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This paper analyses the effects of water content, temperature and time on the kinetic activity of cellulo-
lytic enzymes produced during the solid state fermentation of potato peel, using Aspergillus niger. Three
main analytical steps – analysis of variance, regression analysis and plotting of response surface – were
performed to obtain an optimum condition for enzymatic activity. The statistical results indicated that
the best activity time for enzyme CMCase (carboxymethylcellulase) is 82.88 h, with water content of
51.48% and temperature of 29.46 �C; for FPase (filter paperase), the best activity time is 80.62 h, water
content of 50.19% and temperature at 30.00 �C; for xylanase, time is 81.92 h, water content is 50.72%
and temperature is 28.85 �C. Pareto charts have shown that all variables were significant in enzymatic
activity for CMCase and xylanase. On the other hand, FPase shows that time and temperature have sig-
nificant effect for this response variable.

� 2011 Elsevier Ltd. Open access under the Elsevier OA license.
1. Introduction

Waste output and byproducts are inherent to all productive sec-
tors. With the improvement of ecological awareness by the end of
the 20th century, it became clear that humankind’s major chal-
lenge for the coming decades is to balance the production of goods
and services with economic growth, social equality and environ-
mental sustainability (Galembeck, Barbosa, & Sousa, 2009; Pelizer,
Pontieri, & Moraes, 2007). Environmental concern leads to the fea-
sibility of projects that promote the sustainability of production
systems. Contrary to what happened in the past when waste was
improperly disposed of, today’s concepts of minimisation, recovery
and reuse of byproducts are being increasingly disseminated
(Laufenberg, Kunz, & Nystrom, 2003).

In Brazil, the quantity of agro-industrial byproducts such as ba-
gasse, bran, peel and seeds in general is expressive, and nowadays,
concepts involving minimisation, recovery and reuse of such co-
products are being increasingly disseminated. In the last decade
there was a significant increase in residue production in the potato
processing industry, due primarily to the supply to the fast food
industry (Pereira et al., 2005). These residues have high organic
matter content. Approximately 40% of potatoes are wasted, repre-
senting approximately 10 tons/day of residue (Barampouti & Vlys-
sides, 2005; Misha & Arora, 2004). Much of these residues consist
x: +51 77 3261 8600.
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of polysaccharides such as cellulose, hemicellulose and lignin. Its
use as feedstock for bioprocesses has therefore become feasible
due to its low economic cost (Couto & Sanroman, 2006; Holker,
Hofer, & Lenz, 2004; Soccol et al., 2010).

The cellulase hydrolysis process takes place via an enzymatic
complex of cellulases (Cao & Tan, 2002). Such enzymes are bioca-
talysers working in synergy to release sugars. Of these, glucose at-
tracts most of the interest from industry, due to the possibility of
converting it into ethanol (Lee, Paul, Willem, Van, & Isak, 2002;
Soccol et al., 2010). Cellulolytic microorganisms are known as true
cellulolytic microorganisms, which are able to degrade natural cel-
lulose. Free cellulases can be produced by fungi or bacteria, and
fungi enzymes dominate commercial applications due to their high
levels of expression and secretion (Chang, 2007; Dienes, Egyházi, &
Réczey, 2004). The two main strategies for the production of cellu-
lases are solid state fermentation (SSF) and submerged fermenta-
tion (SF), which differ with respect to environmental conditions
and forms of conduction. One of the most exalted parameters in
differentiating these types of processes is unquestionably the anal-
ysis of the volume of water present in the reaction (Mazutti et al.,
2010; Pandey, 2003). The activity level of water for the purpose of
ensuring growth and metabolism of cells, on the other hand, does
not exceed the maximum binding capacity of the water with solid
matrix. The filamentous fungus Aspergillus is considered of great
economic importance due to its production of metabolites such
as enzymes (Graminha, Gonçalves, Pirota, Balsalobre, & Gomes,
2008; Pelizer et al., 2007; Sharma, Chisti, & Banerjee, 2001).
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According to Arantes and Saddler (2010), the enzymatic hydro-
lysis of cellulose is catalysed by highly specific enzymes called cel-
lulases, which are actually an enzyme complex composed of at
least three major groups of cellulases: endoglucanases (EC
3.2.1.4), which randomly cleave the internal connections of the
amorphous region, releasing oligosaccharides with reducing and
non-reducing ends free; exoglucanases (EC 3.2.1.91), subdivided
into cellobiohydrolases, which are responsible for the hydrolysis
of terminal non-reducing and reducing. Xylanases (EC 3.2.1.8) are
enzymes responsible for hydrolysis of xylan, which is the main
polysaccharide constituent of hemicelluloses (Yang et al., 2006).

According to Granato, Ribeiro, Castro and Masson (2010), the
optimal proportions among different variables can be achieved by
changing one variable at a time; however, this approach is very labo-
rious, often fails to guarantee the determination of optimum condi-
tions, and does not depict the combined effect of all the factors
involved. One option to overcome this problem is the use of response
surface methodology (RSM). Response surface methodology is an
efficient statistical method for the optimisation of multiple variables
employed to predict the best performance condition. The main
advantages of RSM are the reduced number and cost of experiments
(Bidin et al., 2009). RSM has been extensively utilised to optimise
culture conditions and medium composition of fermentation pro-
cesses, conditions of enzyme reaction, and processing parameters
in the production of food and drugs (Qiao et al., 2009; Rodriguez-
Nogales, Ortega, Perez-Mateos, & Busto, 2007). There are several
experimental designs that can be applied in food companies to test
ingredients and/or to prepare or reformulate a new food product,
including: full factorial design, fractional factorial design, saturated
design, central composite design, and mixture design. Depending on
the purpose, it is necessary to use a sequence of two or more designs
(Granato et al. 2010).

In that context, this study aimed to apply response surface
methodology in solid state fermentation on potato peel to obtain
cellulolytic enzymes by the filamentous fungus Aspergillus niger.
2. Materials and methods

2.1. Materials

The residue was provided by an agro-industry located in the
southeast region of Bahia state, then dried to 2% humidity in an
oven with air circulation and renewal of forced (SOLAB SL 102,
Piracicaba-SP, Brazil) at 70 �C for 24 h and ground in a mill Wiley
type in the particle size of approximately 2 mm.

2.2. Solid state fermentation

The residue was sterilised in an autoclave vertical (PRISMATEC –
CS30 – Itu – SP, Brazil) at 121 �C for 15 min. The microorganism used
was A. niger from the Laboratory of Agro-industry Waste Reuse. The
sporulated culture (inclined, acidified PDA HIMEDIA pH 5.02) was
suspended in 1% Tween 80 (VETEC) solution. The number of spores
in suspension was counted using a double mirror Neubauer cham-
ber and a binocular microscope (BIOVAL L1000, São Paulo – SP – Bra-
zil). The quantity of 107 spores per gram of dry basis substratum was
added to the suspension. The solid-state fermentation occurred
within a temperature range (25, 30, and 35 �C) and time (24, 72,
and 120 h). The incubations were conducted in bacteriological incu-
bator refrigerated (SOLAB SL 222/CFR Piracicaba, SP – Brazil).

2.3. Enzymatic extraction of the compounds

Following the fermentation process, the enzyme extract was
mechanically extracted using a sodium citrate buffer solution
(VETEC) with a pH of 4.8 at 50 mM. The enzyme extract that re-
sulted from the fermentation was centrifuged at 80g for 10 min
at 4 �C (CIENTEC CT – 6000R Piracicaba, SP – Brazil).

2.4. Determination of CMCase activity

The method chosen to determine the activity of CMCase and that
represents the dosage of endoglucanases is based on the dose of
reducing sugars produced (Ghose, 1987) by the degradation of car-
boxymethylcellulose (CROMOLINE) at 2% (p/v), previously diluted
in a sodium citrate solution with pH of 4.8 at 50 mM. The dinitrosal-
icylic acid method has been used for quantification (DNS) (Miller,
1959). Reaction assays were conducted by adding 0.5 mL of sodium
citrate buffer solution with a pH of 4.8 at 50 mM, 0.5 mL of enzyme
extract, and 0.5 mL of CMC (2% per volume) to an assay tube. The
reaction control was carried out in another tube, to which 0.5 mL
of the same buffer solution and 0.5 mL of enzyme extract have been
added. The blank assay contained 0.5 mL of DNS and 0.5 mL of buffer
solution. The samples were incubated in a bacteriological incubator
(SOLAB SL 222/CFR Piracicaba – SP – Brazil) at 50 �C and 10g, for
10 min. The reaction was interrupted by the addition of 0.5 mL of
DNS. After that, the tubes were submerged into boiling water, for
5 min, and shortly after, 6.5 mL of distilled water were added for a
subsequent measurement of absorbance – in the 540 nm range –
carried out using a spectrophotometer (BEL PHOTONICS SF200DM
– UV Vis – 1000 nm, Osasco – SP – Brazil).

2.5. Determination of FPase activity

The FPase activity, i.e., the filter paper activity, comprises a mix-
ture of endoglucanases and exoglucanases resulting from the degra-
dation of a strip of Whatman filter paper No.1, which measures are
1.0 cm � 6.0 cm (Ghose, 1987). One millilitre of a sodium citrate
buffer solution with pH of 4.8 at 50 mM, 0.5 mL of enzyme extract
and a filter paper strip have been added to the tube containing the
reaction assay. Another tube received the addition of 1 mL of the
same buffer solution and 0.5 mL of enzyme extract. The third tube,
which was the substratum control, received the addition of a
1.5 mL buffer solution and a filter paper strip. The blank assay con-
tained 0.5 mL of buffer solution and 0.5 mL of DNS; thus, the samples
were left in an incubator at 50 �C for 1 h (SOLAB SL 222/CFR Piraci-
caba – SP – Brazil). The reaction was interrupted by the addition of
3 mL of DNS. The tubes were then heated in boiling water for
5 min and 20 mL of distilled water were shortly after added for the
subsequent measurement of absorbance in the 540 nm range, and fi-
nally carried out using a spectrophotometer (BEL PHOTONICS
SF200DM – UV Vis – 1000 nm, Osasco – SP – Brazil).

2.6. Determination of xylanase activity

The activity of the enzyme xylanase (Ghose, 1987) was deter-
mined according to Miller (1959). The reaction consists of mixing
1 mL of culture supernatant (enzyme extract), 1 mL of 1% xylan (SIG-
MA) in 0.05 M acetate buffer pH 5.0, and 2 mL of acid 3,5-Dinitrosal-
icylic (DNS) was incubated at 50 �C for 30 min (SOLAB SL 222/CFR
Piracicaba – SP – Brazil), and enzyme–substrate system was shaken.
The tubes containing the reactions were measurement of absor-
bance in the 540 nm range, and finally carried out using a spectro-
photometer (BEL PHOTONICS SF200DM – UV Vis – 1000 nm,
Osasco – SP – Brazil).

2.7. Calibration curve

The standard curve for CMCase and FPase was built from the
determination of glucose concentrations from 0.1 to 2.0 g/L by the
method of DNS (Miller, 1959). Xylanase for the curve was



Table 1
Coded levels and ‘‘real’’ values for each factor under study.

Factorial planning of the one in codified values Factorial planning of the one in real values

Ensaio Time (X1, h) Temperature (X2, �C) Water content (X3, %m/m) Time (X1, h) Temperature (X2, �C) Water content (X3, %m/m)

1 �1 �1 �1 24 25 40
2 �1 +1 �1 24 35 40
3 +1 �1 �1 120 25 40
4 +1 +1 �1 120 35 40
5 �1 �1 +1 24 25 60
6 �1 +1 +1 24 35 60
7 +1 �1 +1 120 25 60
8 +1 +1 +1 120 35 60
9 0 0 �1 72 30 40

10 0 0 +1 72 30 60
11 �1 0 0 24 30 50
12 +1 0 0 120 30 50
13 0 �1 0 72 25 50
14 0 +1 0 72 35 50
15 0 0 0 72 30 50
16 0 0 0 72 30 50
17 0 0 0 72 30 50
18 0 0 0 72 30 50
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constructed from the determination from 0.1 to 2 g/L xylose produced
per minute. The unit of enzyme activity (U) was defined as the amount
of enzyme capable of releasing 1 lmol reducing sugar per minute at
50 �C, where the enzyme activity expressed as U/mL. The absorbance
was measured in a spectrophotometer (BEL SF200DM PHOTONICS –
UV Vis – 1000 nm, Osasco – SP – Brazil) at 540 nm for CMCase and
FPase, for xylanase was measured at 550 nm.

2.8. Statistical analysis

A 23�1 fractional factorial planning added of 4 repetitions in the
central point was implemented in order to evaluate the influence
of temperature, water content and time in the enzymatic active of
CMCase, FPase, and xylanase. The variable level values are shown
in Table 1. Three main analytical steps – analysis of variance (ANO-
VA), regression analysis and plotting of response surface – were per-
formed to obtain an optimum condition for the enzymatic active.

First, the results obtained from experiments were submitted to
ANOVA Variance analysis, and effects were considered significant
at p < 0.02. With a second order polynomial model (Eq. (1)), exper-
imental data and regression coefficients were adjusted and regres-
sion coefficients were obtained by multiple linear regression

EA ¼ b0 þ
X

biXi þ
X

biiX
2
i þ

X
bijXiXj þ

X
bijkXiXjXk ð1Þ

where b0, bi, bii, bij, and bijk represent the overall constant process
effect, the linear and the quadratic effects of Xi, and the interaction
effect between Xi and Xj, Xi, Xj, and Xk on enzymatic active, respec-
tively. By the response surface methodology, best conditions of
enzymatic active were determined for intervals of utilised experi-
mental conditions. All statistical analysis was conducted using Sta-
tistical Analysis System� 9.0 version, RSREG procedure (SAS Institute
Inc., Cary, NC, USA).

According to Granato et al. (2010), to validate the adjusted
model, the optimised values of the independent variables (X1 and
X2) should be used in the same initial experimental procedure, in
order to verify the prediction power of the developed models by
comparing theoretical predicted data to the experimental ones.
In this work, triplicate of biotransformation using the optimised
variables were prepared and analysed.

3. Results and discussion

In order to evaluate which factors had significant effect on the
enzymatic active of CMCase, FPase, and xylanase, an ANOVA
(Table 2) and parameters estimative analysis were conducted for
the 23�1 fractional factorial.

The analysis of variance (ANOVA) for the models was performed
and the model significance was examined using Fisher’s statistical
test (F-test) applied to significant differences between sources of
variation in experimental results, i.e., the significance of the regres-
sion (SOR), the lack of fit (LOF), and the coefficient of multiple
determination (R2). Since the full second-order models (models
containing both parameter interactions) were not accepted by
the mentioned tests, they were improved by the elimination of
the model terms until the determined conditions were fulfilled.
All factors that were not significant at 10% were then pooled into
the error term and a new reduced model was obtained for response
variables by regression analysis using only the significant factor
previously listed.

The outcome of the ANOVA can be visualised in a Pareto chart
(Fig. 1), in which the absolute value of the magnitude of the stand-
ardised estimated effect (the estimate effect divided by the standard
error) of each factor is plotted in decreasing order and compared to
the minimum magnitude of a statistically significant factor with 90%
of confidence (p = 0.10), represented by the vertical dashed line.
From this figure it can be observed that all variables were significant
in the enzymatic active for CMCase and xylanase. On the other hand,
the Pareto chart regarding the FPase active shows that time and tem-
perature have a significant effect for this response variable.

For all cases, the interactions with the variables time, tempera-
ture, and water content were not significant to the enzymatic
activity.

The reduced models can be described by Eqs. (2)–(4), in terms
of uncoded values.

AC1 ¼ 25:61154þ 3:41369X1 þ 1:50245X2 � 1:11489X3

� 7:45472X2
1 � 5:06567X2

2 � 5:19840X2
3 ð2Þ

AC2 ¼ 16:50989þ 2:04927X1 þ 0:22829X2 � 5:20710X2
1

� 6:18927X2
2 ð3Þ

AC3 ¼ 16:32000þ 2:10063X1 þ 0:46313X2 � 0:67402X3

� 5:11916X2
1 � 3:21701X2

2 � 1:45959X2
3 ð4Þ

where AC1, AC2, and AC3 stand for the activity of CMCase, FPase, and
xylanase, respectively.

Using the response surface method (RSM), with the tempera-
ture value fixed in the optimal condition, the relations between
factors and response can be better understood, showing that time
and water content affect the behaviour of enzymatic active. With



Table 2
ANOVA for the response surface quadratic model for cellulolytic enzymes production.

Source DF SS MS F-value p-Value

AC1

Model 6 1135.49687 189.24948 12.29 0.0003
Error 11 169.32320 15.39302
Lack of fit 8 137.4376666 17.1797083 1.62 0.3778
Pure error 3 31.885530 10.628510
Total 17 1304.82007
R2 = 0.8702
AC2

Model 4 490.83584 122.70896 28.40 <0.0001
Error 13 56.17044 4.32080
Lack of fit 10 48.2108561 4.8210856 1.82 0.3407
Pure error 3 7.9595798 2.6531933
Total 17 547.00628
R2 = 0.8973

AC3

Model 6 370.7574623 26.4826759 31.68 0.0079
Error 11 10.51922 0.95629
Lack of fit 8 8.0112153 1.0014019 1.20 0.4885
Pure error 3 2.5080035 0.8360012
Total 17 373.26547
R2 = 0.9718

Fig. 1. Pareto chart showing the significance of variables time fermentation,
temperature fermentation and water content on the CMCase, FPase and xylanase
production.

Fig. 2. Response surface plots for enzyme CMCase as a function of time, fermen-
tation and water content.

Fig. 3. Response surface plots for enzyme FPase as a function of time, fermentation
and water content.
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data obtained from the Surface Response Graph, using the optimal
value for temperature, a tendency can be observed of the enzy-
matic active as a function of time and water content.

Figs. 2–4 illustrate combinations of the effects of independent
variables on enzyme activity; through the derivatives of Eqs. (2)–
(4), it can be observed that the optimal activity point for enzyme
CMCase is at time 82.88 h, water content 51.48% and temperature
29.46 �C, whereas FPase at time 80.62 h, water content was 50.19%
and temperature of 30.00 �C, for enzyme xylanase the optimal
activity point was at time 81.92 h, water content 50.72% and tem-
perature was 28.85 �C. It is necessary to take into consideration
that A. niger synthesised the enzyme with the potato waste and
water at various concentrations, thus demonstrating that it is a
constitutive enzyme.

It was found that in this experiment, fermentation time signif-
icantly influenced enzyme production, which lasted approximately
80 h for all enzymatic activities. One hypothesis for this result
would be that the presence of nutrients dispersed throughout the
fermentation may have contributed to the growth of the microor-
ganism, and the decay of these nutrients over time may have af-
fected enzyme activity, and it was the decay of the microbial
production and therefore the enzyme production.

Water content is a very significant factor in the fermentation
process. High water activity causes the decrease in porosity of
the substrate, thereby reducing the exchange of gases. On the other
hand, low water activity may result in the reduction of microbial
growth and consequent lower production of the enzyme (Mahanta,
Gupta, & Khare, 2008). It was noted that approximately 50% mois-
ture was ideal for obtaining the enzyme studied here. In the other
water activities studied, the values ranged between 40% and 60%,
with a decrease in fungal activity possibly related to inhibition of
the fungus, marked by extrapolation of the ideal water level for
the development of the line selected in the case of 60%, or low
activity of water needed for the fungus to develop as might have
occurred in 40%. These two conditions may have influenced the
metabolism responsible for enzyme production. Enzymes usually
have an expression control mechanism that can be stimulated or
inhibited by products of the medium. The end products of a partic-
ular metabolic pathway are often inhibitors of enzymes that



Fig. 4. Response surface plots for enzyme xylanase as a function of time,
fermentation and water content.
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catalyse the first steps of the pathway. This mechanism is known
as negative feedback (Santana, Gonçalves, Bonomo, & Franco,
2012). Biazus, Souza, Santana, and Tambourgi (2006), working
with corn malt, noted that in the production of enzymes the begin-
ning is slow, then accelerates until it reaches its maximum value;
thereafter, the concentration of products generated are inhibited
and its activity is reduced, which was also observed in this study.
Omemu, Akpan, Bankole, and Teniola (2005) obtained higher yields
of cassava starch hydrolysis by A. niger after 72 h of fermentation,
which concurs with Alva et al. (2007), who also reported a higher
enzymatic activity by Aspergillus. The decrease in activity with
increasing incubation time may be due to the production of by-
products resulting from microbial metabolism, as well as nutrient
depletion, inhibiting fungal growth and enzyme formation (Shafi-
que, Bajwa, & Shafique, 2009).

The literature shows the production of endoglucanases by acti-
nomycetes, particularly Streptomyces, on different substrates. The
strain of Streptomyces T3-1 produced 40.3 U/mL in 1.5% CMC and
ammonium sulphate, urea and peptone (Jang & Chen, 2003), but
these nutrients were not used with low cost substrates. Streptomy-
ces sp. isolated from Canadian soil was cultivated in a solution con-
taining Mandel peptone, 1.0% Tween 80 in crystalline cellulose and
produced 11.8 U/mL of CMCase (Alani, Anderson, & Moo-young,
2008); however, Thermomonospora sp. (George, Ahmad, & Rao,
2001) when grown in medium containing cellulose paper powder,
yeast extract and Tween 80, showed a peak of 23 U/mL, whereas
when grown on wheat bran activity was 8.5 U/mL.

Jorgensen and Olsson (2006) working with Penicillium brasilia-
num IBT in a bioreactor in medium containing yeast extract and
a type of pine wood subjected to steam explosion, obtained values
of 0.59 U/mL FPase. Trichoderma viride NCIM 1051 in 1.0% of sugar-
cane bagasse treated with NaOH resulted in FPase activity of 0.4 U/
mL (Adsul et al., 2004). A. niger IZ9 in medium containing sugar-
cane bagasse treated with sodium hydroxide (NaOH) showed peak
activity of 0.2 U/mL (Aguiar & Menezes, 2000).

Lu, Lii and Wu (2003) concluded that the xylanase production
by Aspergillus sulphureus by SSF, on a pilot scale using koji noodles
(made of fermented rice) and dry environment, was strongly af-
fected by water activity of the medium. The best moisture of the
medium to reach the maximum enzyme productivity was 40–
50%. Qinnghe, Xiaoyu, Tiangui, Cheng, and Qiugang (2004) ob-
tained 24.98 U/mL of xylanase activity, using corn cob and oat Pleu-
rotus ostreatus as substrate in liquid fermentation under optimised
conditions. In all mentioned studies, incubation times ranged from
7 to 15 days, much longer than those used in this work.
4. Conclusion

The analysis indicates that the optimal time expected for the
CMCase of A. niger is 82.88 h, water content of 51.48% and temper-
ature of 29.46 �C, whereas FPase was U/L at 80.62 h, water content
of 50.19% and temperature of 30.00 �C; for enzyme xylanase, the
optimal activity point was U/L at 81.92 h, water content of
50.72% and temperature of 28.85 �C. SSF is a technology that can
propose alternative paths for the reuse of agro-industrial waste,
therefore decreasing possible environmental problems, as well as
adding economic value to these co-products.
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