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Observations of cloud vertical structure by Cloud Profiling Radar on CloudSat satellite
provide a unique opportunity to globally identify the onset of precipitation. In this study,
based on a conceptual model for an adiabatic cloud, a new method to determine the onset
of precipitation in marine warm clouds is developed. The new method uses the slope of
radar reflectivities near the cloud top, which gradually reverses its signs as drizzle occurs.
By analyzing multiyear CloudSat data, it is found that globally the radar reflectivity
threshold for precipitation onset varies from �18 to �13 dBZ with an average value of
�16 dBZ. The corresponding liquid water path threshold for precipitation onset is also
studied by analyzing satellite microwave observations collocated with CloudSat data.
Results show that the liquid water path threshold is 190 g m�2 as a global mean, varying
from 150 to over 300 g m�2 depending on regions.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Determining the onset of precipitation is important to
parameterize precipitation processes in numerical models,
to develop remote sensing retrieval algorithms, and to
understand aerosol indirect effect. In most numerical
weather and climate prediction models, the conversion
from cloud water to rain water is usually represented by
bulk parameterization schemes such as autoconversion
scheme for warm clouds [1]. Precipitation produced by
models is very sensitive to whether to select mixing ratio
or cloud droplet radius as threshold for precipitation onset
[2], and incorrect onset threshold could lead to untimely
formation of rain, and wrong partitioning between cloud
and rain water amounts in models [3,4]. For passive
microwave remote sensing, the identification of the onset
er Ltd. This is an open acce

).
of precipitation is the first step to distinguish between
cloud liquid water and rainfall before retrieving them by
emission-based algorithms [5]. Moreover, drizzles as the
indicator of precipitation onset, make an important impact
on cloud water content retrieval for cloud radar observa-
tions [6,7]. Additionally, the second indirect effect of
aerosols postulates that anthropogenic aerosols may affect
the onset of precipitation [8].

It is known that the onset of precipitation is related to
cloud water amount and cloud droplet size [9,10]. There-
fore, determining the onset of precipitation by a threshold
of liquid water path or effective radius is widely used.
However, there are large discrepancies as to what value to
use as the precipitation threshold among different inves-
tigators [11]. For liquid water path, a threshold of
180 g m�2 is chosen in the unified microwave ocean
retrieval algorithm of Wentz [12] and Wentz and Spencer
[13], while much larger values (300 g m�2 or even
500 g m�2) are used in other precipitation retrieval algo-
rithms [14–16]. With respect to cloud droplet size, the
ss article under the CC BY license
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threshold of effective radius of 15 μm or larger has been
used [17–20]. Precipitation formation is a complex process
governed by cloud dynamics and thermodynamics [21,22].
One reason why the above uncertainties in threshold
values exist arises from the lack of direct global observa-
tions for precipitation onset [23].

CloudSat, the first satellite carrying a 94 GHz Cloud
Profiling Radar (CPR), provides the opportunity for us to
identify the onset of precipitation on global scale. Based on
CPR and other ground-based cloud radar observations, the
threshold of radar reflectivity discriminating between
precipitating and nonprecipitating clouds has been pro-
posed and discussed by several investigators. Matrosov
et al. [7] and Kawamoto and Suzuki [24] used radar
reflectivity of �15 dBZ to eliminate the influence of drizzle
on the relationship between radar reflectivity and cloud
liquid water content. This threshold was also used by
several other investigators for identifying precipitating
clouds [25–28]. Kogan et al. [29] chose �17 dBZ as pre-
cipitation threshold and found that this value is well cor-
related with the presence of droplets greater than 25 μm
in radius. A lower value of threshold of �20 dBZ was
adopted in Mace and Sassen [30] and Kato et al. [31]. Wang
and Geerts [32] suggested that the threshold of radar
reflectivity in the cloud layer would vary from �19 to
�16 dBZ depending on height. For such a wide range of
threshold values, Liu et al. [33] theoretically explained it as
a function of the cloud droplet concentration.

In this study, a new method to determine the onset of
warm cloud precipitation is developed based on CPR
reflectivity vertical profile. The global distribution of the
threshold and its possible dependence on cloud structure
are also explored. Additionally, the liquid water path cor-
responding to the onset of precipitation is studied.
2. Data and method

In this study, the standard CloudSat radar reflectivity
product [34] is used, which contains radar reflectivity
values at a 1.7 km (along track)�1.4 km (across track)
horizontal resolution and 240 m in vertical resolution in
150 vertical bins. Data of the lowest 4 bins (�1 km deep)
are excluded for the data analysis to avoid possible con-
tamination by surface. Cloud temperature is determined
by European Center for Medium-Range Weather Forecasts
(ECMWF) objective analysis, which has been collocated
with CloudSat data [35]. Our study focuses on warm cloud
only. Therefore, only those radar reflectivity profiles with
cloud top temperature higher than 273 K are analyzed. To
estimate cloud liquid water path, brightness temperatures
from Advanced Microwave Scanning Radiometer for Earth
Observing System (AMSR-E) on Aqua satellite are also
used. Aqua and CloudSat are both on the A-Train con-
stellation; AMSR-E and CPR observations can be con-
sidered simultaneous. Liquid water path is retrieved based
on the method of Wang et al. [36].

In an idealized non-precipitating adiabatic warm cloud,
the liquid water content (LWC) increases linearly upward
from cloud base [37]. Though the observed LWC in actual
clouds is often about 50–80% of the adiabatic value due to
mixing between the rising air in clouds and dry environ-
mental air, observations have shown that LWC in non-
precipitating clouds generally increases linearly with
height and the maximum LWC presents near the cloud top
[38,39]. Moreover, because the drop number concentration
within a nonprecipitating cloud is generally constant with
respect to height, the mean cloud drop size increases with
height [37]. As a result, for nonprecipitating warm clouds,
radar reflectivity should increase with height. As the cloud
develops, some of the water drops grow to a radius
between 15 and 25 μm [40–44], a critical size for coales-
cence to take place, and then drizzles start to occur. Note
that at the time when drizzle drops begin to form, the
initial source of drizzles is generally near the cloud top
where there exist the largest cloud drops and the highest
LWC. The above features have been revealed by both
observations and model simulations [6,45]. After drizzle
drops form, they fall downward in the clouds as they fur-
ther grow by accretion of small cloud particles [46]. Con-
sidering that the radar reflectivity factor is proportional to
the sixth moment of the drop size distribution, the radar
reflectivity would increase from cloud top downward after
drizzle drops form and then fall.

In summary, radar reflectivity would increase upward
near cloud top in warm nonprecipitating clouds, but would
decrease when drizzle starts, which has also been sug-
gested by Wang and Geerts [32] and Leon et al. [23]. Our
precipitation onset detection algorithm will apply the
above logic to CloudSat observations. As discussed above,
drizzle drops initially occur near the cloud top. Ideally, we
would like to use CPR returns at the highest bins for the
drizzle detection algorithm. However, the highest bin in
radar reflectivity profile is often not fully filled by cloud
body, which makes it hard to compare with the reflectivity
values in the bins below. Therefore, in this study we use
the second and third bins from cloud top to calculate the
radar reflectivity vertical variation and then judge whether
the cloud is precipitating. That is, if the radar reflectivity in
the second bin (counted from top down) is larger than that
in the third bin, the cloud is classified as nonprecipitating,
otherwise precipitating. The transition between the two
indicates the onset of precipitation. For shallow clouds,
evaporation of drizzle drops after falling out of clouds
could complicate the interpretation of reflectivity profiles.
To minimize this problem, only those profiles with
reflectivity value at the 4th bin (from cloud top) higher
than �25 dBZ are included in the analysis.

To illustrate how the precipitation identification method
works, we show next the variation of radar reflectivity profiles
with its maximum value in the top 2nd and 3rd bins (called
MaxR hereafter) for the following two subtropical coastal
regions with prevailing low-level marine clouds: Californian
(15–30°N, 120–130°W) and Peruvian (10–30°S, 70–90°W)
coasts, in June, July and August of 2006 through 2009. As
shown in Fig. 1, for both Californian and Peruvian coasts,
when MaxR is lower than �15 dBZ, the radar reflectivity in
the upper bin is higher than that in the lower bin, which is the
typical characteristic of nonprecipitating clouds. Once MaxR is
higher than �15 dBZ, the radar reflectivity in the lower bin
exceeds that in the higher bin, indicating the presence of
drizzles. Moreover, with increasing MaxR, the radar



Fig. 1. The variation of reflectivity profiles of the top second and third
bins from cloud top as the maximum reflectivity value (MaxR) increases
for Californian (top) and Peruvian (bottom) coastal regions. Solid lines
indicate the position where the reflectivity profile slope reveres signs, i.e.,
precipitation onset, and the error bars denote the standard deviations for
each profile.

Fig. 2. The probability of drizzle occurrence as a function of MaxR for
Californian and Peruvian coastal regions.
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reflectivity difference between the two bins gradually
increases, implying the increase of drizzles' size with cloud
development. The above variation of the radar reflectivity
slope with MaxR near the cloud top is consistent with the
transformation from nonprecipitating to drizzle clouds. It is
noted that the �15 dBZ MaxR found here is similar to the
threshold previously used in some of the literatures [7,25,28].

To determine the threshold of precipitation onset as a
function of MaxR, the probability of drizzle occurrence in all
clouds, based on the relative magnitude of radar reflectivities
at the second and third bins as discussed above, is calculated
and plotted against MaxR in Fig. 2. It can be seen that the
probability increases with MaxR in a similar fashion for the
two regions, where 90% (80%) of clouds near the Californian
(Peruvian) coasts starts to precipitate when MaxR is
�10 dBZ, and almost all clouds are precipitating for MaxR
higher than �5 dBZ. Moreover, the 50% probability occurs at
MaxR around �15 dBZ, which is in agreement with the
result of the value separating between nonprecipitating and
precipitating clouds shown in Fig. 1. Therefore, the MaxR
value at the 50% probability will be used as the threshold to
identify the precipitation onset in this study.
3. Results

3.1. Global distribution of precipitation threshold

To highlight the regional diversity of the precipitation
threshold, threshold values of MaxR in every 2.5° (latitude)
by 2.5° (longitude) box over the globe are calculated based
on CPR observations for four years (2006–2009). The results
are shown in Fig. 3. For statistical significance, only those
boxes where the sample number around the 50% probability
of drizzle occurrence is larger than 1000 are shown. Gen-
erally, the threshold over the globe varies from �18 to
�13 dBZ. Higher values (4�15 dBZ) are mostly located to
the west of land masses where marine boundary layer clouds
dominate, i.e., off the Californian, Peruvian, Canarian, Nami-
bian and Australian coasts. The globally averaged MaxR value
for precipitation threshold is about �16 dBZ, which is in
agreement with the maximum reflectivity threshold of
�15 dBZ as widely used in the literature [7].

The variation of MaxR threshold may arise partly from
the differences of cloud properties among different cloud
types. Thus, mean MaxR threshold as a function of cloud
top height and its standard deviation within a 2.5°�2.5°
box are shown in Fig. 4. Clearly, low and horizontally-
homogeneous clouds have higher MaxR value of pre-
cipitation threshold, and tall and inhomogeneous clouds
have lower value of MaxR threshold. This result implies
that stratiform clouds seem to have a higher MaxR
threshold, while drizzle likely occurs with relatively low
MaxR for convective clouds.

Radar reflectivity of a cloud is determined by cloud
drop number and drop size. To understand this depen-
dence, radar reflectivity is calculated based on Mie scat-
tering assuming a Gamma size distribution for cloud drops
(Fig. 5). In natural clouds, cloud drop concentration gen-
erally varies from 2.5�107 to 1�109 m�3 for different air
masses depending on the availability of cloud condensa-
tion nuclei, the maximum supersaturation in the cloud,
size distribution and so on [47,48]. At effective radius of
15 μm, which is often thought to be the precipitation
threshold [19], the calculated radar reflectivity in the
above cloud drop concentration range varies between �20
and �8 dBZ with a mean value of about �15 dBZ, which is
consistent with observations shown in Fig. 4.

3.2. Relation to liquid water path

In many applications, liquid water path (LWP) is used as
a threshold for precipitation onset [12,14]. In the follow-
ing, we attempt to answer such a question: how big LWP is
required to start warm cloud precipitation? LWP is
retrieved for warm clouds over ocean based on observa-
tions of AMSR-E for 4 years (July 2006–June 2010). Here
the LWP retrieval is primarily based on brightness



Fig. 3. The global distribution of MaxR values of the precipitation onset threshold.

Fig. 4. The variation of mean MaxR threshold as a function of cloud top
height and its horizontal variation.

Fig. 5. The variation of simulated CPR reflectivity (dBZ) as a function of
cloud drop concentration and effective radius.
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temperatures at 37 GHz, and observations at other AMSR-E
channels are used to assist in calculating 37 GHz clear-sky
brightness temperatures [36]. Collocated CloudSat CPR
data are also used in the LWP algorithm for identifying
clear-sky scenes. Because of the resolution difference
between AMSR-E and CPR, there are generally about
7 samples of CPR in an AMSR-E field-of-view. Therefore,
the maximum of MaxR among all CPR samples within an
AMSR-E pixel is taken as the MaxR of this pixel.

First, for each 2.5° by 2.5° box over the global ocean, LWP
values of those pixels having MaxR lower than the drizzle
threshold as defined in the following are selected. From
these selected nonprecipitating cloud LWP retrievals in each
box, mean value of LWPs between 95% and 98% percentiles is
used as the LWP threshold. The reason of not choosing the
maximum LWP as threshold is intended to avoid erroneous
LWP retrievals when clouds become so close to precipitate.
The LWP threshold is then obtained for all available boxes,
and shown in Fig. 6. Statistically, the global mean LWP
threshold is 190 g m�2 with a standard deviation of
35 g m�2, which is comparable to the threshold of
187 g m�2 suggested by Chen et al. [49] and 180 g m�2 used
in Wentz [12]. However, it should be mentioned that this
LWP threshold for different regions varies from about



Fig. 6. Similar to Fig. 3, but LWP thresholds for precipitation onset.
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150 g m�2 in open oceans to more than 300 g m�2 near the
coasts, which possibly is an evidence of aerosol indirect
effect and worth to be further studied in the future.
4. Conclusions

The vertical structure of clouds observed by the CPR on
CloudSat satellite offers a unique opportunity to identify the
onset of precipitation. In this study, a new method to
determine the onset of precipitation for marine warm clouds
by CPR reflectivity profiles is presented. In this method, the
slope of radar reflectivity in the top portion of clouds is used
to identify the presence of drizzles. The method is based on a
conceptual model of an adiabatic cloud. Using CPR observa-
tions, it is shown that the slope of the radar reflectivities as
determined by the top 2nd and 3rd (counted from cloud top)
bins in the profiles gradually reverses its signs with radar
reflectivity increasing, consistent with the conceptual model
of growing cloud drops being transformed to drizzles.

Based on 4 years of CPR measurements, the global
distribution of radar reflectivity threshold for precipitation
onset is examined. It is found that this threshold varies
from �18 to �13 dBZ depending on cloud types. Higher
threshold values mostly locate in off-shore stratiform
cloud regions, while lower threshold values are in open
seas where clouds are more convective. On average, radar
reflectivity threshold is about �16 dBZ globally. Using the
radar reflectivity threshold, corresponding liquid water
path threshold for identifying warm cloud precipitation is
also studied. The results show that precipitation is likely to
start when liquid water path exceeds 190 g m�2 as a glo-
bal mean, and this threshold varies from about 150 to
above 300 g m�2 depending on regions.

As discussed in the introduction, the threshold for
precipitation onset is required for many applications, and
different values have been used so far by investigators. By
exploring the utility of CloudSat radar observations, this
study takes a fresh view on this problem, and its results,
while confirming those of some previous studies, hope-
fully have put the threshold values on a firmer footing.
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