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We test for ;-conformance of an implementation linear operator A to a specifica-
tion linear operator S where the operator domain and range are separable Hilbert
spaces and the domain space F is equipped with a Gaussian measure +. Given an
error bound =>0 and a tolerance parameter ; # (0, 1), we want to determine either
that there is an element f in a ball Bq of radius q in domain F such that
&Sf &Af &>= or that A ;-conforms to S on a set of measure at least 1&; in the
ball Bq ; i.e., +q ( f : &Sf &Af &�=)�1&; where +q is the truncated Gaussian
measure to Bq . We present a deterministic algorithm that solves this problem and
uses almost a minimal number of tests where each test is an evaluation of operators
S and A at an element of F. We prove that optimal tests are conducted on the
eigenvectors of the covariance operator of +. They are universal; they are indepen-
dent of the operators under consideration and other problem parameters. We show
that finite testing is conclusive in this probabilistic setting. In contrast, finite testing
is inconclusive in the worst and average case settings; see [5, 7]. We discuss the
upper and lower bounds on the minimal number of tests. For q=� we derive the
exact bounds on the minimal number of tests, which depend on ; very weakly. On
the other hand, for a finite q, the bounds on the minimal number of tests depend
on ; more significantly. We explain our approach by an example with the Wiener
measure. � 2001 Academic Press
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1. INTRODUCTION

Large computer systems are often built to fulfill complicated tasks. Such
systems become less reliable as they get larger. Testing has become an
indispensable part of system design and analysis.

Testing has a variety of forms in different areas of science and technol-
ogy. We discuss one of them, the so-called ``black-box testing,'' here. That
is, we have a specification, of a system design and we want to test if a given
implementation conforms to the specification based on the observed system
input and output behavior.

As in [5, 7], we consider black-box testing of linear systems that are
modeled by linear operators. The goal is to determine whether an
implementation linear operator A conforms to a specification linear
operator S. Conformance depends on the error settings. In an earlier paper
[5], we studied a worst case error setting in which we test whether the
error is no more than a given positive bound = for all elements in an ellip-
soid E of the domain Hilbert space; i.e., supf # E &Sf &Af &�=. This setting
may be too restrictive, and for certain applications a small error on the
average can be acceptable. In a follow-up work [7], we studied instead an
average error setting, in which we wanted to verify whether an average
error - �Bq

&Sf &Af &2 +q (df )�=, where +q is the truncated Gaussian
measure of the domain Hilbert space to the ball Bq of large radius q. For
both settings, we considered algorithms that use a number of tests to solve
the problems where each test is an evaluation of operators S and A at an
element of the corresponding domain.

It turns out that for both worst and average settings any finite number
of tests is in general inconclusive. However, the testing problem is still
decidable in the limit; there is an algorithm to generate an infinite sequence
of test-and-guess such that all but finitely many guesses are correct. We
also obtain positive results for weak conformance testing; we allow a
positive relaxation parameter : and test for weak conformance with an
error bound (1+:) =. Specifically, we test whether there exists an element
f in the ellipsoid E such that &Sf&Af &>=, or if for all f in E we have
&Sf &Af &�(1+:) = in the worst case setting and - �Bs

&Sf &Af &2 +q (df )
�(1+:) = in the average case setting. Then for both worst and average
case settings a finite number of tests is conclusive. Furthermore, we derived
an optimal test sequence that minimizes the number of tests needed to
solve the problem. An interesting result for both error settings is that there
exists a universal optimal test sequence. This test sequence only depends on
the input set and the measure (in the average case setting) and is independ-
ent of S, A, and the other parameters of the problem.

In this paper, we study a probabilistic setting with the input set Bq which
is a ball of radius q in a separable Hilbert space F. The space F is equipped
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with a Gaussian measure + and the ball Bq is equipped with the truncated
Gaussian measure +q . If q=� then Bq is the whole space. We also assume
that the specification and implementation operators S and A are linear
operators between Hilbert spaces F and G.

In this probabilistic setting, we want either to find an element f # Bq such
that the error exceeds the bound &Sf &Af &>= or to show that A ;-con-
forms to S; i.e., &Sf &Af &�= for a set of elements f in Bq with a measure
at least 1&; where ; # (0, 1) and we are mostly interested in small ;. We
show that finite testing is conclusive even without a relaxation parameter
:. This makes the testing problem in the probabilistic setting different than
that in the worst and average settings. Of course, the tolerance parameter
; in the probabilistic setting may be viewed similarly as the relaxation
parameter : in the other settings.

We show that the eigenvectors of the covariance operator of the measure
+ provide an almost optimal and universal test sequence. In fact, for the
limiting case with q=� the test sequence is optimal. This is similar to the
results in the average case setting for the relaxed testing.

We now discuss the minimal number of tests n*(=, ;, q) needed in the
probabilistic setting. It is fully determined by the eigenvalues of the
covariance operator of the Gaussian measure + as well as for other
problem parameters. In particular, for q=�, the minimal number of
tests depends on the relation between = and ;. If = is fixed and ; goes
to zero then n*(=, ;)=n*(=, ;, �) is the minimal n, for which the (n+1)st
largest eigenvalue is at most c=2�ln ;&1 with a positive constant c. On
the other hand, if ; is fixed and = goes to zero then the minimal number
of tests does not depend on ; and is equal to the minimal n, for
which the sum of the (n+1)st to (n+d)th largest eigenvalues is at most
c=2 where d is the dimension of the range space of S and A and c is a
positive constant. Hence, if S and A are linear functionals then d=1,
and both cases depend on how fast the eigenvalues approach zero. On
the other hand, when d=� there may be a big difference between the
bounds since the sum of the tail of the eigenvalues may go to zero sub-
stantially slower than the (n+1)st eigenvalue. In either case, the error
parameter = is much more significant than ; since the minimal number
of tests depends on a positive power of =&1 and yet on the same power of
1�ln ;&1.

For a finite q, the number of minimal tests may behave quite differently.
Namely, if ; goes to zero, the parameter ; is almost as significant as = since
the number of minimal steps depends essentially on the product of = and
- ;. This holds for d=�. The case of a finite d is still open. On the other
hand, if ; is fixed and q goes to infinity then the minimal number of tests
is roughly the same as for q=�, and the parameters = and ; play different
roles.
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In Section 2, after introducing the testing problem in the probabilistic
setting, we present an algorithm for the test generation. We then discuss
the termination of this algorithm and the bounds on the number of tests.
In Sections 3 and 4, we consider the case q=�, that is, when the input set
is the whole domain space of the operators. We obtain an optimal test
sequence and the minimal number of tests. We explain the results by an
example of the Wiener measure. In Section 5, we study the case q<�
where the input set is a ball of finite radius q in the domain space. We
derive a universal and almost optimal test sequence. We conclude the paper
in Section 6 with a discussion on miscellaneous related issues.

2. TESTING ALGORITHM

Consider continuous linear operators from a separable Hilbert space F
to a separable Hilbert space G of dimension d, 1�d�+�,

S, A : F � G.

The space F is equipped with a zero mean Gaussian measure + of the
covariance operator C+ : F � F; see, e.g., [10]. Let *i and ei be the eigen-
pairs of C+ ,

C+ei=*iei , i=1, 2, ..., dim(F ). (1)

Here [ei] is an orthonormal sequence in F and *i are ordered, *1�*2

� } } } �*i . For notational convenience, if dim(F ) is finite then we formally
set ei=0 and *i=0 for i>dim(F ). Without loss of generality, we assume
that all *i 's are positive for all i�dim(F ).

We consider a ball of radius q in F,

Bq=[ f # F : & f &�q].

The induced measure of + on Bq , denoted by +q , is the truncated Gaussian
measure to Bq ,

+q (A)=+(A & Bq)�+(Bq),

for all measurable sets A.
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Given an error bound =>0, we test the implementation operator A to
determine whether it is faulty:

There exists an element f # Bq such that &Sf &Af &>= (2)

or for a given ; # (0, 1) we test A to determine whether it ;-conforms to the
specification operator S,

+q ([ f # Bq : &Sf &Af &�=])�1&;. (3)

Note that the two concepts of being faulty and ;-conformance are not
mutually exclusive; an implementation operator can be faulty but also can
;-conform to the specification operator.

As is often the case in practice, A is not likely to deviate from S drasti-
cally; otherwise, A can be easily detected to be faulty. Specifically, we
assume that &S&A&�K where K>0 is a given known constant.
Obviously, if Kq�= then for all f # Bq we have

&Sf &Af &�&S&A& & f &�Kq�=.

This means that A ;-conforms to S even with ;=0. To avoid this trivial
case, from now on we assume that

=<Kq. (4)

We now present our testing algorithm which simply tests on the eigen-
vectors of the covariance operator in (1). The number of tests n*, which
depends on all the problem parameters =, ;, d, K, q and the eigenvalues
*i 's, will be specified later in Sections 3 and 5, depending on whether the
radius of the ball q is infinite. We assume that for any element f # Bq we
have a subroutine to compute the value of the specification operator Sf and
the value of the implementation operator Af. Furthermore, we assume that
we can compute inner products in the range space G.

Testing Algorithm T.

Input. Subroutine to compute Sf and Af for any f # Bq , error bound
=>0, and maximal number of tests n*.

Output. NO (A is faulty) or YES (A ;-conforms to S).
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begin
for i=1, 2, ..., n* do

compute Sei and Aei , and

$i= sup
f # Bq & span[e1, ..., ei]

&Sf &Af &

if $i>=
return NO;

end
return YES;
end

It is easy to see that $i 's are fully determined by the values of (S&A) ej

for j=1, 2, ..., i. In fact,

$i=q\(Mi) (with the convention � } 0=0),

where Mi is the i_i symmetric and nonnegative definite matrix with
coefficients

((S&A) ej , (S&A) ek), j, k=1, 2, ..., i,

and \(Mi) is the largest eigenvalue of M i . The value \(Mi) can be
approximated efficiently by, for instance, the Lanczos algorithm [8].

There are two cases for which $i can be computed easily. The first case
is for d=1. Then we have (S&A) f =( f, h) for some h # F with &h&�K
and matrix Mi=aiaT

i with ai=[(h, e1), (h, e2), ..., (h, ei)]T. Then we obtain
\(Mi)=&ai&

2=� i
j=1 (h, ej)

2. Hence, $i=q � i
j=1 |(S&A) ej |

2. The second
case is for q=�. Then $i equals 0 or �. It is 0 if and only if Sej=Ae j ,
j=1, 2, ..., i. It is � otherwise. Indeed, if $i>0 for an i�n*, then there
exists f # F & span[e1 , ..., ei] for which &Sf &Af &>0. Take an arbitrary
positive :. Then :f # F & span[e1 , ..., ei] and &S(:f )&A(:f )&=: &Sf &
Af & goes to infinity with :. This implies that $i is infinity.

Note that the algorithm T and the negative result are deterministic and
that the tests are from the eigenvectors of C+ . However, as we shall see, the
positive conclusion is probabilistic: the specification A conforms to S on an
input set of a probability measure at least 1&;, provided n* is properly
defined.

We now discuss the number of tests n*. There are two cases depending
on the radius q of the ball Bq : (1) q=� and (2) 0<q<�. Case (1) is
studied in Sections 3 and 4 and Case (2) in Section 5.
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3. INFINITE RADIUS

We first consider the case q=�. That is, Bq=F and +q=+. Recall that
d=dim(G). We now show how to estimate n* to guarantee the correctness
of the testing algorithm T.

Theorem 1. The testing algorithm T checks the ;-conformance of
implementation operator A, provided that

n*�n*(=, ;)=min {n : + \{ f : :
n+d

i=n+1

( f, ei)
2�(=�K)2=+�1&;= . (5)

Proof. If the algorithm T terminates with $i>= for i�n* then the
implementation A is faulty. On the other hand, if $i�= for all i�n* then
the algorithm terminates after n* steps and the output is YES. We need to
show that A ;-conforms to S. As already remarked, for q=�, we have

Aei=Sei , i=1, 2, ..., n*. (6)

We need the following two lemmas to show ;-conformance.

Lemma 1. Let + be an arbitrary zero mean Gaussian measure. Let
Pn : F � F be an orthogonal projection such that dim(Pn (F ))=n�� and let
Qn f =�n

i=1 ( f, e i) ei be the orthogonal projection onto the eigenvectors of
the covariance operator C+ which correspond to the n largest eigenvalues.
Then for an arbitrary r�0,

+([ f # F : &Pn f &�r])�+([ f # F : &Qn f &�r]). (7)

If, in addition, there exists a finite integer k, k�n, such that

Pn (F )/span[e1 , e2 , ..., ek], (8)

then

+([ f # F : &Pn f &�r])�+([ f # F : &Qn, k f &�r]), (9)

where

Qn, k f = :
n

j=1

( f, ek& j+1) ek& j+1 .

If k � � then +([ f # F : &Qn, k f &�r]) � 1.
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Proof. Assume first that n=�. Then Qn f = f and &Pn f &�&Qn f &.
Hence,

[ f : &Qn f &�r]/[ f : &Pn f &�r]

and (7) trivially holds.
Assume now that n<�. Let g=Pn f and g*=Qn f. Then

+([ f # F : &Pn f &�r])=+Pn
([g # Pn(F ) : &g&�r]),

+([ f # F : &Qn f &�r])=+Qn
([g* # Qn (F ) : &g*&�r]),

where +Pn
and +Qn

are zero mean Gaussian measures with covariance
operators

CPn
=Pn C+Pn and CQn

=QnC+Qn .

By Cauchy's interlacing theorem, see for instance [8, p. 186], the eigen-
values of CPn

are ;1�;2� } } } �0, with ; i�*i for i=1, 2, ..., n and ; i=0
for i=n+1, .... The eigenvalues of CQn

are clearly *1 , *2 , ..., *n , 0, ..., 0.
Hence, ;i�* i , \i. It is known, see for instance [9, p. 470], that for
Gaussian measures ;i�*i , \i, implies that

+Pn
([g # Pn (F ) : &g&�r])�+Qn

([g* # Qn (F ) : &g*&�r]).

This concludes the proof of the first part.
We now show the second part of the lemma. Let Ck be defined as the

truncation of C+ to the first k eigenvectors, i.e., Ck : span[e1 , ..., ek] �
span[e1 , ..., ek] and

Ckei=*ie i , i=1, 2, ..., k.

Due to (8), we have C+ Pn=Ck Pn and hence PnC+Pn=PnCkPn . We
can now apply Cauchy's interlacing theorem for Ck and PnC+ Pn . The
eigenvalues of Ck are

*1�*2� } } } �*k .

Denoting the eigenvalues of PnC+Pn by

;1�;2� } } } �;n ,
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we have

*k&n+ j�;j .

Similar to the first part of the proof, since the Gaussian measure of the ball
increases as the eigenvalues decrease, we conclude (9).

Note that the trace of the measure +Q&1
n, k equals �n

j=1 *k& j+1 . This trace
goes to zero as k goes to infinity. It is known then that the measure of the
ball goes to 1 as the trace goes to zero. This concludes the second part of
the proof. K

We now estimate the measure of the set of elements for which the norms
of Sf and Af differ by at most =.

Lemma 2. Suppose that

Aei=Sei , i=1, 2, ..., n, (10)

Then

+([ f : &Sf &Af &�=])�+ \{ f : K2 :
n+d

i=n+1

( f, ei)
2�=2=+ . (11)

Proof. Let W=S&A, Pn f =�n
i=1 ( f, ei) ei , and P=

n f = f &Pn f. Clearly,
(10) implies that Wf =WP=

n f. As in the proof of Lemma 1 in [7], let M=
W*W : F � F. Clearly M=M*�0, k=dim(MF )�d, and &M&=&W&2

�K2. There exist orthonormal '1 , '2 , ..., 'k # F such that M'i=#i 'i , 0<
#i�K2 for i�k, and Mf =0 for f ='i , i�k. Clearly, 'i =ej for i=1, 2, ..., k
and j=1, 2, ..., n. If k<d we formally set 'i=0 and #i=0 for i=k+1, ..., d.
Hence &Wf &2=(Mf, f )=�d

i=1 # i ( f, 'i)
2. Therefore we have

&Sf &Af &2= :
d

i=1

# i ( f, 'i)
2. (12)

Then K2 �d
i=1 (P=

n f, 'i)
2�=2 implies due to (12) that &Wf &=&WP=

n f &�=.
We get

+([ f : &WF&�=])�+ \{ f : :
d

i=1

(P=

n f, 'i)
2�(=�K)2=+ . (13)
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Changing variables, h=P=

n f, we get

+ \{ f : :
d

i=1

(P=

n f, 'i)
2�(=�K)2=+=+=

n \{h : :
d

i=1

(h, 'i)
2�(=�K)2=+ (14)

with a zero mean Gaussian measure +=

n of covariance operator C =

n f =
C+ ( f &�n

i=1 ( f, ei) ei) whose eigenvalues are *n+1 , *n+2 , ... .
Since �d

i=1 ( f, 'i) 'i is an orthogonal projection, then we can apply the
first part of Lemma 1 for the measure +=

n to conclude

+=

n \{ f : :
d

i=1

( f, ' i)
2�(=�K)2=+�+=

n \{ f : :
n+d

i=n+1

( f, ei)
2�(=�K)2=+

=+ \{ f : :
n+d

i=n+1

( f, ei)
2�(=�K)2=+ . (15)

Hence (13), (14), and (15) conclude the proof of Lemma 2. K

From Lemma 2 and the conditions on n*, we conclude that +([ f :
&Sf &Af &�=])�1&; and, therefore, A ;-conforms to S. The proof of
Theorem 1 is complete. K

Theorem 1 establishes an upper bound n*(=, ;) on the number of tests.
We now show that n*(=, ;) is also a lower bound on the number of tests
no matter what testing algorithms are used.

Theorem 2. Suppose that q=�. Then n*(=, ;) given by (5) is the mini-
mal number of tests needed for checking ;-conformance. Hence the eigenvec-
tors ei , i=1, 2, ..., n*(=, ;), which correspond to the first n*(=, ;) largest
eigenvalues of the covariance operator of the measure +, provide an optimal
and universal test sequence. Furthermore, the testing algorithm T minimizes
the number of tests.

Proof. We only have to prove that n*(=, ;) is a lower bound. Assume
that we perform n<n*(=, ;) tests at f1 , f2 , ..., fn . Due to (5) we have

+ \{ f : :
n+d

i=n+1

( f, ei)
2�(=�K)2=+<1&;. (16)

This implies that dim(F )�n+1.
Suppose that Wfi=0, for W=S&A, i=1, 2, ..., n. Of course, it may

happen that W#0, which implies that the corresponding A conforms. We
now show that there exists an implementation A, which does not conform
but provides the same test results.
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Let

m=min[d, dim(F )&n].

Observe that m�1. If dim(F)=d=� then we have m=�.
For i=1, 2, ..., m choose 'i # span[e1 , e2 , ..., en+i] such that ' i is

orthogonal to f1 , f2 , , fn , '1 , ..., 'i&1 . We also assume that &'i&=1. Define

Wf =K :
m

i=1

( f, 'i) gi , (17)

where g1 , g2 , ..., gm are orthonormal elements of G. Then Wfi=0,
i=1, 2, ..., n and &W&=K. We have

+([ f : &Wf &�=])=+ \{ f : :
m

i=1

( f, 'i)
2�(=�K)2=+ .

Let Pm f =�m
i=1 ( f, 'i) ' i . The Pm is an orthogonal projection onto

span['1 , ..., 'm]/span[e1 , ..., en+m].
Assume for a moment that m is finite. We may now apply the second

part of Lemma 1 (with n=m and k=n+m) to conclude that

+([ f : &Wf &�=])=+ \{ f : :
m

i=1

( f, 'i)
2�(=�K)2=+

�+ \{ f : :
n+m

i=n+1

( f, ei)
2�(=�K)2=+ . (18)

If m=d, (16) and (18) imply that +([ f : &Wf &�=])<1&;.
On the other hand, if m<d then m+n=dim(F ) and ei=0 for

i=m+n+1, ..., n+d. Hence,

+ \{ f : :
n+m

i=n+1

( f, ei)
2�(=�K)2=+=+ \{ f : :

n+d

i=n+1

( f, ei)
2�(=�K)2=+

and (16) and (18) imply that

+([ f : &Wf &�=])<1&;.
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Assume now that m is infinite. Let Wk=K �k
i=1 ( f, ei) gi for k=1, 2, ... .

Then, from (17), Wf =limk � � Wk f and therefore

+([ f : &Wf &�=])= lim
k � �

+([ f : &Wk f &�=])

� lim
k � �

+ \{ f : :
n+k

i=n+1

( f, e i)
2�(K�=)2=+

=+ \{ f : :
�

i=n+1

( f, ei)
2�(K�=)2=+

�+ \{ f : :
n+d

i=n+1

( f, ei)
2�(K�=)2=+<1&;.

The last inequality is due to (16).
Hence, in both cases, the implementation A=S&W does not conform.

This concludes the proof. K

4. BOUNDS AND EXAMPLES

Bounds on the minimal number of tests n*(=, ;) in (5) may be found in
[9, Chap. 8]. In particular, we have

n*(=, ;)�nL=min {n : - *n+1 �
=

K�&1 (1&;)= , (19)

n*(=, ;)�nU=min {n : � :
n+d

i=n+1

*i�
=

K - 2 ln (5�;)= , (20)

where � is the probability integral, �(x)=- 2�? �x
0 exp(&t2�2) dt. For

small ;, we have �&1 (1&;)r- 2 ln(1�;).
For d=1 we have equality in (19). For an arbitrary d, we now show that

n*(=, ;)�min {n : - *n+1 �
=

2K - ln(1�;) \1&
4K 2 ln 2

=2 :
n+d

i=n+1

* i+
1�2

+ = . (21)

Note that the last estimate is meaningful only if = is fixed and ; goes to
zero. In this case,

\1&
4K 2 ln 2

=2 :
n+d

i=n+1

*i++

=1+o(1).
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To prove (21) we need to estimate a Gaussian measure of a ball. Let +n be
a Gaussian measure with mean zero and eigenvalues *n+i of its covariance
operator. Let B=�K be a ball with center zero and radius =�K. Then from [9,
p. 258] we have

1&+n (B=�K)�e&=2a�K2
`

n+d

i=n+1

(1&2a*i)
&1�2 \a<

1
2*n+1

.

For simplicity we take a=1�(4*n+1) and note that 2a*i # [0, 1�2]. For
x # [0, 1�2] we have ln(1&x)�&(2 ln 2) x.

We need to show that 1&+n (B=�K)�;. This holds if

=2

4K2*n+1

+
1
2

:
n+d

i=n+1

ln \1&
*i

2*n+1+�ln 1�;

or if

=2

4K2*n+1

&
ln 2

*n+1

:
n+d

i=n+1

*i�ln 1�;,

which proves (21). We stress a weak dependence on ; in the upper bound
of (21).

As we shall see, the parameter = plays a much more important role than
the parameter ;. If ; # (0, 1�2) is fixed, *i=3(i& p1 (ln(i+1)) p2) for p1>1
and p2 arbitrary, and = goes to zero, then we have, see [9, p. 339],

n*(=, ;)=min {n : :
n+d

i=n+1

* i�=2 (1+o(1))�K 2= .

The last equation implies that the minimal number of tests depends
asymptotically on = and is independent of ;.

Assume now that ; is small. We approximate �&1 (1&;) by - 2 ln(1�;).
Assume also that *i=3(i& p) for p>1.

Consider first the case d=�. Then ��
i=n+1 * i=3(n&p+1) and

nL=3 \\K 2 ln
1
;

=2 +
1�p

+ , nU=3 \\K2 ln
1
;

=2 +
1�( p&1)

+ . (22)
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For the Wiener measure we have p=2 and

*i=
4

?2 (2i&1)2 .

In this case

nL=
K
?= \�2 ln

1
;

(1+o(1)+ , nU=
2K 2

?2=2 ln
1
;

(1+o(1)).

Consider now the case d<�. Then �n+d
i=n+1 *i=3(d�n p) and

nL=3 \\K 2 ln
1
;

=2 +
1�p

+ ,
nU=3 \\K2d ln

1
;

=2 +
1�p

+ .

For the Wiener measure,

nL=
K
?= �2 ln

1
;

(1+o(1)), nU=
K - d

?= �2 ln
1
;

(1+o(1)).

5. FINITE RADIUS

In this section we assume that q is finite and we test for ;-conformance
on a ball Bq .

We first recall some estimates of the Gaussian measure of ball Bq . It is
known, see [2, 3] as well as [9, p. 258], that

+(Bq)=1&e&q2�2*1(1+\(q)), (23)

where *1 is, as before, the largest eigenvalue of C+ and \=\+ is a function
such that limq � � \(q)=0. It is also known, see [4], that +(Bq) is con-
tinuously differentiable for all positive q. This implies continuous differen-
tiability of \ for positive q, and since +(Bq) is increasing in q we have

0<+$(Bq)=
q

*1

e&q2�2*1(1+\(q)) \1+\(q)+
q\$(q)

2 + .

In particular, this means that

1+\(q)+q\$(q)�2>0, \q>0. (24)
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Let �q : [0, 1] � [0, 1] be defined by

�q (')=
+(Bq(1&'))

+(Bq)
.

Then (23) yields

�q (')=1&'
q2 (1+\(q)+q\$(q)�2+o(1))

*1

e&q2�2*1(1+\(q))

1&e&q2�2*1(1+\(q))

as ' � 0. (25)

Obviously we also have

lim
q � �

�q (')=1, \' # (0, 1). (26)

In what follows, we need to define ' = '(;, q) # [0, 1) as the unique
solution of

+(Bq(1&'))=(1&(1&') ;) +(Bq) or, equivalently, �q (')=1&;+;'.

(27)

Observe that such an ' exists. Indeed, the left-hand side of (27) is a
monotonically decreasing continuous function such that for '=0 we have
+(Bq) and for '=1 we have 0. The right-hand side of (27) is a linear
increasing function from (1&;) +(Bq) to +(Bq). Hence there exists a
unique ' at which the graphs of the two functions intersect. Furthermore,
(25) yields

'='(;, q)

=;*1q&2 eq2�2*1(1+\(q))

1+\(q)+q\$(q)�2
(1&e&q2(1+\(q))�2*1)(1+o(1))=3(;)

as ; � 0. (28)

Note that ' is well defined due to (24).
On the other hand, for a fixed ; and q tending to infinity, it is easy to

check that '(;, q) goes to 1.
We are ready to define n* for a finite q such that the testing algorithm

T is correct.
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Theorem 3. The testing algorithm T checks ;-conformance of implemen-
tation A provided that

n*�min[n1*(=, ;, q), n2*(=, ;, q)], (29)

where

n1*(=, ;, q)=min {n : + \{ f : :
n+d

i=n+1

( f, ei)
2

�
=2'2 (;, q)

K2 =+�1&'(;, q) ;+(Bq)= ,

n2*(=, ;, q)=min {n : + \{ f : :
n+d

i=n+1

( f, ei)
2

�
=2'(;, q�- 2)

2K2 =+�1&'(;, q�- 2) ;+(Bq)= ,

and '(;, q) and '(;, q�- 2) are the corresponding solutions of (27).

Observe that for q=� we can take '(;, �)=1, and the minimum in
(29) is attained for n1*(=, ;, �)=n*(=, ;), the latter given by (5). For a
fixed large q and small ;, we have '(;, q)=3(;) due to (28), and the
minimum in (29) is attained for n2 (=, q, ;).

Proof. As before we only need to consider $i�= in the testing algo-
rithm T, for i=1, 2, ..., n*; otherwise, A is faulty. Hence the testing algo-
rithm T terminates with YES and we need to show that A ;-conforms to
S. We first estimate

a :=+([ f : & f &�q and &Wf &�=]) (30)

where W=S&A. Obviously,

Wf =WPn f +WP=

n f,

where n=n* and

Pn f = :
n

i=1

( f, e i) ei .
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Since $n�=, we have

&W| span(e1, ..., en)&=$n �q�=�q.

Then

&WPn f &�
=
q � :

n

i=1

( f, ei)
2.

As in the proof of Lemma 2, we conclude

&Wf &=� :
d

i=1

#i ( f, 'i)
2,

where 'i 's are orthonormal. Then

&WP=

n f &�K� :
d

i=1

(P=

n f, ' i)
2.

Hence we have

&Wf &�
=
q � :

n

i=1

( f, ei)
2+K � :

d

i=1

( p=

n f, 'i)
2

�- 2 \=2

q2 :
n

i=1

( f, ei)
2+K2 :

d

i=1

(P=

n f, 'i)
2+

1�2

.

Thus

a�+(D1)�+(D2),

where

D1={ f : & f &�q,
=
q � :

n

i=1

( f, ei)
2+K � :

d

i=1

(P=

n f, 'i)
2�== ,

D2={ f : & f &�q, - 2 \=2

q2 :
n

i=1

( f, ei)
2+K 2 :

d

i=1

(P=

n f, 'i)
2+

1�2

�== .
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Define

C1=Bq(1&'(;, q))={ f : � :
�

i=1

( f, ei)
2�q(1&'(;, q))= ,

C2=Bq - (1&'(;, q�- 2))�2={ f : � :
�

i=1

( f, ei)
2�q - (1&'(;, q�- 2))�2= ,

A1={ f : � :
d

i=1

(P=

n f, ' i)
2�

=
K

'(;, q)= ,

A2={ f : � :
d

i=1

(P=

n f, ' i)
2�

=

- 2 K
- '(;, q�- 2)= .

It is easy to check that for j=1, 2 we have Aj & Cj /Dj , and therefore

+(Dj)�+(Aj & Cj)=+(Aj)++(Cj)&+(Aj _ Cj)�+(Aj)++(cj)&1.

We now estimate +(Aj). Let r1=='(;, q)�K and r2== - '(;, q�- 2)�
(- 2 K). Then

+\{ f : :
d

i=1

(P=

n f, 'i)
2�r2

j =+=+=

n \{h : :
d

i=1

(h, ' i)
2�r2

j =+ ,

where +=

n is as in the proof of Lemma 2. Applying Lemma 1 with n=d, we
have

+=

n \{h : :
d

i=1

(h, ' i)
2�r2

j =+�+=

n \{ f : :
d

i=1

( f, ei+n)2�r2
j =+

=+ \{ f : :
n+d

i=n+1

( f, ei)
2�r2

j =+ .

Due to (29), we have

+(A1)�1&'(;, q) ;+(Bq) and +(A2)�1&'(;, q�- 2) ;+(Bq).

Due to (27), we have

+(C1)=+(Bq(1&'(;, q)))=+(Bq)&(1&'(;, q)) ;+(Bq),

+(C2)=+(Bq(1&'(;, q�- 2)))=+(Bq)&(1&'(;, q�- 2)) ;+(Bq)
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and therefore

a�+(D2)�(1&;) +(Bq).

This means that A ;-conforms to S and completes the proof. K

Let n*(=, ;, q) be the minimal number of tests needed for checking
;-conformance. Recall that n*(=, ;)=n*(=, ;, �) is given by (5). We now
present bounds on n*(=, ;, q) in terms of n*(=, ;).

Lemma 3. Let x=1&+(Bq)=e&q2(i+\(q))�(2*1), and let y1='(;, q) and
y2='(0, q�- 2) be the solutions of (27). Then

n*(=, ;(1&x)+x)�n*(=, ;, q)

�min(n*(=y1 , ;y1 (1&x)), n*(= - y2 �2, ;y2 (1&x)).

Proof. The upper bound on n*(=, ;, q) follows from Theorem 3. To
prove the lower bound let n=n*(=, ;, q). Then n tests at, say, f1 , f2 , ..., fn

are enough for ;-conformance for a finite q. Let W=S&A. If A ;-con-
forms to S then &Wfi &�= for all i�n and

+([ f # Bq : &Wf &�=])�(1&;) +(Bq)=1&;(1&x)&x.

It is easy to see that the same tests can be used for q=�. Indeed, if
Wfi {0 for some i�n then A is faulty, and if Wfi=0 for all i�n then

+([ f : &Wf &�=])�+([ f # Bq : &Wf &�=])�1&;(1&x)&x.

This means that n tests are enough for (;(1&x)+x)-conformance with
q=�. Therefore n�n*(=, ;(1&x)+x), as claimed. K

Observe that for a fixed ; and q tending to infinity we have
;(1&x)+xr; and '(;, q)r1. In this case the bounds of Lemma 3 are
sharp and we have

n*(=, ;, q)rn*(=, ;).

This means that in this case the minimal number of tests is more or less the
same as for q=�.

On the other hand, if q is fixed and ; goes to zero then we only have

n*(=, x+o(1))�n*(=, ;, q)�n*(3(=;1�2), 3(;2)).
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Observe that the upper bound is also sufficient for the number of steps of
the testing algorithm T to check ;-conformance. The lower bound on
n*(=, ;, q) is now poor since it does not even go to infinity as ; goes to
zero. As we shall see, in this case the upper bound is essentially sharp for
d=�, i.e., when the dimension of the range space is infinite. This means
that the behavior of n*(=, ;, q) for small ; and a fixed q is quite different
than the behavior of n*(=, ;): The parameter ; for a finite q plays a much
more significant role than for q=�. The case of a finite d is left open. We
suspect that for a finite d, the dependence of n*(=, ;, q) on ; is not so
crucial.

Theorem 4. For d=� and a finite large q there exist positive numbers
ci , with c2<1, such that

n*(c1=;1�2, c2)�n*(=, ;, q)�n*(c3 =;1�2, c4;2) for =+;�c5 .

Since the dependence of n*(=, ;) is much more crucial on the first argument,
this means that the testing algorithm T almost minimizes the number of tests.

Proof. We only need to prove a lower bound on n*(=, ;, q). We may
assume that dim(F )=� since otherwise for any positive ci with i�4,
c2<1, we have

n*(c1=;1�2, c2)=n*(=, ;, q)=n*(c3 =;1�2, c4 ;2)=dim(F ),

for small =+;.
Suppose then that we test at orthonormal f1 , f2 , ..., fn and n=n(=, ;) is

chosen such that we can verify ;-conformance. For i>n, let f i be as in the
proof of Theorem 2. That is, f i belongs to span[e1 , ..., en+i] and [ f i] is an
orthonormal sequence. Let

Pn f = :
n

i=1

( f, f i) gi and P=

n f = :
�

i=n+1

( f, f i) gi

for an orthonormal sequence of gi from the space G. Since dim(G)=�
such a sequence exists. Define W=S&A by

Wf ==q&1Pn f +aKP=

n f,

where a=0 or a=1. In either case of a we obtain the same tests Wfi for
all i�n. For a=0, we have +([ f : &Wf &�=])=1 and that A conforms
to S. Hence, also for a=1 we must have ;-conformance. This means that

# :=+([ f : & f &�q and &Wf &�=)]�(1&;) +(Bq).
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Since

&Wf &2==2q&2 &Pn f &2+K 2 &P=

n f &2,

with &Pn f &2=�n
i=1 ( f, fi)

2 and &P=

n f &2=��
i=n+1 ( f, fi)

2 we have

#=|
&Pn f &�q

+P=
n
([ f : &P=

n f &�=K&1 (1&&Pn f &2�q2)1�2]) +Pn
(df ),

where the zero Gaussian measures +Pn
and +P=

n
have the covariance

operators CPn
=Pn C+Pn* and CP=

n
=P=

n C+ (P=

n )*. Here Pn* and (P=

n )* act
from G to F and are given by

Pn*g= :
n

i=1

(gi , g) fi and (P=

n )* g= :
�

i=n+1

(gi , g) f i .

Take now :=:1; for some positive :1 . Let &Pn f &�q - 1&:. Since
=<Kq, see (4),

&P=

n f &�=K &1 (1&&Pn f &2�q2)1�2

implies that

&P=

n f &�(q2 (1&')&&Pn f &2)1�2, '=:(1&(=�(Kq))2).

Hence

|
&Pn f &�q - 1&:

+P=
n
([ f : &P=

n f &�=K&1 (1&&Pn f &2�q2)1�2]) +Pn
(df )

�|
&Pn f &�q - 1&:

+P=
n
([ f : &P=

n f &�(q2 (1&')&&Pn f &2)1�2]) +Pn
(df )

�+(Bq - 1&')=+(Bq - 1&:)(1+o(1)) as = � 0.

Therefore

#=|
&Pn f &�q - 1&:

} } } +|
q - 1&:<&Pn f &�q

} } }

�+(Bq - 1&:)(1+o(1))

++P=
n
([&P=

n f &�=K&1
- :1;])(+Pn

(Bq)&+Pn
(Bq - 1&:)).
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Let

:1=2*1 q&2 (1+\(q)+q\$(q)�2)&1 exp(q2�(2*1))(1+o(1)) as q � �.

Note that :1 is well defined due to (24). Then (25) implies that for small
= and ; the first term +(Bq - 1&:)(1+o(1)) is at most, say, (1&2;) +(Bq).
Therefore the second term must be at least ;+(Bq).

We now show that there exists a positive c6 such that

+Pn
(Bq)&+Pn

(Bq - 1&:)�c6:1 ;. (31)

Let ;j , j=1, 2, ..., n, denote the eigenvalues of CPn
. Then

+Pn
(Bq)&+Pn

(Bq - 1&:)=+n* \q2 (1&:)
�n

j=1 ;j
� :

n

i=1

;i

�n
j=1

�2
i �

q2

�n
j=1 ; j+ ,

with independent standard Gaussian variables �i and +n* being the
standard Gaussian mean sure on Rn, i.e., with mean zero and the identity
covariance matrix.

We now show that ;j � *j . Indeed, let Jf = ��
i=1 ( f, fi) gi denote

the embedding operator between the spaces F and G, and let P� n f =
��

i=1 ( f, fi) f i be an orthogonal projection in F. Clearly, we have J*=J&1

and Pn=JP� n . Therefore

CPn
=JP� n C+P� nJ &1

and the eigenvalues of CPn
and P� nC+P� n are the same. Hence ; j are also the

eigenvalues of P� nC+P� n . For the operator P� nC+P� n we conclude as in the
proof of Lemma 1 that ;j�*j , as claimed.

Assume that ; is so small that :=:1;�1�2. Then

q2 (1&:)
�n

j=1 ; j
�

q2

2 ��
j=1 *j

.

We assume that q is so large that q2�2(2+- 2) ��
j=1 *j . For such q we

may apply Theorem 3 from [1] which states that

+Pn
(Bq)&+Pn

(Bq - 1&:)��2
? |

y

y - 1&:
exp(&x2�2) dx
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with y=q�- �n
j=1 ;j . We estimate the last integral by

�2
?

exp(&y2 (1&:)�2) y(1&- 1&:)��2
?

exp(&y2�4) y
:

1+- 1&:

�c6:1;,

with

c6=max
y�0 �

2
?

exp(&y2�4) y
1

1+- 2&1
<�.

This proves (31).
We already noted that

+P=
n
([&P=

n f &�=K&1
- :1;])(+Pn

(Bq)&+Pn
(Bq - 1&:))�;+(Bq).

By (31) there exists c2 # (0, 1) such that

+P=
n
([&P=

n f &�=K &1
- :1;])�c2 .

From Section 3 we know that

+ \{ f : :
�

i=n+1

( f, e i)
2�=K &1

- :1;=+�+P=
n
([&P=

n f &�=K&1
- :1;]).

Hence

+ \{ f : :
�

i=n+1

( f, e i)
2�=K&1

- :1;=+�c2 ,

which means that n�n*(c1=;1�2, c2) for some positive c1 . This completes
the proof. K

6. CONCLUSION

We have studied a probabilistic setting of ;-conformance testing of linear
operators and described a simple test generation algorithm that tests on the
eigenvectors of the covariance operator of the Gaussian measure on the
input set. When the input set is the whole domain space we showed that
the test sequence is optimal; the number of tests matches the lower bound.
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On the other hand, when the input set is a ball of finite radius in the
domain space, we obtained the lower and upper bounds on the number of
tests. Partly due to the lack of precise estimation of the measure on the
ball, we are not able to find the exact bound on the number of tests.
However, we know that the bounds are essentially sharp in two cases. The
first case is for a fixed confidence parameter ; and large q. The second case
is for a fixed q and d=� when the range space is infinite dimensional.

Similar to the worst and average case settings [5, 7], our test sequences
are universal: they are the eigenvectors of the covariance operator and
hence are independent of the particular specification and implementation
operators.

We have discussed testing of linear operators. Nonlinear operators are
often encountered in practice and their testing is also of vital importance.
In an earlier paper [6] we studied relaxed testing of nonlinear operators.
We showed that finite testing is in general inconclusive. However, testing is
decidable in the limit and finite tests are conclusive for weak conformance
testing. On the other hand, the average and probabilistic settings for non-
linear operator testing remain to be explored.

The concept of ;-conformance has been brought up in [6]. However,
due to the lack of structure of nonlinear operators, deterministic test
generation algorithms seem to be hard to design. Probabilistic algorithms
were proposed based on random samplings in the input set according to its
distribution. It is essentially a Bernoulli trial for faulty elements in the input
set. Consequently, any positive conclusion of ;-conformance is associated
with a probability of an erroneous answer.
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