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Abstract

The purpose of this paper is to give conditions on the parameters of nonhomogeneous
Poisson and nonhomogeneous pure birth processes, under which the corresponding random
vector of the first n epoch times has some multivariate stochastic properties. These results
provide an inside to understand the effect of the time over the occurrence of events in such
processes. Some applications of these results are given.
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1. Introduction

Nonhomogeneous processes are of great interest in applied probability. Epoch
times of nonhomogeneous Poisson processes correspond to the times of repair of a
unit which is being minimally repaired (see [3]), where by minimal repair we mean
that the unit is restored to a working condition just prior to the failure. Also epoch
times of nonhomogeneous Poisson processes are the consecutive record values of a
sequence of independent and identically distributed nonnegative random variables
(see, for example, [15]).
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Nonhomogeneous Poisson processes can be extended to nonhomogeneous pure
birth processes. Applications of this general model in insurance, reliability theory,
epidemiology and load-sharing models can be seen in [6,17,26].

Therefore, it is of interest to study stochastic properties of epoch times of
nonhomogeneous processes. In the literature there are several papers which
study aging notions of epoch times under conditions on the parameters
of the nonhomogeneous process. Gupta and Kirmani [I15] give conditions
under which the epoch times of a nonhomogeneous Poisson processes are
IFR, IFRA and NBU and Pellerey et al. [26] give conditions for the logcon-
cavity of the density function of epoch times. Other results about stochastic
comparisons of epoch times have been given, recently, by Belzunce et al. [5],
Belzunce et al. [6], Belzunce and Ruiz [8] and Belzunce and Shaked [10]. However
when we consider a single nonhomogeneous process we are more interested about
the occurrence of events when time is going on. In this paper we study stochastic
properties of the random vector of the first n epoch times, which describe the effect of
time on the occurrence of events, also some other consequences are described
through the paper.

The organization of this paper is as follows. In Section 2 we will give the
definitions and some properties of the multivariate stochastic notions that we
will study through the paper. Also we will introduce nonhomogeneous Poisson
and nonhomogeneous pure birth processes. Later in Section 3 we will give conditions
on the parameters of nonhomogencous Poisson and pure birth processes under
which the random vector of the first n epoch times has some of the multivariate
stochastic properties given in Section 2. Examples of processes which satisfy these
conditions are given. To finish in Section 4 we consider some applications of these
results.

In this paper “increasing” and ‘decreasing” mean ‘‘nondecreasing” and
“nonincreasing,” respectively. The notation =g stands for equality in law. Also
given a random variable X with distribution function F, F=1— F denotes the
survival function.

2. Preliminaries on multivariate classification and nonhomogeneous processes

In reliability theory it has been found useful to classify univariate distributions
according to the process of aging. These univariate classifications have been
extended to a multivariate setting in several ways. Some of these extensions can be
seen in [11,18,23,27-29]. Although these extensions are of mathematical interest, not
all are based on physical considerations. Arjas [1] and Shaked and Shanthikumar
[33] provide new extensions, not just technical but from a dynamic point of view.
Next we introduce the notation needed to give the multivariate aging notions given
by Arjas [1] and Shaked and Shanthikumar [33]. In what follows, the vector of ones
will be denoted by e, and the dimension of e is always possible to determine from the
expression in which appears. Also given two vectors x = (xy,...,x,) and y =
1y ---,u), we denote x<y, if x;<y; fori=1,...,n.
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Let T=(Ty,...,T,) be a nonnegative random vector with an absolutely
continuous distribution function. The coordinates, T;, can be considered as lifetimes
of n devices or times of failure of n processes. In this paper these will be the times in
which a series of n events occurs. Through the paper we will use indistinctly these two
interpretations. For #>0 let &, denotes the list of devices (events) which have failed
(occurred) and their failure (occurrence) times. More explicitly, a history A, will
denote

hy ={T; = t;, T;>te},

where I = {i, ...,ix} is a subset of {1,...,n}, Iis its complement with respect to
{1,...,n}, T; will denote the vector formed by the components of T with index in [
and 0<t; <t for all j =1, ..., k. For every vector x = (xi, ..., x,) denote by x* the
vector X© = (x7,...,x;), where x* =0 if x<0 and x™ = x if x>0. Now given a
history %, we consider the random vector, [(T — te)"|h;], of residual lifetimes of the
components of T given /,, where, for any event 4 the notation [X|4] stands for any
random variable whose distribution is the conditional distribution of X given A. This
concept extends to a multivariate setting the concept of residual lifetime of a random
variable T given by [T — #|T >1].

Next, we recall the definitions of some multivariate partial orders, which will be
used to state multivariate aging notions (see [34]).

Definition 2.1. Let T and S be two n-dimensional random vectors with density
functions fr and fs, respectively. We say that T is less than S in the multivariate
likelihood ratio order (denoted by T <, S), if (below A and v denote, respectively,
the minimum and the maximum operations)

Sr(x,xa, o, Xa)fs(V, v, o )
SIr(X1 AV, X0 A2, o, Xn AV IS (XTI VYL, X2V Y2, ooy Xn V)

for all (x1,x2,...,x,) and (y1,¥2, ..., pn) in R™.

Now we proceed to give the definition of the multivariate hazard rate order. Given
the history /;, as above, let ie 1, its multivariate conditional hazard rate, at time ¢, is
defined as follows:

. 1
Li(ttr) = A£%+ EP[Z< T;<t+ Atlhy).

It is clear that A;(¢|¢;) is the probability of instant failure of component i, given the
history 4,.

Definition 2.2. Let T and S be two n-dimensional random vectors with hazard rate
functions #.(:|-) and A.(:|-), respectively. We say that T is less than S in the
multivariate hazard rate order (denoted by T <y, S), if

ni(ulsyor) = Ai(ultr)

whenever InJ =0, 0<s;<t;<uwe, and 0<s;<we, where ie/UJ.
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In the univariate case given two nonnegative random variables X and Y with
distribution functions F and G, respectively, then X is said to be less than Y in the
hazard rate order (denoted by X <y, Y or F<y,G) if F(¢)G(s) < F(s)G(¢) for all s<t.

As can be seen in [34] the multivariate likelihood ratio order is stronger than the
multivariate hazard rate order, that is,

TglrS:>T<hrS~ (21)

Now we proceed to recall the definition of the multivariate aging classes that will
be studied in this paper. The definition of these multivariate notions, is also
motivated by some characterizations of the corresponding notions in the univariate
case (see [34]).

First, we give the multivariate extension of univariate PF, distributions given by
Shaked and Shanthikumar [33].

Definition 2.3. Let T be a nonnegative random vector. We say that T is multivariate
Polya frequency of order 2 (denoted by T is MPF,) if

[(T — ze)"|h) <\ T

for any history &, t=0.

In the univariate case, a random variable T, with support (0,+00), is MPF,
(denoted by T is PF»), if
fx+y)

———=is decreasing in y, for any x>0,
fo)

where [ is the density of 7. Clearly, from Definition 2.3, if T is MPF; then T <, T,
that is, T is multivariate totally positive of order 2 (MTP;) (see [20]). Some
interesting consequences of MTP; property are that 77, ..., T, are associated in the
sense of Esary et al. [14] and the conditional monotone regression endowment by
Lehman [22].

Next, we give the multivariate extension of increasing failure rate (IFR)
distributions given by Shaked and Shanthikumar [33].

Definition 2.4. Let T be a nonnegative random vector. We say that T is multivariate
increasing failure rate (denoted by T is MIFR) if

[(T — ze)"|h] <u'T (2.2)

for any history &, t=0.

Condition (2.2) can be written in a different way under the following notation. For
s<t let hj; denote an event which describes which components are alive at time s,
and the components which failed during the time interval [s, 7] and their failure times.
Therefore A, can be written as /g ). Now for s<¢ and u> — s denote by 0,/ the
history on the time interval [s 4 u, t 4 u] which is obtained from £, by adding u to
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each failure time in /), but without changing the identities of the failed components
and without adding or deleting any failure.

We will need also to compare the ‘severity’ of two histories of the same length over
different time intervals. First given two histories /i, ; and his,t] we will write /g <his’t]
if every component which is alive at time s in h/[‘v.,t] is also alive at time s in /i, and if

failed earlier than
if

each component which failed in /,  also failed in his i and in h’[
in h[&’t]. Let /’l[s,,] and h/[
Guh[s-ﬂ S h/[eru,tJru] :

Finally, for 0<s<t<u, let A, and h{w] be two histories such that the set of

5,1

) be two histories we will write /) </

S+u,t+u s-tu,t+u]

components which are alive at time ¢ in /i, is the same as the set of components
which are alive at time ¢ in hf,,u]. Then by 7y @h{t’u] we denote the history which has
at time s the same set of live components as /i, ) has at time s, and which describes
failures of components and their identities on [s, 7] as /s and on [¢,u] as hfz,uy

With this notation condition (2.2) can be written (see [33]) as follows: For
20, >0, u=0,

;Lk(S + u|h'[073]) </1k([/ + 5+ u|h[0ﬁt/] ®hl[;’¢l/+S]) (23)

whenever hfo P <hf’t, v+, and whenever k is a component which is alive at time s in

hiO,s] and at time ¢ + s in /o @hﬁ,,f, +5-

In the univariate case, T is MIFR (denoted by T is IFR) if the failure rate
r(x) = f(x)/F(x) is increasing in x, where f/ and F are the density and survival
functions of 7. Clearly if X is MIFR, then X< X, that is X has the positive
dependence property of “hazard increasing upon failures” (HIF) given by Shaked
and Shanthikumar [32]. The HIF property is a sufficient condition for other notions
of dependence as the “‘supportive lifetimes’ (SL) and “‘weakened by failure” (WBF)
notions (see [2,25,32]).

Arjas [1] proposed other possible multivariate extension of the IFR property,
given by the condition

(T —7e) ] <l(T — 1e) " |1]

for all < and whenever /i, and A, coincide on [0, 7). As can be seen in [33] condition
(2.3) is stronger than the MIFR notion by Arjas [1].

From the definitions, (2.1) and the previous comments we get the following
relationships between the multivariate notions defined above:

T is MPF, = T is MIFR

¢ 4
Tis MTP, = T is HIF

The main objective of this paper is to study the previous notions when the
components of the random vector are the first n epoch times of certain
nonhomogeneous processes. These properties describe the effect of passing time
over the occurrence of events. Some other consequences about association properties
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are given through the paper. First, we will consider epoch times of nonhomogeneous
Poisson processes and then the results will be extended to the more general case of
nonhomogeneous pure birth processes. Next, we describe such processes.

A counting process {N(z), t=0} is a nonhomogeneous Poisson process with
intensity (or rate) function r>0 if

(a) {N(¢), t=0} has the Markov property;
(b) P{N(t+ At) =n+ 1|N(¢) = n} =r(t)At + o(At), n=1;
(c) P{N(t+ At)>n+ 1|N(t) = n} = o(At), n=1.

We assume that
/ r(u)du= oo  for all 1>0, (2.4)
t

this ensures that with probability 1 the process has a jump after any time point ¢. For
convenience, if r(f)) = oo for some ¢y then we define r(¢) = oo for t=1¢.

A nonnegative function » which satisfies (2.4) can be interpreted as the hazard rate
function of a lifetime of an item. More explicitly, if r satisfies (2.4) and we define f by

£(0) = r()e” @@ — (e R0 >0,

where R(¢) = fol r(u) du, then f is a probability density function of a lifetime X; in
fact, f is the probability density function of the time of the first epoch of the
underlying nonhomogeneous Poisson process. Let X be a random variable with
density f, and let its distribution be called the underlying distribution of the
nonhomogenous Poisson process with rate r(¢). As we have mentioned in Section 1
epoch times of nonhomogeneous Poisson processes are the repair times of a unit
which is continuously being minimal repaired. Therefore it is of interest to study
stochastic properties of the vector of repair times.

Let 0=Ty<T ) <T,<--- be the epoch times of the nonhomogeneous Poisson
process. Then the density function of T = (T, ..., T,) is given by

ha(x1, %2, ooy xn) = r(x))r(x2) - r(x,—1)f (xn)  for x;<x <+ <X, (2.5)

It is noted also that
[Ti+1|T1211,...,Ti:li] =gt [X|X>li], i=1. (26)

The following extension of the nonhomogeneous Poisson process will also be
studied in this paper. Let r,, n>1, be nonnegative functions that satisfy (2.4). A
counting process {N(¢), t=0} is a nonhomogeneous pure birth process with intensity
(or rate) functions r, >0 if

(a) {N(¢), t=0} has the Markov property;
(b) P{N(t+ At) =n+ 1|N(¢) = n} = r,(t)At + o(At), n=1;
() P{N(t+ At)>n+ 1|N(t) = n} = o(At), n=1.

Nonhomogeneous pure birth processes are called ‘relevation counting processes’ in
[26], where some applications of them in reliability theory are described. When all the
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r,’s are identical, a nonhomogeneous pure birth process reduces to a nonhomoge-
neous Poisson process. These epoch times can be applied in different contexts, apart
from reliability theory. When r,(f) = (n+ 1)4, where >0, we have a Yule birth
process, which can be generalized to the case r,(¢) = (n+ 1)A(¢). A generalized Yule
birth process may model the spread of a disease where 7 is the number of infectives,
and A(¢) is the rate in which infectives pass the disease to new individuals at time #;
this rate, in general, may depends on the calendar time ¢ (see [4]). Another
application is in load-sharing models (see [30]). See [6] for a discussion of these
applications.

Let 0 = Ty<T;<T,<--- be the epoch times of the above nonhomogeneous pure
birth process. We will describe now a useful stochastic representation of these epoch
times. Consider a set of independent absolutely continuous nonnegative random
variables {Y,, n>1}, with corresponding hazard rate functions r,, n>1. Define,
recursively,

Tl = Yl;
7/;n:[Yn|Yn>T"n—lL I’l>2,

then it is not difficult to verify that the joint distribution of (fl, ..., T,) is the same as
the joint distribution of (71, ..., T,). Now denote by F, and f, the survival and the
density functions of Y, then the joint density of T = (77, ..., T,,) is given by
n—1
17 L)
h(x1, X2, .oy Xy) = E mfn(xn) for x| <xo <+ <. (2.7)

Next, in Section 3, we describe conditions on the parameters of nonhomogeneous
(Poisson and pure birth) processes to classify the random vector of the first n epoch
times in some of the previous multivariate aging classes.

3. Multivariate aging properties of epoch times

In this section we proceed to give conditions on the parameters of nonhomoge-
neous Poisson and pure birth processes, to get that the random vector of the first n
epoch times has some of the multivariate stochastic properties given in the previous
section. We will distinguish epoch times of nonhomogeneous Poisson processes and
nonhomogeneous pure birth processes.

3.1. Epoch times of nonhomogeneous Poisson processes

In this section given a nonhomogeneous Poisson process with epoch times
T,, n<1, we give conditions on the underlying distribution of the process, for T =
(T4, ..., T,) to be in some of the previous multivariate classes. First, we describe the
structure of a typical history up to time ¢ for T =(T\,...,T,). Since
T'<T,<---<T, as., we see that the set I of failed components in T should be of
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the form 7 = {1,2, ...,m}. Therefore
ht = [Tl =1, ... Tm = lm>T{m+1

.....

where £ < --- <t,,<t. Next, we give a theorem in which we state conditions under
which the random vector of the first # epoch times is MIFR.

Theorem 3.5. Let T,,, n=1 be the epoch times of a nonhomogeneous Poisson process,
with underlying distribution F as above. If X is random variable with distribution F and
X is IFR then T = (T}, ..., T,) is MIFR, for all n>1.

Proof. Let us suppose that X is IFR. To prove that T = (77, ..., T,,) is MIFR we
will prove condition (2.3). We see first how to describe the histories h/[o“y] and
h[Oa”] (—Bh/[;’,t’+s]'

As stated above h’m]

hfo,s] ={T; =s;,T;>se}, where I = {1,2,...,m}.

is of the form

On the other hand we have in (2.3) hfo <h! where

[0 +s]

1. €., 0[/1’1/

0. <N,

[ ¢ +s]?
Ochig g = {Tr =sr+ e, T;>(s+ {)e}.

Since /7 05 S h! [v.01y> €very component which is alive at time ' in h’[;,‘t, 4y is also alive
at time ¢ in H,rh[o 1, and every component which has failed in 0,/h{0_s] also failed in

h//

(1 +9] must be of the form

and in A’ it failed earlier than in 0,//1 ,le.,

[, 1 +s] [, 1 +s]

Wy pyg =A{Ts =t;, Ty> (s +1)e}, where J = {1,27 e’}
and m<m' and t; <s; + fe.

It is also seen that in /i 4 there is no failure.
Therefore, by the previous considerations and (2.6),

re(s+u) if k=m+1,

2 hoq) =
k(s + ulhy 3) {0 if k>m+ 1
and
(s u) i k=m'+1,
;Lc l/ h g h//// =
it + s+ ulhp . @hy . g) {0 if k>m' + 1.

To prove (2.3), we observe that k must satisfy k=m’ + 1(=m + 1).
Let us suppose m’ >m. If k = m’' + 1, then

2(t + s+ ulhp @ hjy pg) = 1r(F + s+ u) =0 = (s + ully )
and, if k>m' + 1,

2ae(t+ s+ ulhp i @ hy 1) = 0 = Ax(s + ulhy )
so (2.3) holds.
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Let us suppose m’ = m. If k = m’ + 1, then
2a(t + s+ ulhp  @hjy 1 g) = 1r(C + s+ u)Zre(s +u) = Ae(s + ulhy g),
and, if k>m' + 1,
2ae(t+ s+ ulhpo ) @ Hy ) = 0 = Ax(s + ulhly ),

where the inequality follows since X is IFR, so (2.3) holds. [

Now we proceed to give conditions for the MPF; property. To obtain the result
we make the stronger assumption of the logconcavity of the intensity function. This
property has been studied in [26], where properties and examples of distributions
with that property are given. One of the properties that they proved is that for a
random variable X, with density f and failure rate r, the following implication holds

r is logconcave = f is logconcave. (3.8)

Theorem 3.6. Let T,,, n=1 be the epoch times of a nonhomogeneous Poisson process,
with intensity r. If r is logconcave then T = (T4, ..., T,) is MPF,, for all n>1.

Proof. Let us suppose that r is logconcave. Given a history i, = {T; = t;, T;>te},
where I = (1,...,m) we want to prove [(T — te)"|h,] <, T. Let us observe that the
density of [(Ty,11, .y — te)"|h] is given by

.....

S Xty ooy Xp) = %r(xmﬂ + 1) r(xum1 + Of (xn + 1), (3.9)

for Xm+1 < S Xpe

In this case we compare two random vectors of different dimension in the
likelihood ratio order, and this case will be treated as in [34, p. 132].

Considering x; < --- <x, and y, 41 < -+ <y, and >0, by (2.5) and (3.9) we want to
prove that

r(xl)"'r(xnfl)f(xn) %V(ymﬂ + Z) "'V(ynq + Z)f(yn + l)
<r(oen) - 1 (em ) r (X1 ¥ Yt ) -7 (X1 V Yne1)f (Xn v Yn)
x F;l)r«xml A1)+ 0 (ot A1) + 0F (%a Apa) +1) (3.10)
which is equivalent to prove that
r(xm+l)"'r(xn71)f(xn) %r()ﬂwrl + Z) "'r<yn71 + t)f(yn + t)

<r(xm+l Vym+1) (xn 1V Vn— l)f(xnvyn)

x %ruxmﬂ i)+ 1) H (ot Avat) + OF (%o apn) + 1), (311)
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Leti=m+1,...,n— 1, next we prove that

r(x)r(vi + ) <r(xivy)r((xiapi) + ). (3.12)
If x;>y;, then clearly (3.12) holds. If x; <y; then (3.12) is equivalent to

r(x)r(yi +6) <r(yi)r(x; + 1),

which holds since r is logconcave.
Now we prove that

S ) W+ O (xa v yu)f ((Xu Apn) 4 1). (3.13)

Let us suppose that x, >y, then (3.13) holds trivially. On the other hand if x, <y,
then (3.13) is equivalent to

SCn)f n + ) <f (n)f (xn +2)

which holds since, by (3.8), X is PF,. Now by (3.12) and (3.13), inequality (3.11) is
true. Therefore (3.10) holds. [

As we have mentioned in Section 2 any MPF, random vector is also MTP, and
any MIFR random vector is also HIF. As mentioned by Shaked and Shanthikumar
[32] these are sufficient conditions for the WBF and SL notions which, roughly
speaking, mean that upon occurrence of an event there is a stochastic decrease in the
residual time until the next event. The MTP, and HIF properties are also sufficient
conditions for the association property (see [14,32]).

Definition 3.7. Given a random vector X = (X1, ..., X,), we say that X7, ..., X, are
associated if

Cou[f/(X),9(X)]=0

for all nondecreasing functions f* and g for which E[f(X)], E[g(X)], E[f(X)g(X)]
exist.

Therefore the logconcavity or the increasingness of the intensity, r, are sufficient
conditions for the association of the first n epoch times of the corresponding
nonhomogeneous Poisson process. However this result holds with no assumption on
the intensity. The argument is the following. If we consider two processes with the
same intensity then by Theorems 3.3 and 3.6 in [6] we obtain the HIF and MTP,
properties of the first n epoch times of NHPP. In case 77, ..., T, are associated a
useful consequence is that (see [14])

n
P[Ty>1, ..., T,>0]> [ [ PITi>1).
i=1

This is of interest because in some situations P[T;>1;] can be bounded by the
survival function of some well-known models. For example if F(f)>e * from
Shaked and Szekli [36] and Belzunce et al. [6], we get that T, =S, for all n>1 where
S, follows a gamma distribution with shape parameter 1/ and scale parameter n.
Therefore P[T\>1y, ..., T, >t,] > [[/_; P[Si>1;]. A situation where F(t)>e* is the
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case in which the intensity of the nonhomogeneous Poisson process is bounded from
above by A.

We mention that Pellerey et al. [26] have proved Theorem 3.6 in the univariate
case.

As we have mentioned in the introduction the epoch times of nonhomogeneous
Poisson processes have been applied in different contexts. Examples of these
applications can be seen in [3,13]. More recently, Kuo and Yang [21] show that
epoch times of nonhomogeneous Poisson processes are appropriate to model the
failure times in software testing. The most common parametric model is the Weibull
distribution with intensity r(¢) = f¢* (see [13]). Musa and Okumoto [24] consider the
process with rate r(t) = a/(t + ) (Pareto distribution). Cox and Lewis [12] process
has rate r(¢) = exp(o + fi¢) (extreme value distribution). All these models have a
logconcave intensity as can be seen in [26], where other examples are shown.

3.2. Epoch times of nonhomogeneous pure birth processes

In this section we extend the previous results to the epoch times of
nonhomogeneous pure birth processes. Since in most cases the proofs are similar
we just outline the proof of some of them.
Theorem 3.8. Let T,, n=1 be the epoch times of a nonhomogeneous pure birth
process, with intensities {r,},,. If ry is increasing for alln=1 then T = (T, ..., Ty) is

MIFR.

Proof. The proof is similar to the proof of Theorem 3.5. To prove that T =
(T, ..., T,) is MIFR we will prove condition (2.3). As in Theorem 3.5 we have that

, Fmp1(s+u) if k=m+1,
Aals + ulliq) = {0 it k>m+ 1
and

, " )+ stu) i k=m'+1,
;Lk(t + 5+ T/I|h[o7[/] @h[[/,[/+s]) = {0 1f k>m, 4 1
The proof follows similar steps to the proof of Theorem 3.5. [

Theorem 3.9. Let T,, n=1 be the epoch times of a nonhomogeneous pure birth
process, with intensities {r,},~,. If r; is logconcave, and if

riy1(x) — rj(x) is decreasing in x>0 (3.14)

forj=1,then T = (T, ..., T,) is MPF,.
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Proof. Following similar steps to Theorem 3.6 we have to prove that

1 n—1 ( ) n—1 F(y/ )
E,m(z)g”")pﬂ( 57/ () II W/H)mf (o + 1)

Jj=m+1
n—1 i —
F x,vy,
ri(x; v ;) (x;Ay;) +1)
m+l r!: 7 ! +l x]\/y] ]I;ILI ! ’
Fi((xApy) +
= n(Xn AYn) +1)
F/+1((X_//\y./)+l7f S

which is equivalent to prove that

n—1 n—1 =
T 7o) o) TT 402290 40

j=m+1 EH( X)) j=m+1 +1)
n—1 _

i(x;v )
> [ ntov) F. : vj H ((xj A 27) +1)
j=m1 105V Y7)

Fi((gny) +1)
Fia((xjnyp) +1)
Note that condition (3.14) is equivalent to

Jo(XnAyn) +1).

Fj(x)
F
ﬂ is increasing in ¢>0.
Fi(x+1)
Fii(x+1)
Now we prove that forj:m+1,...,n—1
Fi(x)) Fi(yj +1)
ri(x) =S 10+ )5 fa(n + 1)
P E () Ea (vt )
Fi(x;vy)) Fi((xjny)) +1)
Z2ri(x;vy;) =———ri((xjAy;) +t .
A e KA RPN

(3.15)

(3.16)

(3.17)

(3.18)

If x; > y; the result is trivial and for x; <y; then (3.18) holds by the logconcavity of ;

and by (3.17). The proof of
Sn(X)fnn + 1) = fu (X v Y )fu(Xn AYR) + 1),

follows as in Theorem 3.6. Therefore inequality (3.16) is true and (3.15) holds. [

4. Applications

In this section we mention two applications of previous results for /,,-spherical
densities and generalized order statistics. Some other applications for generalized

Yule birth processes and load sharing models are easy to obtain (see [6]).
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4.1. I, -spherical densities

Recently, Shaked et al. [35] highlight the relationship between /. -spherical
densities of the form

(4.19)

Ylxn) i 0 <o <o <,
g(x1,Xx2, ..y Xn) =

0 otherwise,
for some nonnegative function y, and nonhomogeneous pure birth processes.
They prove (Theorem 4.2) that given a random vector (X7, X2, ..., X,;) with a joint

density of the form (4.19) then there exists a nonhomogeneous pure birth process
whose first epoch times (77, T», ..., T,) satisfy

(T17T27 ...,Tn) st (X17X2a "'7&1)-

Also they prove (Theorem 4.3) that in such case if f; and F;, are the density and

survival functions corresponding to the intensities r;, i =1,2,...,n of the
nonhomogeneous pure birth process, then
Fii(x
fi(x):L(), x>0, i=1,2,....n—1,
mit1

where mi .y = [,” Fi(x)dx, i=1,2,...,n.

Next we see whether the conditions of Theorems 3.8 and 3.9 holds, for this
nonhomogeneous pure birth process.

In Theorem 3.8 we need the intensities to be increasing. In this case the intensities
are given by

)2
ri(x) :L_(x), x=0, i=1,2,....n—1
mi 1 Fi(x)
and
_ (%)
rn(x) - F‘vn<x)a =Y.
Therefore we need r, to be increasing and F; <y F;y, fori=1,2,....n—1.
In Theorem 3.9 we need r;, i = 1,2, ...,n to be logconcave. This is equivalent to
riv1 — r; be decreasing for i =1,2,...,n— 1 and to r, be logconcave. Under these

conditions we get the MPF, property of g(xj, x2, ..., X,).
4.2. Generalized order statistics

Kamps [19] introduces the concept of generalized order statistics, to provide a
unified approach to several models of random vectors with ordered components.

Definition 4.10. Let neN, k=1, my,....m, 1eR, M, = Z;:,l m;, 1<r<n—1, be
parameters such that 9y, =k+n—r+ M,=>21 for all rel,....n—1, and
let mwi=(my,...,my_1), if n=2 (MmeR arbitrary, if n=1). We call uniform
generalized order statistics to the random vector (U ks ---> Unnyiik)) With joint
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density function

on the cone O0<u;<---<u,<l. Now given a distribution function F we call
generalized order statistics based on F to the random vector

(X(l,n,iﬁ,k)a EEEX) X(n.n,n%k)) = (F71 (U(l,nyﬁ,k))a EEER) F71 ( U(n,nﬁrﬁ.k)))'

If F is an absolutely continuous distribution with density f, the joint density
function of (X(1 k), ---» X(unsmik)) 1S given by

n—1 n—1
S, x) =k <H y,) 11 F(x;)””f(x;)) Flon) U () (4.20)
j=1 =1

on the cone F~1(0)<x < -+ <x, <F ().

Several models of ordered random variables are included in this model.

Taking m; =0 for all i=1,...,n—1 and k=1 we get order statistics
from a distribution F and taking m; = —1 for all i=1,...,.n—1 and keZ,
we get first n k-record values from a sequence of random variables with distri-
bution F. Another interesting model contained in the model of generalized order
statistics, is the model of order statistics under multivariate imperfect repair (see
[7,16,31]).

In a distributional theoretical sense generalized order statistics are contained in the
model of epoch times of a NHPB process. Consider generalized order statistics based
on F with failure rate r and parameters k, n and M,, r=1,...,n— 1 then

(X(l,n,ifz,k)v ~~-aX(nJ1,n%k)) st (Tlv ceey Tn)a
where T; are the epoch times of a NHPB process with intensities r; = (k+n — i+
Myr,fori:1,.. n
Through this relationship and from Theorems 3.8 and 3.9 it is possible to get the
following result.

Theorem 4.11. Let X be a random variable with hazard rate r and distribution function
F, and let X = (X1 ppijc)s > Xnnsink)) be a random vector of generalized order
statistics based on F. If

(a) r is increasing then X = (X(1 nsiij), ---» X(nnyiije)) 18 MIFR.
(b) r is logconcave then X = (X(1 pyije)s - Xnnyinke)) i MPF;.

Proof. Condition (a) is obvious from Theorem 3.8.
Condition (b) follows from Theorem 3.9 and from the fact that the logconcavity of r
implies the logconcavity of the density function of X and therefore r is increasing. [

Result (b) can be improved when all the m; are nonnegative. In fact it is not
difficult to prove the following theorem.
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Theorem 4.12. Let X be an absolutely continuous random variable with density
function [ and distribution function F, and let X = (X(1k)s > Xuniik)) be a
random vector of generalized order statistics based on F. If m;=0 for all i=
1,...,n—1, and f is logconcave then X = (X pjiic)s -+ > Xtnnsiik)) is MPF;.

Remark 4.13. From Theorems 4.11(a) and 4.12, we get as a particular case
Theorems 3.1 and 3.2 by Belzunce et al. [9].
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