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Abstract

The purpose of this paper is to give conditions on the parameters of nonhomogeneous

Poisson and nonhomogeneous pure birth processes, under which the corresponding random

vector of the first n epoch times has some multivariate stochastic properties. These results

provide an inside to understand the effect of the time over the occurrence of events in such

processes. Some applications of these results are given.
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1. Introduction

Nonhomogeneous processes are of great interest in applied probability. Epoch
times of nonhomogeneous Poisson processes correspond to the times of repair of a
unit which is being minimally repaired (see [3]), where by minimal repair we mean
that the unit is restored to a working condition just prior to the failure. Also epoch
times of nonhomogeneous Poisson processes are the consecutive record values of a
sequence of independent and identically distributed nonnegative random variables
(see, for example, [15]).
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Nonhomogeneous Poisson processes can be extended to nonhomogeneous pure
birth processes. Applications of this general model in insurance, reliability theory,
epidemiology and load-sharing models can be seen in [6,17,26].

Therefore, it is of interest to study stochastic properties of epoch times of
nonhomogeneous processes. In the literature there are several papers which
study aging notions of epoch times under conditions on the parameters
of the nonhomogeneous process. Gupta and Kirmani [15] give conditions
under which the epoch times of a nonhomogeneous Poisson processes are
IFR, IFRA and NBU and Pellerey et al. [26] give conditions for the logcon-
cavity of the density function of epoch times. Other results about stochastic
comparisons of epoch times have been given, recently, by Belzunce et al. [5],
Belzunce et al. [6], Belzunce and Ruiz [8] and Belzunce and Shaked [10]. However
when we consider a single nonhomogeneous process we are more interested about
the occurrence of events when time is going on. In this paper we study stochastic
properties of the random vector of the first n epoch times, which describe the effect of
time on the occurrence of events, also some other consequences are described
through the paper.

The organization of this paper is as follows. In Section 2 we will give the
definitions and some properties of the multivariate stochastic notions that we
will study through the paper. Also we will introduce nonhomogeneous Poisson
and nonhomogeneous pure birth processes. Later in Section 3 we will give conditions
on the parameters of nonhomogeneous Poisson and pure birth processes under
which the random vector of the first n epoch times has some of the multivariate
stochastic properties given in Section 2. Examples of processes which satisfy these
conditions are given. To finish in Section 4 we consider some applications of these
results.

In this paper ‘‘increasing’’ and ‘‘decreasing’’ mean ‘‘nondecreasing’’ and
‘‘nonincreasing,’’ respectively. The notation ¼st stands for equality in law. Also

given a random variable X with distribution function F ; %F � 1� F denotes the
survival function.

2. Preliminaries on multivariate classification and nonhomogeneous processes

In reliability theory it has been found useful to classify univariate distributions
according to the process of aging. These univariate classifications have been
extended to a multivariate setting in several ways. Some of these extensions can be
seen in [11,18,23,27–29]. Although these extensions are of mathematical interest, not
all are based on physical considerations. Arjas [1] and Shaked and Shanthikumar
[33] provide new extensions, not just technical but from a dynamic point of view.
Next we introduce the notation needed to give the multivariate aging notions given
by Arjas [1] and Shaked and Shanthikumar [33]. In what follows, the vector of ones
will be denoted by e; and the dimension of e is always possible to determine from the
expression in which appears. Also given two vectors x ¼ ðx1;y; xnÞ and y ¼
ðy1;y; ynÞ; we denote xpy; if xipyi for i ¼ 1;y; n:
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Let T ¼ ðT1;y;TnÞ be a nonnegative random vector with an absolutely
continuous distribution function. The coordinates, Ti; can be considered as lifetimes
of n devices or times of failure of n processes. In this paper these will be the times in
which a series of n events occurs. Through the paper we will use indistinctly these two
interpretations. For tX0 let ht denotes the list of devices (events) which have failed
(occurred) and their failure (occurrence) times. More explicitly, a history ht will
denote

ht ¼ fTI ¼ tI ;T %I4teg;

where I ¼ fi1;y; ikg is a subset of f1;y; ng; %I is its complement with respect to
f1;y; ng; TI will denote the vector formed by the components of T with index in I

and 0otijot for all j ¼ 1;y; k: For every vector x ¼ ðx1;y; xnÞ denote by xþ the

vector xþ � ðxþ
1 ;y; xþ

n Þ; where xþ ¼ 0 if xo0 and xþ ¼ x if xX0: Now given a

history ht; we consider the random vector, ½ðT� teÞþjht�; of residual lifetimes of the
components of T given ht; where, for any event A the notation ½X jA� stands for any
random variable whose distribution is the conditional distribution of X given A: This
concept extends to a multivariate setting the concept of residual lifetime of a random
variable T given by ½T � tjT4t�:

Next, we recall the definitions of some multivariate partial orders, which will be
used to state multivariate aging notions (see [34]).

Definition 2.1. Let T and S be two n-dimensional random vectors with density
functions fT and fS; respectively. We say that T is less than S in the multivariate
likelihood ratio order (denoted by T plr SÞ; if (below 4 and 3 denote, respectively,
the minimum and the maximum operations)

fTðx1; x2;y; xnÞfSðy1; y2;y; ynÞ

pfTðx14y1; x24y2;y; xn4ynÞfSðx13y1; x23y2;y; xn3ynÞ
for all ðx1; x2;y; xnÞ and ðy1; y2;y; ynÞ in Rn:

Now we proceed to give the definition of the multivariate hazard rate order. Given

the history ht; as above, let iA %I; its multivariate conditional hazard rate, at time t; is
defined as follows:

liðtjtI Þ ¼ lim
Dt-0þ

1

Dt
P½toTipt þ Dtjht�:

It is clear that liðtjtI Þ is the probability of instant failure of component i; given the
history ht:

Definition 2.2. Let T and S be two n-dimensional random vectors with hazard rate
functions Z�ð�j�Þ and l�ð�j�Þ; respectively. We say that T is less than S in the
multivariate hazard rate order (denoted by T phr SÞ; if

ZiðujsI,JÞXliðujtI Þ

whenever I-J ¼ |; 0psIptIpue; and 0psJpue; where iAI,J:
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In the univariate case given two nonnegative random variables X and Y with
distribution functions F and G; respectively, then X is said to be less than Y in the

hazard rate order (denoted by XphrY or FphrG) if %FðtÞ %GðsÞp %FðsÞ %GðtÞ for all sot:
As can be seen in [34] the multivariate likelihood ratio order is stronger than the

multivariate hazard rate order, that is,

TplrS ) TphrS: ð2:1Þ

Now we proceed to recall the definition of the multivariate aging classes that will
be studied in this paper. The definition of these multivariate notions, is also
motivated by some characterizations of the corresponding notions in the univariate
case (see [34]).

First, we give the multivariate extension of univariate PF2 distributions given by
Shaked and Shanthikumar [33].

Definition 2.3. Let T be a nonnegative random vector. We say that T is multivariate
Polya frequency of order 2 (denoted by T is MPF2) if

½ðT� teÞþjht�plrT

for any history ht; tX0:

In the univariate case, a random variable T ; with support ð0;þNÞ; is MPF2

(denoted by T is PF2), if

f ðx þ yÞ
f ðyÞ is decreasing in y; for any xX0;

where f is the density of T : Clearly, from Definition 2.3, if T is MPF2 then TplrT;
that is, T is multivariate totally positive of order 2 ðMTP2Þ (see [20]). Some
interesting consequences of MTP2 property are that T1;y;Tn are associated in the
sense of Esary et al. [14] and the conditional monotone regression endowment by
Lehman [22].

Next, we give the multivariate extension of increasing failure rate (IFR)
distributions given by Shaked and Shanthikumar [33].

Definition 2.4. Let T be a nonnegative random vector. We say that T is multivariate
increasing failure rate (denoted by T is MIFR) if

½ðT� teÞþjht�phrT ð2:2Þ

for any history ht; tX0:

Condition (2.2) can be written in a different way under the following notation. For
sot let h½s;t� denote an event which describes which components are alive at time s;

and the components which failed during the time interval ½s; t� and their failure times.
Therefore ht can be written as h½0;t�: Now for sot and uX� s denote by yuh½s;t� the

history on the time interval ½s þ u; t þ u� which is obtained from h½s;t� by adding u to
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each failure time in h½s;t�; but without changing the identities of the failed components

and without adding or deleting any failure.
We will need also to compare the ‘severity’ of two histories of the same length over

different time intervals. First given two histories h½s;t� and h0
½s;t� we will write h½s;t�ph0

½s;t�
if every component which is alive at time s in h0

½s;t� is also alive at time s in h½s;t�; and if

each component which failed in h½s;t� also failed in h0
½s;t� and in h0

½s;t� failed earlier than

in h½s;t�: Let h½s;t� and h0
½sþu;tþu� be two histories we will write h½s;t�ph0

½sþu;tþu� if

yuh½s;t�ph0
½sþu;tþu�:

Finally, for 0psotou; let h½s;t� and h0
½t;u� be two histories such that the set of

components which are alive at time t in h½s;t� is the same as the set of components

which are alive at time t in h0
½t;u�: Then by h½s;t�"h0

½t;u� we denote the history which has

at time s the same set of live components as h½s;t� has at time s; and which describes

failures of components and their identities on ½s; t� as h½s;t� and on ½t; u� as h0
½t;u�:

With this notation condition (2.2) can be written (see [33]) as follows: For
sX0; t0X0; uX0;

lkðs þ ujh0
½0;s�Þplkðt0 þ s þ ujh½0;t0�"h00

½t0;t0þs�Þ ð2:3Þ

whenever h0
½0;s�oh00

½t0;t0þs� and whenever k is a component which is alive at time s in

h0
½0;s� and at time t0 þ s in h½0;t0�"h00

½t0;t0þs�:

In the univariate case, T is MIFR (denoted by T is IFR) if the failure rate

rðxÞ ¼ f ðxÞ= %FðxÞ is increasing in x; where f and %F are the density and survival
functions of T : Clearly if X is MIFR, then XphrX; that is X has the positive
dependence property of ‘‘hazard increasing upon failures’’ (HIF) given by Shaked
and Shanthikumar [32]. The HIF property is a sufficient condition for other notions
of dependence as the ‘‘supportive lifetimes’’ (SL) and ‘‘weakened by failure’’ (WBF)
notions (see [2,25,32]).

Arjas [1] proposed other possible multivariate extension of the IFR property,
given by the condition

½ðT� t0eÞþjht0 �pst½ðT� teÞþjht�

for all tpt0 and whenever ht and ht0 coincide on ½0; tÞ: As can be seen in [33] condition
(2.3) is stronger than the MIFR notion by Arjas [1].

From the definitions, (2.1) and the previous comments we get the following
relationships between the multivariate notions defined above:

T is MPF2 ) T is MIFR

+ +
T is MTP2 ) T is HIF

The main objective of this paper is to study the previous notions when the
components of the random vector are the first n epoch times of certain
nonhomogeneous processes. These properties describe the effect of passing time
over the occurrence of events. Some other consequences about association properties
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are given through the paper. First, we will consider epoch times of nonhomogeneous
Poisson processes and then the results will be extended to the more general case of
nonhomogeneous pure birth processes. Next, we describe such processes.

A counting process fNðtÞ; tX0g is a nonhomogeneous Poisson process with
intensity (or rate) function rX0 if

(a) fNðtÞ; tX0g has the Markov property;
(b) PfNðt þ DtÞ ¼ n þ 1jNðtÞ ¼ ng ¼ rðtÞDt þ oðDtÞ; nX1;
(c) PfNðt þ DtÞ4n þ 1jNðtÞ ¼ ng ¼ oðDtÞ; nX1:

We assume thatZ
N

t

rðuÞ du ¼ N for all tX0; ð2:4Þ

this ensures that with probability 1 the process has a jump after any time point t: For
convenience, if rðt0Þ ¼ N for some t0 then we define rðtÞ ¼ N for tXt0:

A nonnegative function r which satisfies (2.4) can be interpreted as the hazard rate
function of a lifetime of an item. More explicitly, if r satisfies (2.4) and we define f by

f ðtÞ ¼ rðtÞe�
R t

0
rðuÞ du ¼ rðtÞe�RðtÞ; tX0;

where RðtÞ �
R t

0 rðuÞ du; then f is a probability density function of a lifetime X ; in

fact, f is the probability density function of the time of the first epoch of the
underlying nonhomogeneous Poisson process. Let X be a random variable with
density f ; and let its distribution be called the underlying distribution of the
nonhomogenous Poisson process with rate rðtÞ: As we have mentioned in Section 1
epoch times of nonhomogeneous Poisson processes are the repair times of a unit
which is continuously being minimal repaired. Therefore it is of interest to study
stochastic properties of the vector of repair times.

Let 0 � T0pT1pT2p? be the epoch times of the nonhomogeneous Poisson
process. Then the density function of T ¼ ðT1;y;TnÞ is given by

hnðx1; x2;y; xnÞ ¼ rðx1Þrðx2Þ?rðxn�1Þf ðxnÞ for x1px2p?pxn: ð2:5Þ
It is noted also that

½Tiþ1jT1 ¼ t1;y;Ti ¼ ti� ¼st ½X jX4ti�; iX1: ð2:6Þ
The following extension of the nonhomogeneous Poisson process will also be

studied in this paper. Let rn; nX1; be nonnegative functions that satisfy (2.4). A
counting process fNðtÞ; tX0g is a nonhomogeneous pure birth process with intensity
(or rate) functions rnX0 if

(a) fNðtÞ; tX0g has the Markov property;
(b) PfNðt þ DtÞ ¼ n þ 1jNðtÞ ¼ ng ¼ rnðtÞDt þ oðDtÞ; nX1;
(c) PfNðt þ DtÞ4n þ 1jNðtÞ ¼ ng ¼ oðDtÞ; nX1:

Nonhomogeneous pure birth processes are called ‘relevation counting processes’ in
[26], where some applications of them in reliability theory are described. When all the
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rn’s are identical, a nonhomogeneous pure birth process reduces to a nonhomoge-
neous Poisson process. These epoch times can be applied in different contexts, apart
from reliability theory. When rnðtÞ ¼ ðn þ 1Þl; where l40; we have a Yule birth
process, which can be generalized to the case rnðtÞ ¼ ðn þ 1ÞlðtÞ: A generalized Yule
birth process may model the spread of a disease where n is the number of infectives,
and lðtÞ is the rate in which infectives pass the disease to new individuals at time t;
this rate, in general, may depends on the calendar time t (see [4]). Another
application is in load-sharing models (see [30]). See [6] for a discussion of these
applications.

Let 0 � T0pT1pT2p? be the epoch times of the above nonhomogeneous pure
birth process. We will describe now a useful stochastic representation of these epoch
times. Consider a set of independent absolutely continuous nonnegative random
variables fYn; nX1g; with corresponding hazard rate functions rn; nX1: Define,
recursively,

T̂1 ¼ Y1;

T̂n ¼ ½YnjYn4T̂n�1�; nX2;

then it is not difficult to verify that the joint distribution of ðT̂1;y; T̂nÞ is the same as

the joint distribution of ðT1;y;TnÞ: Now denote by %Fn and fn the survival and the
density functions of Yn; then the joint density of T ¼ ðT1;y;TnÞ is given by

hðx1; x2;y; xnÞ ¼
Yn�1

j¼1

fjðxjÞ
%Fjþ1ðxjÞ

fnðxnÞ for x1px2p?pxn: ð2:7Þ

Next, in Section 3, we describe conditions on the parameters of nonhomogeneous
(Poisson and pure birth) processes to classify the random vector of the first n epoch
times in some of the previous multivariate aging classes.

3. Multivariate aging properties of epoch times

In this section we proceed to give conditions on the parameters of nonhomoge-
neous Poisson and pure birth processes, to get that the random vector of the first n

epoch times has some of the multivariate stochastic properties given in the previous
section. We will distinguish epoch times of nonhomogeneous Poisson processes and
nonhomogeneous pure birth processes.

3.1. Epoch times of nonhomogeneous Poisson processes

In this section given a nonhomogeneous Poisson process with epoch times
Tn; np1; we give conditions on the underlying distribution of the process, for T ¼
ðT1;y;TnÞ to be in some of the previous multivariate classes. First, we describe the
structure of a typical history up to time t for T ¼ ðT1;y;TnÞ: Since
T1pT2p?pTn a.s., we see that the set I of failed components in T should be of

F. Belzunce et al. / Journal of Multivariate Analysis 84 (2003) 335–350 341



the form I ¼ f1; 2;y;mg: Therefore
ht ¼ ½T1 ¼ t1;y;Tm ¼ tm;Tfmþ1;y;ng4te�;

where t1o?otmot: Next, we give a theorem in which we state conditions under
which the random vector of the first n epoch times is MIFR.

Theorem 3.5. Let Tn; nX1 be the epoch times of a nonhomogeneous Poisson process,
with underlying distribution F as above. If X is random variable with distribution F and

X is IFR then T ¼ ðT1;y;TnÞ is MIFR; for all nX1:

Proof. Let us suppose that X is IFR. To prove that T ¼ ðT1;y;TnÞ is MIFR we
will prove condition (2.3). We see first how to describe the histories h0

½0;s� and

h½0;t0 �"h00
½t0;t0þs�:

As stated above h0
½0;s� is of the form

h0
½0;s� ¼ fTI ¼ sI ;T %I4seg; where I ¼ f1; 2;y;mg:

On the other hand we have in (2.3) h0
½0;s�ph00

½t0;t0þs�; i.e., yt0h
0
½0;s�ph00

½t0;t0þs�; where

yt0h
0
½0;s� ¼ fTI ¼ sI þ t0e;T %I4ðs þ t0Þeg:

Since h0
½0;s�ph00

½t0;t0þs�; every component which is alive at time t0 in h00
½t0;t0þs� is also alive

at time t0 in yt0h
0
½0;s�; and every component which has failed in yt0h

0
½0;s� also failed in

h00
½t0;t0þs� and in h00

½t0;t0þs� it failed earlier than in yt0h
0
½0;s�; i.e., h00

½t0;t0þs� must be of the form

h00
½t0;t0þs� ¼ fTJ ¼ t0J ;T %J4ðs þ t0Þeg; where J ¼ f1; 2;y;m0g

and mpm0 and t0IpsI þ t0e:
It is also seen that in h½0;t0 � there is no failure.

Therefore, by the previous considerations and (2.6),

lkðs þ ujh0
½0;s�Þ ¼

rF ðs þ uÞ if k ¼ m þ 1;

0 if k4m þ 1

(

and

lkðt0 þ s þ ujh½0;t0 �"h00
½t0;t0þs�Þ ¼

rF ðt0 þ s þ uÞ if k ¼ m0 þ 1;

0 if k4m0 þ 1:

(

To prove (2.3), we observe that k must satisfy kXm0 þ 1ðXm þ 1Þ:
Let us suppose m04m: If k ¼ m0 þ 1; then

lkðt0 þ s þ ujh½0;t0 �"h00
½t0;t0þs�Þ ¼ rF ðt0 þ s þ uÞX0 ¼ lkðs þ ujh0

½0;s�Þ

and, if k4m0 þ 1;

lkðt0 þ s þ ujh½0;t0 �"h00
½t0;t0þs�Þ ¼ 0 ¼ lkðs þ ujh0

½0;s�Þ

so (2.3) holds.
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Let us suppose m0 ¼ m: If k ¼ m0 þ 1; then

lkðt0 þ s þ ujh½0;t0 �"h00
½t0;t0þs�Þ ¼ rF ðt0 þ s þ uÞXrF ðs þ uÞ ¼ lkðs þ ujh0

½0;s�Þ;

and, if k4m0 þ 1;

lkðt0 þ s þ ujh½0;t0 �"h00
½t0;t0þs�Þ ¼ 0 ¼ lkðs þ ujh0

½0;s�Þ;

where the inequality follows since X is IFR, so (2.3) holds. &

Now we proceed to give conditions for the MPF2 property. To obtain the result
we make the stronger assumption of the logconcavity of the intensity function. This
property has been studied in [26], where properties and examples of distributions
with that property are given. One of the properties that they proved is that for a
random variable X ; with density f and failure rate r; the following implication holds

r is logconcave ) f is logconcave: ð3:8Þ

Theorem 3.6. Let Tn; nX1 be the epoch times of a nonhomogeneous Poisson process,
with intensity r: If r is logconcave then T ¼ ðT1;y;TnÞ is MPF2; for all nX1:

Proof. Let us suppose that r is logconcave. Given a history ht ¼ fTI ¼ tI ;T %I4teg;
where I ¼ ð1;y;mÞ we want to prove ½ðT� teÞþjht�plrT: Let us observe that the

density of ½ðTfmþ1;y;ng � teÞþjht� is given by

f ðxmþ1;y; xnÞ ¼
1

%FðtÞ rðxmþ1 þ tÞ?rðxn�1 þ tÞf ðxn þ tÞ; ð3:9Þ

for xmþ1p?pxn:
In this case we compare two random vectors of different dimension in the

likelihood ratio order, and this case will be treated as in [34, p. 132].
Considering x1p?pxn and ymþ1p?pyn and tX0; by (2.5) and (3.9) we want to

prove that

rðx1Þ?rðxn�1Þf ðxnÞ
1

%FðtÞ rðymþ1 þ tÞ?rðyn�1 þ tÞf ðyn þ tÞ

prðx1Þ?rðxmÞrðxmþ13ymþ1Þ?rðxn�13yn�1Þf ðxn3ynÞ

� 1

%FðtÞ rððxmþ14ymþ1Þ þ tÞ?rððxn�14yn�1Þ þ tÞf ððxn4ynÞ þ tÞ ð3:10Þ

which is equivalent to prove that

rðxmþ1Þ?rðxn�1Þf ðxnÞ
1

%FðtÞ rðymþ1 þ tÞ?rðyn�1 þ tÞf ðyn þ tÞ

prðxmþ13ymþ1Þ?rðxn�13yn�1Þf ðxn3ynÞ

� 1

%FðtÞ rððxmþ14ymþ1Þ þ tÞ?rððxn�14yn�1Þ þ tÞf ððxn4ynÞ þ tÞ: ð3:11Þ
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Let i ¼ m þ 1;y; n � 1; next we prove that

rðxiÞrðyi þ tÞprðxi3yiÞrððxi4yiÞ þ tÞ: ð3:12Þ
If xiXyi; then clearly (3.12) holds. If xioyi then (3.12) is equivalent to

rðxiÞrðyi þ tÞprðyiÞrðxi þ tÞ;
which holds since r is logconcave.

Now we prove that

f ðxnÞf ðyn þ tÞpf ðxn3ynÞf ððxn4ynÞ þ tÞ: ð3:13Þ
Let us suppose that xnXyn then (3.13) holds trivially. On the other hand if xnoyn

then (3.13) is equivalent to

f ðxnÞf ðyn þ tÞpf ðynÞf ðxn þ tÞ
which holds since, by (3.8), X is PF2: Now by (3.12) and (3.13), inequality (3.11) is
true. Therefore (3.10) holds. &

As we have mentioned in Section 2 any MPF2 random vector is also MTP2 and
any MIFR random vector is also HIF. As mentioned by Shaked and Shanthikumar
[32] these are sufficient conditions for the WBF and SL notions which, roughly
speaking, mean that upon occurrence of an event there is a stochastic decrease in the
residual time until the next event. The MTP2 and HIF properties are also sufficient
conditions for the association property (see [14,32]).

Definition 3.7. Given a random vector X ¼ ðX1;y;XnÞ; we say that X1;y;Xn are
associated if

Cov½f ðXÞ; gðXÞ�X0

for all nondecreasing functions f and g for which E½f ðXÞ�; E½gðXÞ�; E½f ðXÞgðXÞ�
exist.

Therefore the logconcavity or the increasingness of the intensity, r; are sufficient
conditions for the association of the first n epoch times of the corresponding
nonhomogeneous Poisson process. However this result holds with no assumption on
the intensity. The argument is the following. If we consider two processes with the
same intensity then by Theorems 3.3 and 3.6 in [6] we obtain the HIF and MTP2

properties of the first n epoch times of NHPP. In case T1;y;Tn are associated a
useful consequence is that (see [14])

P½T14t1;y;Tn4tn�X
Yn

i¼1

P½Ti4ti�:

This is of interest because in some situations P½Ti4ti� can be bounded by the

survival function of some well-known models. For example if %FðtÞXe�lt; from
Shaked and Szekli [36] and Belzunce et al. [6], we get that TnXstSn for all nX1 where
Sn follows a gamma distribution with shape parameter 1=l and scale parameter n:

Therefore P½T14t1;y;Tn4tn�X
Qn

i¼1 P½Si4ti�: A situation where %FðtÞXe�lt is the
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case in which the intensity of the nonhomogeneous Poisson process is bounded from
above by l:

We mention that Pellerey et al. [26] have proved Theorem 3.6 in the univariate
case.

As we have mentioned in the introduction the epoch times of nonhomogeneous
Poisson processes have been applied in different contexts. Examples of these
applications can be seen in [3,13]. More recently, Kuo and Yang [21] show that
epoch times of nonhomogeneous Poisson processes are appropriate to model the
failure times in software testing. The most common parametric model is the Weibull
distribution with intensity rðtÞ ¼ bta (see [13]). Musa and Okumoto [24] consider the
process with rate rðtÞ ¼ a=ðt þ bÞ (Pareto distribution). Cox and Lewis [12] process
has rate rðtÞ ¼ expðaþ btÞ (extreme value distribution). All these models have a
logconcave intensity as can be seen in [26], where other examples are shown.

3.2. Epoch times of nonhomogeneous pure birth processes

In this section we extend the previous results to the epoch times of
nonhomogeneous pure birth processes. Since in most cases the proofs are similar
we just outline the proof of some of them.

Theorem 3.8. Let Tn; nX1 be the epoch times of a nonhomogeneous pure birth

process, with intensities frngNn¼1: If rn is increasing for all nX1 then T ¼ ðT1;y;TnÞ is

MIFR:

Proof. The proof is similar to the proof of Theorem 3.5. To prove that T ¼
ðT1;y;TnÞ is MIFR we will prove condition (2.3). As in Theorem 3.5 we have that

lkðs þ ujh0
½0;s�Þ ¼

rmþ1ðs þ uÞ if k ¼ m þ 1;

0 if k4m þ 1

(

and

lkðt0 þ s þ ujh½0;t0 �"h00
½t0;t0þs�Þ ¼

rkðt0 þ s þ uÞ if k ¼ m0 þ 1;

0 if k4m0 þ 1:

(

The proof follows similar steps to the proof of Theorem 3.5. &

Theorem 3.9. Let Tn; nX1 be the epoch times of a nonhomogeneous pure birth

process, with intensities frngNn¼1: If rj is logconcave, and if

rjþ1ðxÞ � rjðxÞ is decreasing in xX0 ð3:14Þ

for jX1; then T ¼ ðT1;y;TnÞ is MPF2:
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Proof. Following similar steps to Theorem 3.6 we have to prove that

1

%Fmþ1ðtÞ
Yn�1

j¼1

rjðxjÞ
%FjðxjÞ
%Fjþ1ðxjÞ

fnðxnÞ
Yn�1

j¼mþ1

rjðyj þ tÞ
%Fjðyj þ tÞ
%Fjþ1ðyj þ tÞ fnðyn þ tÞ

X
1

%Fmþ1ðtÞ
Yn�1

j¼1

rjðxj3yjÞ
%Fjðxj3yjÞ
%Fjþ1ðxj3yjÞ

Yn�1

j¼mþ1

rjððxj4yjÞ þ tÞ

�
%Fjððxj4yjÞ þ tÞ
%Fjþ1ððxj4yjÞ þ tÞfnððxn4ynÞ þ tÞ ð3:15Þ

which is equivalent to prove that

Yn�1

j¼mþ1

rjðxjÞ
%FjðxjÞ
%Fjþ1ðxjÞ

fnðxnÞ
Yn�1

j¼mþ1

rjðyj þ tÞ
%Fjðyj þ tÞ
%Fjþ1ðyj þ tÞ fnðyn þ tÞ

X

Yn�1

j¼mþ1

rjðxj3yjÞ
%Fjðxj3yjÞ
%Fjþ1ðxj3yjÞ

Yn�1

j¼mþ1

rjððxj4yjÞ þ tÞ

�
%Fjððxj4yjÞ þ tÞ
%Fjþ1ððxj4yjÞ þ tÞ fnððxn4ynÞ þ tÞ: ð3:16Þ

Note that condition (3.14) is equivalent to

%FjðxÞ
%Fjþ1ðxÞ
%Fjðx þ tÞ
%Fjþ1ðx þ tÞ

is increasing in tX0: ð3:17Þ

Now we prove that for j : m þ 1;y; n � 1

rjðxjÞ
%FjðxjÞ
%Fjþ1ðxjÞ

rjðyj þ tÞ
%Fjðyj þ tÞ
%Fjþ1ðyj þ tÞ fnðyn þ tÞ

Xrjðxj3yjÞ
%Fjðxj3yjÞ
%Fjþ1ðxj3yjÞ

rjððxj4yjÞ þ tÞ
%Fjððxj4yjÞ þ tÞ
%Fjþ1ððxj4yjÞ þ tÞ: ð3:18Þ

If xjXyj the result is trivial and for xjoyj then (3.18) holds by the logconcavity of rj

and by (3.17). The proof of

fnðxnÞfnðyn þ tÞXfnðxn3ynÞfnððxn4ynÞ þ tÞ;

follows as in Theorem 3.6. Therefore inequality (3.16) is true and (3.15) holds. &

4. Applications

In this section we mention two applications of previous results for lN-spherical
densities and generalized order statistics. Some other applications for generalized
Yule birth processes and load sharing models are easy to obtain (see [6]).
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4.1. lN-spherical densities

Recently, Shaked et al. [35] highlight the relationship between lN-spherical
densities of the form

gðx1; x2;y; xnÞ ¼
cðxnÞ if 0px1px2p?pxn;

0 otherwise;

(
ð4:19Þ

for some nonnegative function c; and nonhomogeneous pure birth processes.
They prove (Theorem 4.2) that given a random vector ðX1;X2;y;XnÞ with a joint

density of the form (4.19) then there exists a nonhomogeneous pure birth process
whose first epoch times ðT1;T2;y;TnÞ satisfy

ðT1;T2;y;TnÞ ¼st ðX1;X2;y;XnÞ:

Also they prove (Theorem 4.3) that in such case if fi and %Fi; are the density and
survival functions corresponding to the intensities ri; i ¼ 1; 2;y; n of the
nonhomogeneous pure birth process, then

fiðxÞ ¼
%Fiþ1ðxÞ
miþ1

; xX0; i ¼ 1; 2;y; n � 1;

where miþ1 ¼
R
N

0
%Fiþ1ðxÞ dx; i ¼ 1; 2;y; n:

Next we see whether the conditions of Theorems 3.8 and 3.9 holds, for this
nonhomogeneous pure birth process.

In Theorem 3.8 we need the intensities to be increasing. In this case the intensities
are given by

riðxÞ ¼
%Fiþ1ðxÞ

miþ1 %FiðxÞ
; xX0; i ¼ 1; 2;y; n � 1

and

rnðxÞ ¼
fnðxÞ
%FnðxÞ

; xX0:

Therefore we need rn to be increasing and FiphrFiþ1; for i ¼ 1; 2;y; n � 1:
In Theorem 3.9 we need ri; i ¼ 1; 2;y; n to be logconcave. This is equivalent to

riþ1 � ri be decreasing for i ¼ 1; 2;y; n � 1 and to rn be logconcave. Under these
conditions we get the MPF2 property of gðx1; x2;y; xnÞ:

4.2. Generalized order statistics

Kamps [19] introduces the concept of generalized order statistics, to provide a
unified approach to several models of random vectors with ordered components.

Definition 4.10. Let nAN; kX1; m1;y;mn�1AR; Mr ¼
Pn�1

j¼r mj; 1prpn � 1; be

parameters such that gr ¼ k þ n � r þ MrX1 for all rA1;y; n � 1; and
let m̃ ¼ ðm1;y;mn�1Þ; if nX2 ðm̃AR arbitrary, if n ¼ 1). We call uniform
generalized order statistics to the random vector ðUð1;n;m̃;kÞ;y;Uðn;n;m̃;kÞÞ with joint
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density function

hðu1;y; unÞ ¼ k
Yn�1

j¼1

gj

 ! Yn�1

j¼1

ð1� ujÞmj

 !
ð1� unÞk�1

on the cone 0pu1p?punp1: Now given a distribution function F we call
generalized order statistics based on F to the random vector

ðXð1;n;m̃;kÞ;y;Xðn;n;m̃;kÞÞ � ðF�1ðUð1;n;m̃;kÞÞ;y;F�1ðUðn;n;m̃;kÞÞÞ:
If F is an absolutely continuous distribution with density f ; the joint density

function of ðXð1;n;m̃;kÞ;y;Xðn;n;m̃;kÞÞ is given by

f ðx1;y; xnÞ ¼ k
Yn�1

j¼1

gj

 ! Yn�1

j¼1

%FðxjÞmj f ðxjÞ
 !

%FðxnÞk�1
f ðxnÞ ð4:20Þ

on the cone F�1ð0Þpx1p?pxnpF�1ð1Þ:
Several models of ordered random variables are included in this model.
Taking mi ¼ 0 for all i ¼ 1;y; n � 1 and k ¼ 1 we get order statistics

from a distribution F and taking mi ¼ �1 for all i ¼ 1;y; n � 1 and kAZþ
we get first n k-record values from a sequence of random variables with distri-
bution F : Another interesting model contained in the model of generalized order
statistics, is the model of order statistics under multivariate imperfect repair (see
[7,16,31]).

In a distributional theoretical sense generalized order statistics are contained in the
model of epoch times of a NHPB process. Consider generalized order statistics based
on F with failure rate r and parameters k; n and Mr; r ¼ 1;y; n � 1 then

ðXð1;n;m̃;kÞ;y;Xðn;n;m̃;kÞÞ ¼st ðT1;y;TnÞ;
where Ti are the epoch times of a NHPB process with intensities ri ¼ ðk þ n � i þ
MiÞr; for i : 1;y; n:

Through this relationship and from Theorems 3.8 and 3.9 it is possible to get the
following result.

Theorem 4.11. Let X be a random variable with hazard rate r and distribution function

F ; and let X ¼ ðXð1;n;m̃;kÞ;y;Xðn;n;m̃;kÞÞ be a random vector of generalized order

statistics based on F : If

(a) r is increasing then X ¼ ðXð1;n;m̃;kÞ;y;Xðn;n;m̃;kÞÞ is MIFR.

(b) r is logconcave then X ¼ ðXð1;n;m̃;kÞ;y;Xðn;n;m̃;kÞÞ is MPF2:

Proof. Condition (a) is obvious from Theorem 3.8.
Condition (b) follows from Theorem 3.9 and from the fact that the logconcavity of r

implies the logconcavity of the density function of X and therefore r is increasing. &

Result (b) can be improved when all the mi are nonnegative. In fact it is not
difficult to prove the following theorem.
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Theorem 4.12. Let X be an absolutely continuous random variable with density

function f and distribution function F ; and let X ¼ ðXð1;n;m̃;kÞ;y;Xðn;n;m̃;kÞÞ be a

random vector of generalized order statistics based on F : If miX0 for all i ¼
1;y; n � 1; and f is logconcave then X ¼ ðXð1;n;m̃;kÞ;y;Xðn;n;m̃;kÞÞ is MPF2:

Remark 4.13. From Theorems 4.11(a) and 4.12, we get as a particular case
Theorems 3.1 and 3.2 by Belzunce et al. [9].
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