family (prescrib- 

ing the initial state CQ) 

k&4 t) 
R,(B, t)=exp{tB,+tW,--np(0, t)}p 

VL,,( 0, t) 
(16) 

with J, = { $,,( 0, t)} the unique (normalized so that C,, tiL,( 0, t) = 1) right eigenvector 

of the matrix Q(0, t) defined in (10). 

Section 2 is devoted to the proof of Theorem 1. Section 3 elaborates the 

modifications enabling the proof for the M.C. version (Theorem 2). Asmussen (1982) 

provides a different proof of Theorem 1 and a functional limit law for the i.i.d. 

non-lattice case. 

2. Proof of Theorem 1 

The multivariate version can be reduced to the univariate case (see the discussion 

at the end of this section). The notation is described in connection with Theorem 

1 in the introduction. 
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Lemma 2. Let {X,, Ui} be a sequence of i. i.d. pairs of bounded (bound K ) real variables 

such that E[ U exp( 0*X)] = 0, then for all real t, 

(17) 

where v” is given explicitly in (15). 

Let T( -a, b), -a c 0 < b, denote the stopping time variable indicating the time 

(index) where the sum process S,, first exits the open interval (-a, b) and g!ll,h 

signifies the event that {S,,,} upcrosses the barrier b before downcrossing -a. Let 

1(-a, b) denote the binary variable for the event 8!Y,,, such that 1(-a, b) = 1 or 0 

iff ‘ZY!& occurs (S,(~rr,hj 3 6) or not (ST,_a,hj~ -a), respectively. 

Form the Wald martingale sequence 

R,(B, t)=exp{BS,+tW,-np(8, t)} (18) 

with 

s,, = i xi, w,= f u; (S,,= W,,=O). 
121 ,=I 

The optional sampling theorem for R,,( 0*, 0) entails, since p( 0*, 0) = 0, ]&(,),,.,l Q 

y + K and T(0, y) <cc a.s., that 

1 = E[exp{~*ST,cl,,.J1. (19) 

By the implicit function theorem, since ~(0, t) is analytic for t small enough, and 

(ap/ar3)( 13*, 0) = w* > 0, there exists e(t) near 0* and analytic in t satisfying 

0=0(r), 1) 

=(e(t)-e*)w*+$*t~+o[(e(t)-e*)*+tle(t)-e*I+t3]. 

It follows that (0(t) - e*) = 0( t’) and (20) reverts to 

(20) 

e(t)= e*-$5 t’+o(P). 

We need the following large deviations estimate: 

Lemma 3. For each y > 0 and ItI small enough, 

E[exp( t W,(,,,.,); T(0, y) > n] + 0 uniformly in y as n + 00. 

(21) 

Proof. Note that T(0, y) > n entails S, > 0. Since S, has negative drift, the simplest 

large deviation inequality, e.g. Chernoff (1952) or Varadhan (1984), gives 

(22) 
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where Z(0) = -infH,o p( 0,O). But the terms of { Ui} are bounded (I U,l G K) by 

hypothesis and therefore 

Hexp(ZW-r(0,?,,); Z(O, Y) > nl4 E[w(lflKT(O, .Y)); T(O, Y) > nl. 

The right hand side goes to zero exponentially fast when It( is small enough. The 

proof of Lemma 3 is complete. 0 

On account of Lemma 3 we can apply the optional sampling theorem, maintaining 

111 small enough, to get 

I = Hexp(~(Z)S7,0,,.j+ tWr(0,,+- Z(O, y)p(e(t), ?))I 

= E[ev(~(t)STtO,,.j+ ~WT~~,~JI. (23) 

Let t,. = tJw*ly with Y specified sufficiently large in (23) and combine with (19) 

yielding the equation 

0== ECexp{B*S,(,,,,,}-exp{B(c~)ST(“,~)+ ~,.WT~~~,?.JI. (24) 

Lemma 4. 

(25) 

Proof. Partition the equation (24) into the expression of (25) plus the complementary 

terms 

E[exp{~(t,.)S,,O,,,+ t,.W,(“,,.,}-exp{B*S,,,,,,,}; Z(O,Y) =Ol 

= ~[ev{~(f,,Vh~,,, }-exp{B*S WJ.r.11; Z(0, Y) = 01 

+ ~bxp{fWST~O,~~+ ~yWT,o.y,~(l -ex~{-4.W~,~,?.,}); I(% Y) =Ol 

=11+111. 

Note that ST(O,,,j under the condition I(0, y) = 0 is bounded allowing the quantity 

II to be estimated above by C(0( tl-) - 8*\ which tends to zero at a rate l/y. 

Since Srcn, ?‘, s 0 in the event Z(0, y) = 0 we have exp{e(t,,)S,(,,,,,}s 1. Now for 

each fixed N and Y large enough we have 

E[lexp{r,.W,,,,,,.,}(I -exp{-~,.WT~o,,Jk I(& Y) = 01 

-(:~(j==)+HfNexp{‘f’>~ } (n+l) Pr{T(O,y)=n+l; Z(O,y)=O} 

(26) 

and CN is a constant depending on N and t. But Pr{ T(0, y) = n + l} s exp{-Z(O)nj, 

see Lemma 3, and therefore the series converges geometrically fast keeping t bounded 

and y large enough. Determine N so that the series term is less than a small arbitrary 

quantity F. Subsequently, let y + 00 showing that the quantity III becomes arbitrarily 
small and the demonstration of (25) is complete. 0 
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Proof of Lemma 1. We rewrite the limit relation (25) in the form 

I[ E exp((~(t,) - ~*)ST(~,~J exp(~*(S~~o,y~ -VI) exp 

- E[ev(~*(ST~o,,~ -y))IZ(O,y)=l] exp(8*y)Pr{Z(O,y)=l}+O asy+co. 
I 

(27) 

Now substitute from (21), 0(t,) - 0” = -( t2/2y)v*+ 0( l/y”‘), and recognizing that 

s 7C0,,,,J/y+ 1 boundedly uniformly over sample paths of the realization Z(0, y) = 1 

while exp( 0”y) Pr(Z(0, y) = l} (see (31) below) and E[exp(B*(S,,,,,, - y)) 1 Z(0, y) = 

l] are bounded away from zero we obtain the result of Lemma 1. 0 

To complete the proof of Lemma 2 it remains to show the asymptotic independence 

of WT~~,,~~ and S,C,I,,I -y conditioned on Z(0, y) = 1. For ease of exposition we 

assume Xi are continuous random variables. We need the following lemma. 

Lemma 5. Let Z- be the jrst non-positive partial sum among {S,} and F(y) the 

distribution of max(O, S,, . . . , S,,) where u is the$rst passage time to the non-positive 

axis. Then, 

lim ECexp(~*(STCO,,zI -y)) 1 I(& Y) = 11 y-m 

1 - E[exp( 8*Z-)] 1 

= lim,.,, (exp(e*y)[ 1 - F(y)]) e” ’ 

0 < e* < 00. Moreover for any u(y), 

lim * 
?‘+s 

E[exp(fJ (STC-~C?,L?,I -Y))lwuo,Y)=ll=~ 
a(y)-a 

(28) 

(29) 

where in the lattice case both y and a(y) traverse the lattice array. 

Proof. Let M(x) be the probability distribution function of the global maximum 

max(0, S, , S?, . . .). (Owing to E[X] <O, M(x) is a bona fide distribution.) Iglehart 

(1972) established (see also Karlin and Dembo, 1992) that 

,‘irr exp( B*y)[ 1 - M(y)] = e* (30) 

exists, with 0 < e* < 00, and 

!,it exp(0*y)[l- F(y)] = e*[l- E(exp(ff*Z-))]. (31) 
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Applying the optional sampling theorem for T(0, y) on the Wald martingale (18) 

gives 

1 = ~[exp(~*ST~o,,v~)l 

= [I - F(y)1 exp(8*y)E[exp(~*(S~~~,,,-Y))I [CO, Y) = 11 

+ ~(y)~[ew(~*&~~,.J I I(% Y) = 01 

and thereby we deduce (since { ST,O,Vj 1 Z(0, y) = 0) -+ Z-) 

lim E[exp(@*(S~,~I,J,I -y)) I I(% Y) = 11 I’ + m 

(32) 

= lim l- ~(y)Hev(~*S~~O,yJ I Z(O, Y) = 01 
l”a3 expt~*y)[l- RY)I 

1 - E[exp( e*T)] 1 

= lim.,.,, exp( @*y)[ 1 - F(y)] =F 
(33) 

(for the last equation use (31)). Proceeding similarly to (33) for the stopping time 

T(-a(y), y), y + cc, a(y) + CO we deduce 

!,l_ma E[exp(e*(S,,~.~.~,,~~,-y))l Z(-~Y), Y) = 11 

1 1 

= lim V+m exp(0*y)[l- M(y)1 e*’ 

The limit relations of (28) and (29) and their identity are hereby established. Lemma 

5 is proved. 

When the distribution of Xi is lattice of span S, we may assume that both y and 

a(y) in (27)-(29) are lattice points. When restricted to the lattice array, both (30) 

and (31) hold (see Karlin and Dembo, 1992) and therefore (28) and (29) follow 

for y and a(y) traversing the lattice array. 0 

Now let a(y) = y - log y and y large enough such that logy > K. Note in view of 

Lemma 5 that the denominator of (15) converges to l/e* (0~ e* <CO). Consider 

now the numerator expression in (15) denoted by T(y). Let 

f(Y) = E[ exp( tg W,,o.,,.,,) exp(e*(ST(o,,,,-y)) 1 Z(O,y) = 11. (34) 

Lemma 6. 

hrl I‘(Y) =JLc I’(Y). 

Proof. Abbreviating 

conditioning on Z(0, y) = 1 by W(y), 
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and 

267 

note that since all the terms of {U,} and {X,} are bounded 1 W(y)l~ 

Kltla (T(0, y) - T(0, a(y))) = C(y), and hence, 

(T(y)-P(y)]~exp(~*K)E[Z(y)(exp(C(y))- f)ll(O, y) = 11. 

Conditioning on the sample realization 

w = {S,, Sz, . . . , ST(O,a(.,.lj, W,, . . . , WT(O,a(YjJr T(O, U(Y)) and I(O, Y) = 11 

yield for (34), 

HZ(y)(exp(C(y)) - 1)I I(O, Y) = 11 

= E[Z(y)E[exp(C(y)) - llwll 

=E[Z(y) I:,:‘:* E[ev(Ki 
x GJd5) 

where G,,(t) is the distribution function of S,,,,,(,,, conditioned on I(0, y) = 1. Let 

D(Y) = 

Then, by the above IT(Y) - I’(y)1 G CXP(O*K) of, and since lim,.,, T(y) 

exists and is finite, the proof is complete by showing that D(y)+O. Clearly, 

D(y) G (exp(Cyp”4) - 1)-t 
.,Y,,:,U,9V)+K J>I exp($ QEJdX) 

where C = K 1 tIJw*, Q&?(x) is the distribution function of T( -5, y - 5) conditioned 

on 25’!Y&-E. With the first term above converging to zero, as y + 00, we concentrate 

on estimating the tail behavior of [ 1 - Qe,Y(x)]. Since y - a(y) = log y 2 K for all y 

large enough, we have 

Hence, by the union of events bound and the inclusion 8ha,h = 8$$,, 

Combining the large deviations bound P(S,, 3 0) s exp(-nl(O)), Z(0) > 0 with the 

basic lower bound P(I(0, b) = 1) 2 6 exp(-@*b) ( see Dembo and Karlin, 1991a), 

it follows that for some C, > 0 independent of y, 

sup [L - Q~.y(x)l s G ev(~* logy) ew-Z(Oh). 
o(,~)--~=a(,9+K 
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Thus, integrating by parts we get for some C2, C, > 0 and all y large enough 

I 

m 

? 
,,~ exp(Cxlfi)Q,,(dx) = exp(Cym”4)(1 - Os,,(y”“)) 

6 C2 exp(CyP”4)ys* exp(-Z(0)y”4) 

S Cs exp(-iZ(0)y”4). 

With the latter bound converging to zero as y + co, so does D(y), and the proof of 

Lemma 6 is complete. 0 

By a similar analysis, 

f(y) = E[exp( Zj/$ W,I,,I,.,,)~[exP(B*(STtU.i)-Y))IWl( Z(O,y) = I] 

I 
a(y)+K 

X (E~[exp(~*(ST~o,,~~ -Y)) 1 Z(O, Y) = ll)G,.(W I 1 Z(O, Y) = 1 
a(?1 

(35) 

where G,(t) is the distribution function of ST.(O,a(,,jj conditional on Z(0, y) = 1 and 

E, denotes the expectation starting at 5. 

Clearly, a(y) s 5 s a(y) + K < y since K < log y. Moreover, 

I 

oO,i+K 

4[exp(~*(hl,?,~ -Y))\ I(O, Y) = llG,(W 
Cl(y) 

I 

oly)+K 

= 
E”[exp(B*(S,,~,,.~~,- (y -5))) / I(-& Y - 5) = llG,.(W. 

a(?) 
(36) 

As yt 00, Lemma 5 applies uniformly for all a(y) < & a(y) + K indicating that 

E,[exp(e*(ST(~~,?,~~)-(y-5)))1Z(-5, Y -5)= II-, l/e*. 

Note that when X is a lattice random variable, G,.(dt) concentrates on lattice points 

and Lemma 5 applies in this context. 

We can add back the terms exp( W(y)) into (35), by an argument paraphrasing 

the proof of Lemma 6, yielding 

(37) 

Combining (37) and (28) we get the assertion of Lemma 2. q 
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The vector version of Theorem 1 is proved as follows. For each real vector z and 

vector sequence U,, U,, . . . described in the introductory section, we form the 

sequence of real random variables 

U;=(Z,U,-U*)=CZ~(U,~-U~), i=1,2 ,... . (38) 

With 

p( 0, t) = log E[exp{BX, + t(z, U - u*)Il 

we see that 

$je*,oi=w*, $- (e*, 0) = 0, 

2 (O*, 0) = E[((z, U-u*))? exp(e*X)]. 

The conditional central limit theorem is for the partial sums of U, = (z, U, -u*). 

This works for each real vector z. Theorem 1 in the vector version follows stan- 

dardly. 0 

3. Proof of Theorem 2 

To ease the exposition we assume P is a strictly positive matrix and for all pairs of 

states (Y, /3 the strict inequalities Pr{X,, > 0} > 0 and Pr{X,, < 0) > 0 hold. The 

multivariate version can be reduced to the univariate case with u* = 0 following the 

same argument given for the i.i.d. case. Therefore, Theorem 2 holds provided (17) 

holds with the left side conditioned on cyO = i, for any i. Here the corresponding 

Wald martingale family (given a,) is 

Qn(R t)=exp{tC+tW~np(R t)&,,(R t)lAJR t) (39) 

with I,!J = (I,!I;( 8, t)) the unique right eigenvector normalized to 1, I/J, = 1, correspond- 

ing to the spectral radius of the matrix Q( 0, t) defined after (10). 

The expansion (21) of C)(t) near 0* remains valid, as well as Lemma 3 which 

exploits the corresponding large deviation estimate for the Markov additive process 

{ff,, S,]. 
The ratio (cr,( 0, t)/$;( 0, t) is bounded away from zero and infinity uniformly with 

respect to i, j and (0, t) around (e*, 0). Further +(0, t) is analytic in 8 and t so that 

sup ,og cLmf,L t,J ~o(le(t~)-e*l+It,.l)~ c/fi. 
u *dew+, 0) 

Therefore, applying the optional sampling theorem and paraphrasing the arguments 

of Lemma 4 we secure the analog of Lemma 1, involving now the additional 
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multiplying factor I/I~~,,,,,, , (By;, 0) and the conditioning on qI = i in both numerator 

and denominator of (15). 

To establish (17) we rely on the property that exp( 0*y) Pr{ I(0, y) = 11 a,) = i} is 

bounded away from zero for all i; this fact was proved in Dembo and Karlin (1991b). 

We restate next Lemma 5 for the M.C. case. 

Lemma 5’. Let M,(x) and Fi(x) be the probability distribution functions of 

max(O, S,, S2,. . .) and max(O, S,, . . . , S,,) respectively conditioned in CY~) = i where u 

is the jrst passage time to the non-positive axis and Z- = S,,. Then 

lim ECexp(e*(ST(0,r,)-y))(Cl~r,,,,,,,(8*,0)I I(O,y) = 1, an= il .I, +uI 

= +iCe*, O)-ECexp(e*Z~)~,,~,(e*,O)Icw,= il=1_ 

lim,.+dexp(~*y)[l- F,(y)l) e” ’ (41) 

O<e*<co andforanya(y), 

lim 
.I -= 

E[exp(~*(S~,~,,,.,,,.,-y))~,,,,_,,,,,,,(e*,O)I~(-a(y), Y) = 1, ao= il 
u(l,)-x 

*it e*> O) 1 

= lim V+xI exp(@*y)( 1 - M,(y)) =Y’ 
(42) 

The proof parallels the i.i.d. case. The limits (30) and (31) are replaced by their 

M.C. analogues, namely 

lim exp( /3*y)[ 1 - M,(y)] = e*tii( 8*, 0) 
y-v (43) 

and 

lim exp(e*y)[l- F,(y)1 “-cc 

= hw*, 0) - ~bO*~~M,,,(~*, 0) I a0 = ilIe*, (44) 

which are established in Karlin and Dembo (1992). 

The proof of Theorem 2 is completed by a similar argument to that elaborated 

for the i.i.d. case. Here the relevant sample realization for the conditioning operation 

is w = IS,, . . , ST~O,Uo~~, W, . . . , WTfO,a,vl,, au, aI, . . . , ~T(l~,ul~l) and T(O, a(v)) 
and I(0, y) = 1). So, with G,.,(&, j) being the joint distribution of S7(0,0(rI) and 

(Y~(~.~(,.)) conditioned on q= i and on I(0, y) = 1, we obtain instead of (35) here 

EbXP(e*(STc-E,,-f, - (Y - 5)))h,,-,, ,,(e*, 0) 

Il(-t,;y -5)=1, ~~=jlGv,j(d5,j) I(O,y)=l, a,=i 
I 

(45) 
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The proof then follows by exploiting (42), (45) and the constancy of e* independent 

of the initial state q,. 0 

When Pr{X,, < x 1 a, = i, a, =j} are arithmetic distributions of a common span 6. 

Lemma 5’ (i.e. (41)-(44)) holds when y and a(y) are restricted to be lattice points. 

The assumption (9) can be replaced by the weaker condition that (9) need not 

hold for all states but does apply to the initial state cy which is in the support of 

positive ladder states of the Markov additive process {a,,, S,,}. In this context (rT(o,rr(,.jj 

is a positive ladder state. 

It is likely that boundedness of XcZa and Uea may be relaxed maintaining Theorem 

1 as long as ~(0, t) exists in the neighborhood of (0*, 0). 

The finite state character of the M.C. governing N,, . . , a, was simply relied on 

to ensure proper boundedness of the eigenvector +( 0, t), for example, for purposes 

of securing (40) and in the uniformity (with respect to i) of the convergence in (41) 

and (42). For the general (non-finite) M.C., the results of Iscoe et al. (1985) and 

Ney and Nummelin (1978a, b) can help to gain the generalization of Theorem 1, 

postulating {a,, S,} as a uniformly recurrent Markov Additive Process. 
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