provide valuable insights into its mode of action. The molecular framework of DFBP resembles that of levsimetan, thus it was chosen to mimic levsimetan- der to establish how the cN mutations lengths and geometries are modulated. We have utilized 2D (1H, 15N) HSQC and 2D (1H, 13C) HSQC NMR spectroscopy to examine the binding of DFBP to cNTnC-Ca2+ in the absence and presence of cTnI 144-163 and of cTnI144-163 to cNTnC-Ca2+ in the absence and presence of DFBP. The results show that DFBP and cTnI144-163 bind cNTnC-Ca2+ concurrently and the affinity of DFBP for cNTnC-Ca2+ is increased ~5-10-fold by cTnI144-163. We are in the process of determining the NMR solution structure of cNTnC-Ca2+-cTnI144-163-DFBP. This structure will contribute to the understanding of the mechanism of action of levsimetan in the therapy of heart disease. It will also provide a structural basis for the design of Ca2+-sensitizing drugs in general.

1192-Pos Board B36
Decreased Fatigue Tolerance In Diaphragm Muscle Of Slow Troponin T Knockdown Mice
Hanzhong Feng, Bin Wei, J.-P. Jin
North shore University Healthsystem and Northwestern University Feinberg School of Medicine, Evanston, IL, USA.

The loss of slow skeletal muscle troponin T (TnT) results in a severe type in nemaline myopathy in the Amish (ANM). The genes encoding TnT and tropo- nin I (TnI) are closely linked in pairs in which the 5’-region of the TnT gene overlaps with the cardiac TnI gene. In a mouse line with the en- tire cardiac TnI gene deleted, a partial destruction of the slow TnT gene pro- moter produces a knockdown effect. By crossing with transgenic mouse lines that over-express a core structure of cardiac TnT (cTnI-ND) under the control of cloned alpha-MHC promoter, we rescued the postnatal lethality of the car- diac TnI gene-deleted mice with no detrimental cardiac phenotypes or leaking expression in non-cardiac tissues. The double transgenic mice exhibited de- creased expression of slow TnT mRNA and protein in adult diaphragm muscle. Functional analysis of isolated muscle strips showed that the slow TnT deficient (sTnT-KD) diaphragm had significantly decreased fatigue tolerance evident by the faster decrease in force and slower rate of recovery compared with that in wild type controls. As a consequence of slow TnT deficiency, the sTnT-KD di- aphragm muscle contained a higher proportion of fast TnT, decreased slow TnT with increased fast TnT and decreased type I myosin with increased type II my- osin. Consistent with the switch toward fast myofilament contents, the sTnT- KD diaphragm muscle produced higher specific tension in twitch and tetanic contractions as well as shorter time to develop peak tension in twitch contrac- tions. The decreased fatigue tolerance of sTnT-KD diaphragm muscle explains the terminal respiratory failure seen in virtually all ANM patients and this dou- ble transgenic mouse model provides a useful experimental system to study the pathogenesis and treatment of ANM.

1193-Pos Board B37
Troponin Isosforms and Stretch-activation of Insect Flight Muscle
Uros Krzic1, Gian De Nicola2, Vladimir Rybin1, Annalisa Pastore2, Kevin Leonard3, Wolfgang Linke4, Belinda Bullard5
1DEPARTMENT OF BIOLOGY, University of York, United Kingdom, 2EMBL-Heidelberg, Germany, 3NYMR, London, UK, 4Perkin-Elmer, Cambridge, United Kingdom, 5University of Muenster, Muenster, Germany.

Oscillatory contraction of insect indirect flight muscle (IFM) is activated by si- nusoidal length changes. Work done by oscillating fibres is measured from the area of loops on a length-tension plot. At [Ca2+] above 10 μM, progressively less oscillatory work is produced because fibres contract isometrically and are unable to relax fully after each cycle of oscillation. Periodic stretches during oscillations activate fibres through the action of TnC F1, which binds one Ca2+ in the C-lobe. Activation of isotonic contraction by Ca2+ acts through F2, which binds Ca2+ in both N- and C-lobes. Lethocerus IFM fibres substituted with F1gave oscillatory work, which did not decline at high [Ca2+], while fibres substituted with F2 produced more isometric tension as [Ca2+] was increased. Varying proportions of F1 and F2 gave maximal work with an F1/F2 ratio of 100/1, which is higher than the in vivo ratio of 7/1. The structure of F1, and the interaction with TnL, were determined by NMR. The N-lobe of F1 is in the closed conformation in apo and Ca2+-bound forms and does not bind TnL. Unexpectedly, the C-lobe is open in both states, and binds the N-terminal domain of TnI independently of Ca2+. The affinity of F1and F2 for a complex containing tropomyosin, TnT and TnH (Lethocerus TnH) were measured by isothermal calorimetry in the presence of Ca2+. The affinities of F1 and F2 for the complex were 5.4 μM and 65 μM respectively. This difference is likely to be due to a single TnL binding site on F1 and two sites on F2. Stretch may be sensed by an extended C-terminal domain of TnH, and transmitted to the C-lobe of F1, resulting in a change in the interaction of the TnI inhibitory domain and actin.

1194-Pos Board B38
Tracking of Qdot Conjugated Titin Antibodies in Single Myofibril Stretch Experiments Reveals Ig-domain Unfolding at Physiological Sarcomere Lengths
Anika Gruenzer1, Pallav Kosuri2, Julio M. Fernandez2, Wolfgang A. Linke1
1University of Münster, Münster, Germany, 2Columbia University, New York, NY, USA.

The mechanical characteristics of titin in muscle sarcomeres were previously studied by us in single myofibril stretch experiments, where the extensibility of I-band titin segments was usually measured under static conditions. Here we investigated the behavior of I-band titin during and after stretch of single rabbit psoas myofibril in real-time. The focus was on titin’s proximal Ig-do- main region, whose stretch dynamics were analyzed by labeling the myofibrils specifically in the N2A-titin domain using antibody-conjugated quantum dots, which stained the periphery of the myofibril but did not enter the myofibrillar lattice. Qdot labels were tracked to obtain the stretch-dependent change in episte- tope distance (across Z-disc) and sarcomere length (SL) over time. In contrast to what was expected from the current titin extensibility model, at sarcomere lengths of 2.5 and 3.8 μm, titin’s proximal Ig-domain region elongated continu- ously, in proportion to the half I-band length. Already at ~2.6 μm SL the prox- imal Ig-segment length exceeded the value expected if all Ig-domains remain folded. Our results suggest that Ig-domains unfold in parallel with PEVK-titin exerting physiological and sarcomere lengths and under relatively low forces. By reducing the antibody-Qdot concentration, we succeeded in observing titin Ig-domain dynamics in myofibrils at the single-molecule level.

1195-Pos Board B39
Constitutive Phosphorylation of Cardiac Myosin Binding Protein-C Increases the Probability of Myosin Cross-bridge Interaction with Actin Biremyosin
Colson1, Tanya Berezovskaya2, Emilia G. Dziewiatkowska3, Carl W. Tong1, Daniel P. Fitzsimons1, Patricia A. Powers1, Thomas C. Irving2, Richard L. Mossi1
1University of Wisconsin Medical School, Madison, WI, USA, 2Illinois Institute of Technology, Chicago, IL, USA.

Protein kinase A-mediated (PKA) phosphorylation of cardiac myosin binding protein-C (cMyBP-C) accelerates the kinetics of cross-bridge cycling and ap- pears to relieve the tether-like constraint of myosin heads imposed by cMyBP-C (Colson et al., 2008, Circ Res., 103:244-251). We favor a mechanism in which phosphorylation of the 3 PKA sites in cMyBP-C modulates cross-bridge kinetics by regulating the proximity and interaction of myosin with actin. To test this idea, we used synchrotron low-angle x-ray diffraction and mechanical measurements in skinned myocardium isolated from a mouse model with phosphomimetic substitutions in cMyBP-C, i.e., the CTSD mouse. The substitutions were introduced by transgenic expression of cMyBP-C with Ser-to-Asp mutations on a cMyBP-C null background. Western blots showed that expression of CTSD cMyBP-C was 85% of wild-type (WT), and the heart weight to body weight ratio was similar (5.2 ± 0.2 mg/g) in CTSD and WT mice. Expression of WT cMyBP-C on the knockout background served as control (i.e., the CTWT mouse). Skinned myocardium from CTSD and CTWT mice exhibited similar maximum active forces (mN/mm²: 17.7 ± 1.9; 13.2 ± 2.9), Ca2+-sensitivities of force (pCa50: 5.55 ± 0.03 vs 5.58 ± 0.04), and maximum rates of force development (kmax: sec⁻¹: 20.2 ± 1.7 vs 22.5 ± 1.9; k60: sec⁻¹: 37.6 ± 3.7 vs 43.2 ± 2.3). I1/I0 intensity ratios and d0/d10 lattice spacings determined from equatorial reflections from CTSD and CTWT myocardium were used to determine the effect of constitutive cMyBP-C phosphorylation on the distribution of cross-bridge mass between the thick and thin filaments and on interfilament lattice spacing. The results suggest that interactions between cMyBP-C and the S2 domain of myosin heavy chain are dynamically regulated by phosphorylations in the cMyBP-C motif. (AHA-predoctoral fellowship (BAC); NIH-HL-R01-82900).

1196-Pos Board B40
Obscurin Interacts with a Novel Isoform of Myosin Binding Protein C-Slow to Regulate the Assembly of Thick Filaments
Maegen A. Borzok, Rebecca Hu, Amber L. Bowman, John Strong, Robert J. Bloch, Aikaterini Kontogianni-Kastantopoulos
University of Maryland, Baltimore, MD, USA.

Obscurin is a multidomain protein composed of adhesion and signaling do- mains that play key roles in the organization of contractile and membrane structures in striated muscles. We used adenoviral-mediated gene transfer to overexpress its extreme NH2-terminus in developing myofibers, followed by immunofluorescence and ultrastructural methods to study its effects in sarco- merogenesis. We found that overexpression of obscurin’s second immunoglobu- lin domain (Ig2) inhibits the assembly of A- and M-bands, but not Z-disks and
Excitation - Contraction Coupling: Skeletal

1197-Pos Board B41
Functional Identification Of Fiber Types In Enzymatically Dissociated Murine Flexor Digitorum Brevis (FDB) And Soleus Muscles
Juan C. Calderón-Vélez, Pura Bolaños, Carlo Caputo.
Centro de Biofísica y Bioquímica. Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.

Enzymatically dissociated FDB and soleus fibers from mouse were used to compare the kinetics of electrically elicited Ca\(^{2+}\) transients of slow and fast skeletal muscle fibers, using the fast Ca\(^{2+}\)-dye MagFluo4-AM, at 20-22°C. For the case of FDB fibers we found two different morphologies for both single-twitch and tetanic Ca\(^{2+}\) transients named morphology type I (MT-I) and morphology type II (MT-II). The kinetic parameters (mean ± s.e.m.) of MT-I (11 fibers, 19%) and MT-II (47 fibers, 81%) single-twitch transients were: amplitude (ΔF/F): 0.36 ± 0.03 vs. 0.69 ± 0.03; rise time (ms): 1.44 ± 0.15 vs. 1.01 ± 0.06; half-relaxation time width (ms): 10.2 ± 0.92 vs. 8.37 ± 0.12; decay time (ms): 46.15 ± 1.99 vs. 21.08 ± 0.89; and time constants of decay (τ\(_1\) and τ\(_2\), ms): 2.57 ± 0.19 and 33.71 ± 2.29 vs. 1.51 ± 0.05 and 13.19 ± 0.63, respectively; all differences being statistically significant (p<0.001). All Ca\(^{2+}\) transients parameters of soleus fibers (n=20) were not different (p>0.1) from those of MT-I FDB fibers. Tetanic responses (100 Hz) of MT-I FDB and soleus fibers showed a staircase shape while the time course of decay followed a single exponential (τ, ms): 73.36 ± 6.82 for FDB and 74.59 ± 6.24 for soleus (both n=8). In MT-II FDB tetani no staircase was present, the first peak was larger than the others, and the time course of decay was bi-exponential (Capote et al, J Physiol 2005;564:451). Histochemical and biochemical characterization of both muscles suggest that signals assigned MT-I correspond to slow type I and fast type II fibers while those assigned MT-II correspond to fast IIX/D fibers. The results suggest that signals assigned MT-I correspond to slow type I and fast type II fibers while those assigned MT-II correspond to fast IIX/D fibers. The results suggest that signals assigned MT-I correspond to slow type I and fast type II fibers while those assigned MT-II correspond to fast IIX/D fibers.