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Abstract

We define 2-gerbes bound by complexes of braided group-like stacks. We prove a classification result in terms of
hypercohomology groups with values in abelian crossed squares and cones of morphisms of complexes of length 3. We give
an application to the geometric construction of certain elements in Hermitian Deligne cohomology groups.
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0. Introduction

The aim of the present work is to study in some detail gerbes and, mostly, 2-gerbes bound by complexes of groups
and braided gr-stacks, respectively, and the cohomology groups determined by their equivalence classes.

0.1. Background and motivations

The idea of a gerbe bound by a complex is of course not new: it dates back to Debremaeker [1] in the form of a
gerbe G on a site S bound by a crossed module δ : A → B. Milne [2] adopts the same idea in the special case of
an abelian crossed module. It is observed in loc. cit. that the crossed module in fact reduces to a homomorphism of
sheaves of abelian groups, and the whole structure simplifies to that of a gerbe G bound by the sheaf A and equipped
with a functor G → TORS(B) which is a δ-morphism, i.e. compatible with the homomorphism δ (see below for the
precise definition).

Our starting point is the observation that this structure captures the differential geometric notion of “connective
structure” on an abelian gerbe, introduced by Brylinski and McLaughlin1 ([4–6], see also [3] for a version in the
context of smooth manifolds). Briefly, by suitably generalizing the familiar concept of connection on an invertible
sheaf on an analytic or algebraic manifold X , they defined a connective structure on an abelian gerbe bound by O"

X
as a functor x  C o(x) associating with each local object x over an open U a Ω1

U -torsor, subject to a certain list of

E-mail address: aldrovandi@math.fsu.edu.
1 In [3] the concept is ascribed to Deligne.
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properties reviewed in Section 2.2. It turns out, and we show it explicitly in Section 2.2, that this is exactly the same
thing as prescribing a structure of gerbe bound by the complex

O"
X

d log
−−→ Ω1

X .

More recently, we have similarly introduced the concept of Hermitian structure on an abelian gerbe bound by O"
X ,

by modeling it on the corresponding familiar notion of invertible sheaf equipped with a fiber Hermitian metric [7].
In simplified terms, this structure is also of the type introduced above, namely we find that in this case it can be
conveniently encoded in the structure of gerbe bound by the complex

O"
X

log|·|
−−→ E 0

X ,

where the latter denotes the sheaf of smooth real functions on X .
It is reasonable to expect that the list can be made longer with other interesting examples. However, we want to

point out that the real interest of these construction lies in a different direction (or directions). On the one hand, there
is the obvious interest of being able to generalize to the case of gerbes several structures of differential geometric
interest. On the other hand, there is the fact that typical equivalence classes (suitably defined) of these structures turn
out to be classified by interesting cohomology theories, and as a feedback we can get a geometric characterization of
the elements of these groups. For instance, the cohomology groups relevant in the above examples are the Deligne
cohomology group H3

D(X,Z(2)), and the Hermitian Deligne cohomology group Ĥ3
D(X, 1).

In fact, Brylinski and McLaughlin have shown that their constructions provide the adequate context for notable
extensions of the tame symbol map in algebraic K -theory, where gerbes are useful in order to obtain a geometric
picture for some regulator maps to Deligne–Beı̆linson cohomology (cf. [8]). More importantly, they extend their
framework in two directions: (1) they consider the case of 2-gerbes as well, and (2) they define appropriate notions of
curvature both for gerbes and 2-gerbes bound by O"

X . Passing from gerbes to 2-gerbes corresponds to an increase in
the degree of the involved cohomology groups, whereas introducing more levels of differential geometric structures
corresponds to cohomology groups of higher weights. The geometric and the cohomological aspects are tied together
very neatly in the following sense: the Deligne cohomology groups Hp

D(X, A(k)), where A is a subring of R, can be
regarded as somewhat pathological in the range p > 2k, where they cannot receive regulator maps from, say, absolute
cohomology.2 It is reassuring that the gerbes and 2-gerbes corresponding to the tame symbol maps and various related
cup products turn out to naturally have a connective structure (and even curvatures), so that their classifying Deligne
cohomology groups lie in the “safe” range p ≤ 2k.3

A similar story was developed by the author in the case of Hermitian Deligne cohomology [7], motivated by
the existence of certain natural Hermitian structures on tame symbols. As mentioned before, the cohomological
counterpart is given by Hermitian Deligne cohomology, and there is a parallel for 2-gerbes as well. Namely, we have
put forward a definition of Hermitian structure for 2-gerbes (to be reviewed and revised below) bound by O"

X and found
that the corresponding equivalence classes are in one-to-one correspondence with the elements of the group Ĥ4

D(X, 1).
In particular, the gerbes and 2-gerbes corresponding to the tame symbols studied by Brylinski and McLaughlin were
found to naturally support a Hermitian structure as well. Moreover, it was found that these structures, namely the
analytic (or algebraic) connective structure of Brylinski and McLaughlin and the Hermitian structure we introduced
are compatible in the following sense: One of the byproducts of our work is that there is a natural notion of connective
structure canonically associated with the Hermitian structure. It was found that this new connective structure agrees
with the one of Brylinski–McLaughlin once they are mapped into an appropriate complex of smooth forms. (Part of
this theory will be recalled and further clarified in the last part of the present paper.)

Not quite satisfying, as the reader will have no doubt noticed, is the fact that weights and degrees are precisely
in what seems to be the bad range. However, a more interesting group Ĥ4

D(X, 2) does appear in the following
way: in [7] we introduced a complex, denoted Γ (2)• (defined in Section 7.1), and we (informally) argued that
the hypercohomology group H4(X,Γ (2)•) classifies 2-gerbes equipped with both a connective structure à la

2 The absolute cohomology groups in that range are zero.
3 There is of course an interest in knowing that, say, H3

D(X,Z(1)) classifies abelian gerbes bound by O"
X , however the nice connection with

regulators, etc. is lost.
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Brylinski–McLaughlin and a Hermitian structure in our sense which are compatible as explained above. In loc. cit.
we found that there is a surjection Ĥ4

D(X, 2)→ H4(X,Γ (2)•), so classes of 2-gerbes can indeed be lifted to a more
desirable group, but a truly geometric characterization was not provided. Let us remark that the interest of the group
Ĥ4
D(X, 2) lies in the fact that it is the receiving target of the cup product map

P̂icX ⊗ P̂icX −→ Ĥ4
D(X, 2),

where P̂icX ' Ĥ2
D(X, 1) is the group of isomorphism classes of metrized invertible sheaves. When X is a complete

curve, this map gives a cohomological interpretation of Deligne’s determinant of cohomology construction [9], which
has been analyzed in various guises in [6,10,11] in the singular case.

The desire to remedy the above shortcoming and enhance the results of [7], as well as the desire to cast the results
in the form expounded at the beginning of this introduction—suitably extended to include 2-gerbes—constitute our
motivation for the present work. The framework we have found, that of 2-gerbes bound by a complex of braided
gr-stacks, is quite more general than what would be minimally required for just solving the mentioned problems,
and lends itself to possible generalizations to the non-abelian case, which we plan to address in part in a subsequent
publication. We now proceed to describe the present results in the remaining part of this introduction.

0.2. Statement of the results

For the purpose of this introduction let us informally assume that X is a smooth base scheme, or an analytic
manifold, and that C/X is an appropriate category of spaces “over” X with a Grothendieck topology, making it into a
site.

To keep track of cohomology degrees, recall that Deligne cohomology and its variants have a built-in degree index
shift. The convention we use in this introduction and the rest of the paper is to revert to standard cohomology degrees
whenever we are not specifically dealing with one of these specific cohomology theories.

Our first result is a straightforward generalization of the concept of abelian gerbe bound by a homomorphism of
sheaves of abelian groups to the case where we have a complex of abelian groups of the form:

A
δ
−→ B

σ
−→C.

We find that an abelian gerbe G bound by the above complex is conveniently defined as an A-gerbe G equipped with
a functor

G −→ TORS(B,C),

where the right-hand side denotes the gerbe of B-torsors with a section of the associated C-torsor obtained by the
extension of the structure group from B to C . We then obtain through a simple Čech cohomology argument that
equivalence classes of such gerbes are classified by the hypercohomology group

H2(X, A→ B → C).

We show at the end of Section 3 that this is the appropriate general cadre for the notion of curvature: indeed we prove
that Brylinski and McLaughlin’s original definition of a gerbe with connective structure and “curving” can be cast as
a gerbe bound by a complex of length 3, for an appropriate choice of the groups involved.

The extension of the idea of gerbe bound by a complex to the case of 2-gerbes is more involved, but quite
interesting.

We want to consider abelian 2-gerbes, where of course the word “abelian” must be properly qualified. We adopt
the point of view of [12] of calling “abelian” a 2-gerbe bound by a braided gr-stack in the following sense: It is known
that the fibered category of automorphisms of an object x over U → X in a 2-gerbe is a gr-stack. Let A be a gr-stack
over X . A 2-A -gerbe G is a 2-gerbe with the property that each local automorphism gr-stack is equivalent to (the
restriction of) A . As we know from [12], if this equivalence is natural in x , then A will be forced to be braided, i.e. its
group law has a non-strict commutativity property. A special case is when A = TORS(A), that is, the gr-stack is the
stack of torsors (in fact, a gerbe) over an abelian group A. Then we speak of a 2-gerbe bound by A, or 2-A-gerbe.

Note that it follows from [13,12] that for an abelian 2-A -gerbe G the stack of morphisms AutU (x, y) of two
objects over U → X has the structure of A |U -torsor, and that G determines a 1-cocycle, hence a cohomology set,
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with values in TORS(A ). Note that for any gr-stack A this is a neutral 2-gerbe, see [14]. By suitably decomposing
the torsors comprising this cocycle, we obtain a degree 2 cohomology set with values in A itself. This leads to the
familiar degree 3 cohomology group with values in A in the case A = TORS(A). We will find generalizations by
studying the analogous constructions for complexes of gr-stacks, defined below.

Thus, given an additive functor λ : A → B of braided gr-stacks we define a 2-gerbe bound by this “complex” as
a pair (G, J ), where G is a 2-A -gerbe and J is a cartesian 2-functor

J : G −→ TORS(B)

which is a λ-morphism, see Section 5.3 for the precise definition. Once the notion of morphism and then of equivalence
of such pairs are defined, we find that equivalence classes are in one-to-one correspondence with the elements of a
cohomology set which we could provisionally write as:

H1(TORS(A )→ TORS(B)).

Once again, by suitably decomposing the torsors comprising the 1-cocycle with values in the complex
λ∗ : TORS(A ) → TORS(B) determined by G, we obtain a degree 2 cohomology set with values in the complex
λ : A → B itself.

In order to properly handle the Hermitian Deligne cohomology group we are ultimately interested in, we can further
generalize this notion to that of a 2-gerbe bound by a complex of gr-stacks, that is a diagram of additive functors:

A
λ
−→B

µ
−→C , (+)

where the composition µ ◦ λ is required to be isomorphic to the null functor sending A to the unit object of C . Thus
a 2-gerbe G is bound by the above complex if there is a cartesian 2-functor

J̃ : G −→ TORS(B,C ),

where the right-hand side denotes the 2-gerbe of B-torsors which become equivalent to the trivial C -torsor. Then we
show that equivalence classes of such pairs (G, J̃ ) are classified by a cohomology set:

H1(TORS(A )→ TORS(B)→ TORS(C )),

from which we can obtain a degree two cohomology set with coefficients in the gr-stack complex above. This is done
in Sections 5 and 6, where the relevant theorems are stated and proven in full.

Along the way we get interesting byproducts shedding a new light on the notion of gerbe bound by a complex.
In Section 5.4 we prove that for a strictly abelian (and not just braided) gr-stack B, that is, one that arises from a
homomorphism of sheaves of abelian groups, we have the equivalence

GERBES(B, H)
∼
−→ TORS(B)

where B = TORS(B, H). Then later in Section 6.1, we observe that TORS(B,C ) introduced above is equivalent,
when C = TORS(C, K ) with the 2-gerbe of gerbes bound by B → H which become neutral as gerbes bound by
C → K .

These partial results are part of a general process whereby we make contact with ordinary hypercohomology by
assuming that all the involved gr-stacks are strictly abelian. Concretely, if A = TORS(A,G), B = TORS(B, H),
and C = TORS(C, K ) the complex of gr-stacks we have been considering reduces to the commutative diagram of
(sheaves of) abelian groups:

A

δ

��

f
// B

σ

��

g
// C

τ

��

G u
// H v

// K

(∗)
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The theorem we obtain in Section 6.4 is that equivalence classes of 2-gerbes bound by the complex (+) are classified
by the standard hypercohomology group

H3(X, (cone of (*))[−1]).

As we will see in Section 7, this is exactly the kind of cohomology group we need in order to give a geometric
construction of the elements of the Hermitian Deligne cohomology group Ĥ4

D(X, 2). In particular, in Section 7.3, we
give a reasonably detailed construction of a 2-gerbe, denoted (L ,M ]ĥ.h., whose class in Ĥ4

D(X, 2) is the cup product
[L , ρ] ∪ [M , σ ] of [L , ρ], [M , σ ] ∈ P̂icX .

In Section 5, especially in Sections 5.4 and 5.5 we prove intermediate results for the case where there is no C , so
the diagram (∗) above reduces to the left square.

In all cases, when moving from cohomology sets with values in complexes of gerbes of torsors to
(hyper)cohomology groups with values in cone of complexes, we compute explicit cocycles with respect to
hypercovers, rather than ordinary covers. We find that even in the case of groups the cocycles so obtained present
additional interesting terms.

0.3. Organization and contents of the paper

Overall we have adopted a mix of bottom-up and top-down approaches. We have refrained from starting from
the most general statement and then working our way down. Instead we have adopted a sequence of successive
generalizations.

Our treatment of cohomology deserves some explanations. At the beginning, where several proofs are standard,
we have adopted a Čech point of view. In the latter part of the paper, where we deal with torsors over gr-stacks, we
have found it worthwhile not to assume that decompositions with respect to Čech covers are sufficient. So we have
actually computed cocycles using hypercovers, adopting the same point of view and formalism of [12]. Since we have
dealt with hypercovers in a rather direct way, formulas acquire a substantial decoration of indices, which can be quite
daunting. The usual advice is to ignore the hypercover indices on first parsing and reduce everything to the Čech
formalism and replace (hyper)cohomology with its Čech counterpart.

A note about sites: When dealing with categorical matters, it comes at no additional cost to formulate everything,
including cohomology sets, for sites. Thus usually we will assume that gerbes and 2-gerbes are fibered over a site S.
This site will in fact be a category of objects over an object X , so that we will often use the notation C/X , assuming
that the category C has been equipped with an appropriate Grothendieck topology. By thinking of X as the terminal
object in C/X , we can conveniently denote cohomology sets as H•(X,−) or H•(X,−), depending on whether we
wish to emphasize the “hyper” aspect.

As for gerbes and 2-gerbes, we have chosen to follow different approaches. When dealing with 2-gerbes and,
perhaps, other less familiar objects such as torsors over gr-stacks in the second part of the paper, we have chosen
to collect and provide a fair amount of details from the existing literature. Unfortunately we cannot make this
paper completely self-contained without writing another book on 2-gerbes, therefore referring to the literature,
especially [12], remains indispensable. For gerbes, on the other hand, we have tried to rely much more on the
references without providing nearly as many details, on the grounds that the relevant notions will be more familiar
to the reader. This includes the notion of gerbe bound by a length 2 complex, introduced in Section 2, for which we
have decided to heavily rely on the abelian version given by Milne [2], rather than the original one by Debremaeker
in Ref. [1], in order to avoid bringing in notions from non-abelian cohomology, which would have pushed our
exposition a bit too far afield. We have, however, put a few hopefully clarifying remarks and pointers in Section 2
where appropriate.

In conclusion, this paper is organized as follows. In Section 1 we recall a few background notions, collect some
notations, and we provide a quick overview of various Deligne-type cohomology theories needed in the rest of the
paper. We introduce the concept of gerbe bound by a length 2 complex in Section 2, where we also review the pivotal
example of connective structure in some detail. We then proceed in Section 3 to define and classify gerbes bound by a
length 3 complex. Section 4 is dedicated to a quick review of 2-gerbes. Sections 5 and 6 then contain our main results,
where we classify 2-gerbes bound by complexes of gr-stacks. Finally, in Section 7, we return to the realm complex
algebraic manifolds, and give some applications to Hermitian Deligne cohomology.
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1. Background notions

1.1. Assumptions and notations

In the following, X will be a smooth scheme or a complex analytic manifold. In the algebraic case, some results
can be stated for X smooth over a base scheme S. Actually, in most of the applications we will be concerned with
the case when X is an algebraic manifold,4 hence S = Spec C. In this case the complex analytic manifold above will
be Xan, the set of complex points of X with the analytic topology, but usually we will not explicitly mark this in the
notation.

Gerbes “over X” are stacks in groupoids and, similarly, 2-gerbes are 2-categories fibered in (lax) 2-groupoids
satisfying certain conditions to be explained below, over an appropriate site of “spaces” over X . As explained at the
end of the introduction, whenever dealing with general categorical matters, the specific choice of this site will be
somewhat immaterial. In order to fix ideas, and to revert in the end to specific cohomology theories, we will assume
that we are given an appropriate category with fiber products C/X of spaces over X equipped with a Grothendieck
topology. The main requirement will be that the various sheaves such as OX , Ω•X , etc. as defined with respect to C/X
restrict to their usual counterparts under U → X , whenever U is open in the ordinary – for the Zariski or Analytic
topology – sense. More specifically, following Ref. [3], if X is a scheme we may as well consider the small étale site
X ét , namely C/X = Et/X , where we denote by Et the class of étale maps over X , and covers are jointly surjective
families of étale maps. It is useful to allow the same type of construction when S = Spec C, and we want to consider
Xan. Namely we obtain a corresponding “analytic” site by mapping U → X from X ét to U an

→ Xan. According to
Ref. [15], this determines the same topology as the standard analytic one. In the latter case, that is if X is a complex
manifold, C/X will be the small Top site. Similarly, when X is a scheme to be considered with its ordinary topology,
we set C/X = Xzar, the small Zariski site of X whose covers are injective maps V → U with U open in X . Note that
in general we will not be considering the corresponding “big” sites. However, the general categorical constructions
which form the main body of this paper are going to work in that context too.5

In general we will refer to the topology on C/X simply as a topology on X , and accordingly we will simply speak
of “open” sets for members V → U of a cover of U → X . As it is well-known, fibered products take the place
of intersections, and we will use the standard notation of denoting the various multiple “intersections” (i.e. fibered
products) relative to a covering {Ui → U }i∈I as: Ui j = Ui ×U U j , Ui jk = Ui ×U U j ×U Uk , etc. Also in the relative
case of X over a base S, C/X will be obtained by restriction from C/S. However, our notation will not always
explicitly reflect this.

1.1.1. Often used notations
For a subring A of R and an integer p, the Tate twist of A is the A-module A(p) = (2π

√
−1)p A. The introduction

of such a device allows a number of algebraic manipulations, complexes, etc. to become independent of the choice of
the imaginary unit.6 In particular, we can write C ' R(p) ⊕ R(p − 1), and C/R(p) ' R(p − 1). The projections
onto the “real” and “imaginary” parts, πp : C→ R(p), is given by πp(z) = 1

2 (z+ (−1)p z̄), for z ∈ C – and similarly
for any other complex quantity. We identify C/Z(p) ' C" via the exponential map z 7→ exp(z/(2π

√
−1)p−1).

If E is a set (or group, ring, module, etc.), then EX denotes the corresponding constant sheaf of sets (or groups,
rings, modules, etc.).

If X is a scheme or complex manifold, Ω•X denotes the corresponding (algebraic or analytic) de Rham complex.
We set OX ≡ Ω0

X as usual. E •X denotes the de Rham complex of sheaves of R-valued smooth forms on the underlying
smooth manifold. Furthermore, A •X = E •X ⊗R C, and is E •X (p) the twist E •X ⊗R R(p). Also, A

p,q
X will denote the

sheaf of smooth (p, q)-forms, and A n
X =

⊕
p+q=n A

p,q
X , where the differential decomposes in the standard fashion,

4 By algebraic manifold we mean a smooth, separated scheme of finite type over C.
5 To be more specific one could consider sites such as X É t , the big étale site of X , if X is a scheme, namely C/X = Sch/X equipped with the

étale topology defined by the class Et of étale maps over X ; correspondingly, C/X = Cmplx/X , with the topology given by standard open covers,
or by analytification of étale covers as described above.

6 For more details see [16,17] and also [18].
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d = ∂ + ∂̄ , according to types. We also introduce the imaginary operator dc
= ∂ − ∂̄ 7 and we have the rules

dπp(ω) = πp(dω), dc πp(ω) = πp+1(dc ω),

for any complex form ω. Note that we have 2∂∂̄ = dc d.
The standard Hodge filtrations on Ω•X and A •X are as follows: F pΩ•X ≡ σ

pΩ•X is the sharp truncation in degree p:

0 −→ · · · −→ 0 −→ Ω p
X −→ · · · −→ Ωdim X

X ,

whereas F pA •X is the total complex of:
⊕

r≥p A r,•−r
X .

1.1.2. Torsors
For torsors, we adopt the notation P ∧A B for the usual quotient of the action

P × B × A −→ P × B

(u, b, a) 7−→ (ua, a−1b),

where A is a sheaf of groups, P an A-torsor, and A acts on a sheaf B. In particular, if B is a sheaf of groups,
and δ : A → B is a homomorphism, then A acts on B by (a, b) 7→ δ(a)b. In this situation P ∧A B is a B-torsor.
Throughout the paper we will only consider the abelian situation, so that there will be no distinction between left or
right torsors. Our notation will in general reflect a preference for right torsors.

1.2. Various Deligne complexes and cohomologies

Standard references on Deligne cohomology are: [16,17].
For a subring A ⊂ R and an integer p, the Deligne cohomology groups of weight p of X with values in A are the

hypercohomology groups:

H•D(X, A(p))
def
= H•(X, A(p)•D,X ), (1.2.1)

where A(p)•D,X is the complex

A(p)•D,X = Cone
(

A(p)X ⊕ F pΩ•X −→ Ω•X
)
[−1] (1.2.2)

'
−→

(
A(p)X

ı
−→OX

d
−→Ω1

X
d
−→· · ·

d
−→Ω p−1

X

)
, (1.2.3)

where the map in the cone is the difference of the two inclusions and
'
−→ denotes a quasi-isomorphism. The complex

in (1.2.3) is the one we will normally use in what follows.
When A = R, Deligne cohomology groups can be computed using other complexes quasi-isomorphic to (1.2.2)

or (1.2.3), in particular:

R̃(p)
•

D = Cone
(
F pA •X → E •X (p − 1)

)
[−1]. (1.2.4)

(See the references quoted above for a proof.)
The Hermitian variant of Deligne cohomology is obtained by considering the hypercohomology groups

Ĥ•D(X, p)
def
= H•(X,C(p)•X ) (1.2.5)

of the complex

C(p)•X = Cone
(

Z(p)X

⊕
(F pA •X ∩ σ

2pE •X (p)) −→ E •X (p)
)
[−1], (1.2.6)

7 We omit the customary factor 1/(4π
√
−1).
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introduced by Brylinski in [6]. We proved in [10] that it is quasi-isomorphic to the complex:

Dh.h.(p)
•

X = Cone
(

Z(p)•D ⊕ (F
pA •X ∩ σ

2pE •X (p)) −→ R̃(p)
•

D

)
[−1]. (1.2.7)

The interest of (1.2.7) lies in the fact that the second hypercohomology group of Dh.h.(1)•X provides a characterization
of the canonical connection associated with a Hermitian line bundle [10,7]. We will also need a leaner version of the
complex (1.2.7) introduced in [11], namely:

Dh.h.(p)
•

X = Cone
(

Z(p)•D
ρp
−→ σ<2pD•(A •X , p)

)
[−1]. (1.2.8)

Here D•(A •X , p) is the Deligne Algebra over the complex A •X , discussed in full in [19–21], and σ<2p denotes its
sharp truncation in degrees above 2p, so that:

σ<2pDn(A •X , p) =


0 n = 0,

E n−1
X (p − 1)

⋂ ⊕
p′+q′=n−1
p′<p,q′<p

A
p′,q ′

X n ≤ 2p − 1. (1.2.9)

The differential is −π ◦ d, where π is the projection that simply chops off the degrees falling outside the scope
of (1.2.9). Using (1.2.3), the map ρp is:

ρn
p =

{
0 n = 0,
(−1)nπp−1 1 ≤ n ≤ p.

Example 1.1. In the following we will be concerned almost exclusively with the complexes of weight p = 1 and
p = 2. Explicitly, we have:

Dh.h.(1)•X =
(

Z(1)X
ı
−→OX

π0
−→ E 0

X

)
, (1.2.10)

whereas the complex Dh.h.(2)•X is the cone (shifted by 1) of the map:

(1.2.11)

Remark 1.2. Using the complex (1.2.10), one shows that

Ĥ2
D(X, 1) ' P̂icX,

the group of isomorphism classes of line bundles with Hermitian metric. This follows from an easy Čech argument,
as in [22]. Thus the same type of argument, using the complex Dh.h.(1)•X , implies the uniqueness of the canonical
connection, see [7].

We conclude this review section by observing that all complexes introduced so far possess a product structure (or
several mutually homotopic such structures), additive with respect to the weights, so that we have graded commutative
cup products

Hk
D(X, A(p))⊗ Hl

D(X, A(q))
∪
−→Hk+l

D (X, A(p + q))

and

Ĥk
D(X, p)⊗ Ĥl

D(X, q)
∪
−→ Ĥk+l

D (X, p + q).

The reader should refer to the literature cited in this section for more details and explicit formulas for the products.
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2. Gerbes with abelian band

In the following we recall a few definitions about gerbes. The canonical reference is [23], whereas a detailed
exposition adapted to spaces is [12]. We will need the abelian part of the whole theory, for which a readable account
is to be found in [3].

Let C be a category with finite fibered products, equipped with a Grothendieck topology. C will be assumed to be
as in Section 1.1, therefore we will have a terminal object X at our disposal, satisfying the hypotheses expounded in
that section.

A gerbe G over C is a stack in groupoids p : G → C such that:

(1) G is locally non-empty, namely there exists a cover U → X such that Ob(GU ) is non-empty;
(2) G is locally connected, that is, for each pair of objects of G , there is a cover ϕ : V → U such that their inverse

images are isomorphic. In other words if x, y ∈ Ob GU , then HomU (ϕ
∗x, ϕ∗y) is non-empty.

For an object x ∈ Ob GU , the sheaf Aut(x) is a sheaf of groups on C/U . (Recall that over ϕ : V → U , we have
Aut(x)(V ) = AutV (ϕ∗x).) Now let A be a sheaf of groups on C: We say that G is an A-gerbe if for each object x
with ϕ(x) = U as above there is a natural isomorphism

ax : Aut(x)
∼
−→ A|U .

The naturality in x will force the group A to be abelian, and in the following we will restrict our attention to this case.
The sheaf A will be referred to as the band of the gerbe G . We also say that G is bound by A. (In the general—non-
abelian—case, the band L(A) will have a more complicated definition, as the various sheaves A|U are glued along
U ×X U only up to inner automorphisms. In the abelian case this is immaterial and we can abuse the language and call
A the band of G .) Note also that in this setting, given two objects x, y ∈ Ob GU , the sheaf Hom(x, y) of morphisms
from x to y is simply an A|U -torsor.

A morphism λ : G →H is a cartesian functor between the underlying fibered categories, and it is an equivalence
if it is an equivalence of categories. Moreover, if G is an A-gerbe, and H is a B-gerbe, with a group homomorphism
f : A → B, then the morphism λ will have to satisfy the obvious commutative diagrams. Such a morphism is called
an f -morphism.

An f -morphism for which f is an isomorphism is automatically an equivalence. So is, in particular, a morphism
between two A-gerbes G and G ′. So if A is abelian, it follows from [23] that A classes of equivalences of A-gerbes are
classified by H2(X, A), the standard second cohomology group of X in the derived functor sense. See also, e.g. [3],
for a proof in the Čech setting.

2.1. Gerbes bound by a complex

We are going to use the notion of gerbe bound by a length two complex A→ B of sheaves of abelian groups over
C/X , as in [2]. Let us review the formal definition:

Definition 2.1. Let A and B be two sheaves of abelian groups on C/X , and δ ∈ Hom(A, B), so that A
δ
−→ B is a

complex of length two. A gerbe G bound by A→ B is an A-gerbe over C/X equipped with a δ-morphism of gerbes

µ : G → TORS(B).

(Notice that TORS(B) is a B-gerbe, so the notion of δ-morphism makes sense.)
One could think of a gerbe bound by A→ B as an A-gerbe G which becomes neutral, i.e. equivalent to TORS(B),

as a B-gerbe. This can actually be made precise in the following way. Recall from Refs. [23,3] that if G is an abelian
A-gerbe, and δ : A→ B is a homomorphism, we can “extend” the band (defined above) from A to B along δ to obtain
a B-gerbe, denoted G ∧A B, which is defined by requiring that, as a prestack, its fiber categories have the same objects
as those of G , and that the sheaf of isomorphisms in G ∧A B between two objects x, y be the B|U -torsor

HomGU
(x, y)∧A|U B|U .

Then we have the easily verified
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Lemma 2.2. G is bound by A→ B iff there is an equivalence of B-gerbes

G ∧A B
∼
→ TORS(B).

Remark 2.3. A better perspective on this matter will be gained later in the paper in Section 5.4, Theorem 5.8, when
we interpret gerbes bound by A → B as torsors in a suitable way. Then, using the symmetry of the diagram at the
end of Section 5.4, and Proposition 6.4, the idea of G as an A-gerbe which becomes trivial as a B-gerbe will become
precise in the appropriate context.

Remark 2.4. Definition 2.1 can be seen as a particular case of the more general notion of a gerbe G bound by a sheaf
of crossed modules, as per Debremaeker’s original definition in Ref. [1]. This latter notion will not be used anywhere
else, and it is briefly recalled here for the convenience of the interested reader.

If (A, B, δ) is a crossed module, where δ : A → B is a group homomorphism, compatible with the action of B
over A, a gerbe bound by it is a gerbe G with a δ-morphism µ as above, plus functorial isomorphisms

x : Aut(x)
∼
→µ(x)∧B A

for each object x of G . The twisted group on the right-hand side above arises from the action of B on A. It is a group
over U , if x ∈ Ob GU . The isomorphisms x are required to map under µ to the canonical isomorphisms

Aut(µ(x)) ' µ(x)∧B B,

as automorphisms of B-torsors. Now, if the crossed module is abelian, which means that both A and B are abelian,
and the action of B over A is trivial, the crossed module becomes simply a complex, and everything reduces to the
data in the previous definition. In particular, the isomorphisms x simply reduce to the isomorphisms ax introduced
above characterizing G as an A-gerbe.

We now return to the abelian situation. As usual, a morphism of complexes

( f, g) : (A, B, δ)→ (A′, B ′, δ′)

is a commutative diagram of group homomorphisms:

A
δ //

f
��

B

g

��

A′
δ′ // B ′

If G and G ′ are bound by (A, B) and (A′, B ′), respectively, then we have a corresponding notion of ( f, g)-morphism
as follows:

Definition 2.5. An ( f, g)-morphism from G to G ′ consists of:

(1) an f -morphism λ : G → G ′;
(2) a natural isomorphism of functors

α : g∗ ◦ µ =⇒ µ′ ◦ λ

from G to TORS(B ′).

In the definition g∗ is the g-morphism TORS(A)→ TORS(B) induced by g in the obvious way.
For completeness, let us also mention that we also have the notion of morphism of morphisms, see [2]. Namely,

let (λ1, α1) and (λ2, α2) be two morphisms (G , µ) → (G ′, µ′). A morphism m : (λ1, α1) → (λ2, α2) is a natural
transformation m : λ1 ⇒ λ2 such that the following is verified:

(µ ∗ m) ◦ α1 = α2.

With these notions the gerbes bound by a complex of length 2 form a 2-category. In particular, when A′ = A and
B = B ′ we denote this 2-category by GERBES(A, B).
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2.1.1. Classification of (A, B)-gerbes

Once again, consider the special case A′ = A and B ′ = B, with f and g being the respective identity maps. Then
we speak of an (A, B)-morphism, and in particular of an (A, B)-equivalence if the underlying functor λ : G → G ′ is
an equivalence in the usual sense. (A, B)-equivalence is an equivalence relation, and the set of equivalence classes is
H2(X, A→ B).While this can be defined in general (see Ref. [1]) in the abelian case it turns out to coincide with the
second hypercohomology group with values in the complex A→ B in the standard sense (cf. [2]).

2.1.2. The canonical ( f, g)-morphism

Given a commutative diagram of group homomorphisms as above, there is a canonical ( f, g)-morphism

( f, g)∗ : GERBES(A, B) −→ GERBES(A′, B ′),

given by the extension of the band. Namely, if G is an A-gerbe, there is a well-defined procedure, recalled above,
giving an A′-gerbe which we may call f∗(G ). Since locally

GU ' TORS(A|U ),

f∗(G )U is simply given by the standard extension of the structure group. Now, if (G , µ) is an (A, B)-gerbe, then
(G , g∗ ◦µ) is an (A, B ′)-gerbe and locally the functor g∗ ◦µ will be isomorphic to g∗ ◦ δ∗ (see in particular the proof
of Theorem 5.8 below for more details8). The latter will be replaced, by commutativity induced from the commutative
square of group homomorphisms, by δ′∗ ◦ f∗, which glues back to a functor µ′ : f∗(G )→ TORS(B ′).

This construction is universal in the sense that an ( f, g)-morphism can be written by the composition of ( f, g)∗
followed by a unique (up to equivalence) (A′, B ′)-morphism.

An alternative characterization of (A, B)-gerbes will appear in Section 5.4, in particular Theorem 5.8, when we
discuss 2-gerbes bound by complexes.

2.2. Examples

The following are few examples of Gerbes bound by complexes of length 2 which are relevant from the point of
view of extending differential geometric structures to gerbes.

We will first review the definition of connection—or connective structure—on a O"
X -gerbe according to Brylinski

and McLaughlin (see, e.g. [4,5], or [3] for the smooth case).

Definition 2.6. Let G be a O"
X -gerbe. A connective structure C o on G is the datum of a Ω1

U -torsor C o(x) for any
object x ∈ GU , where U ⊂ X , subject to the following conditions.

(1) For every isomorphism f : x → y in GU there is an isomorphism

f∗ ≡ C o( f ) : C o(x) −→ C o(y)

of Ω1
U -torsors. In particular, if f ∈ Aut(x) ' O"

X |U , we require:

f∗ : C o(x) −→ C o(x)

∇ 7−→ ∇ + d log f,
(2.2.1)

where ∇ is a section of C o(x).
(2) If g : y → z is another morphism in GU , then (g f )∗ ' g∗ f∗.
(3) The correspondence must be compatible with the restriction functors and natural transformations. Namely, if

ı∗ : GU → GV is the restriction functor corresponding to the morphism ı : V → U in C/X , then there is a natural

8 This construction will not be used until Section 6.1 and it is only dependent on the arguments of Section 5.4, in particular the proof of
Theorem 5.8.
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isomorphism αı : ı∗ ◦C o⇒ C o ◦ ı∗ such that the diagram:

ı∗C o(x)

ı∗( f∗)

��

αı (x) // C o(ı∗x)

(ı∗ f )∗

��

ı∗C o(y)
αı (y) // C o(ı∗y)

commutes. Moreover given  : W → V and the corresponding α , there must be the obvious pentagonal
compatibility diagram with the natural transformations ϕı, : 

∗ ı∗ → (ı)∗ arising from the structure of fibered
category over X . That is, given the object x , we have the commutative diagram:

C oW (
∗ı∗x)

φı, (x)∗
��

α
// ∗C oV (ı∗x)

∗αı // ∗ı∗C oU (x)

φı, (C oU (x))
��

C oW ((ı)∗x)
αı

// (ı)∗C oU (x)

mapping to a corresponding one with y.

The following is a reformulation of the conditions in Definition 2.6:

Proposition 2.7. A connective structure on the O"
X -gerbe G amounts to the datum of a structure of gerbe bound by

the complex

Γ : O"
X

d log
−−→ Ω1

X .

Proof. That the various conditions in Definition 2.6 define a cartesian functor

C o : G −→ TORS(Ω1
X )

is just a matter of unraveling the definition of cartesian functor. Moreover, Eq. (2.2.1) implies that C o is in fact a
d log-morphism. �

According to the general results, O"
X -gerbes with connective structure are classified by the hypercohomology group

H2(X,O"
X

d log
−−→ Ω1

X ).

Via the quasi-isomorphisms:(
O"

X
d log
−−→ Ω1

X

)
[−1]

'
−→

(
Z(2) −→ OX

d
−→Ω1

X

)
'
−→Z(2)•D,

where Z(k)•D is the weight k Deligne complex, we have that the classifying group is isomorphic to the Deligne
cohomology group

H3
D(X,Z(2)).

2.3. Further examples

Several variations on the theme established in Definition 2.6 and Proposition 2.7 have been considered, typically
by providing the necessary modifications in Definition 2.6. Following the idea embodied in Proposition 2.7 they can
be restated in terms of gerbes bound by a complex.

In Ref. [7] we have introduced a notion of Hermitian structure and a variant of connective structure valued in the
Hodge filtration. We consider these examples next.
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2.3.1. Hermitian structures
Consider the complex:

O"
X
|·|

2

−→ E +X ,

where E +X is the sheaf of smooth functions valued in R>0, the connected component of 1 in R". A O"
X -gerbe G is said

to have a Hermitian structure (cf. Ref. [7, Definition 5.2.1]) if it has the structure of a gerbe bound by (O"
X ,E

+

X ).
Classes of equivalences of O"

X -gerbes equipped with Hermitian structures are therefore classified by the group

H2(X,O"
X
|·|

2

−→ E +X ) ' Ĥ3
D(X, 1).

Recall that the latter is the third Hermitian Deligne cohomology group of weight 1, and the isomorphism is induced
by the quasi-isomorphism(

Z(1)→ OX
<
−→ E 0

X

)
'
−→

(
O"

X
|·|

2

−→ E +X

)
[−1],

where the first is the corresponding Hermitian Deligne complex.

2.3.2. F1-connections
A slight modification of the notion of connective structure recalled in Section 2.2 is to consider the length 2

complex [7]:

O"
X

∂ log
−−→ F1A 1

X .

Note that F1A 1
X = A 1,0

X , so this is called a “type (1, 0) connective structure” in [7].

2.3.3. Compatibility
We have the obvious map ∂ log : E +X → F1A 1

X and the morphism of complexes

O"
X

|·|
2

// E +X

∂ log
��

O"
X

∂ log
// F1A 1

X

The notion of compatibility between a Hermitian and a type (1, 0) connective structures on G amounts to an (id, ∂ log)-
morphism. In fact, it is the canonical one in the sense of Section 2.1.2. The equivalence with [7, 5.3.2], is merely a
question of unraveling Definition 2.5 for the case at hand. The classifying group was identified in [7] with Ĥ3

D(X, 1),
computed using the complex Dh.h.(1)•X .

Remark 2.8. It was found that the notion of connection compatible with a given Hermitian structure as defined in
loc. cit. is not the same as the one used by Brylinski and others (see, e.g. [6, Proposition 6.9(1)]). Here we can further
elucidate the remarks at the end of [7] by pinpointing the geometric difference: the notion of compatibility used by
Brylinski involves solely the structure of (E +X ,E

1
X (1))-gerbe, whereas the definition we put forward uses the notion of

morphism of gerbes bound by a complex. The latter remembers, so to speak, the structure of O"
X -gerbe.

3. Gerbes bound by complexes of length 3

3.1. (B,C)-torsors

First, recall that for a given complex B
σ
−→C of non-necessarily abelian groups, a (B,C)-torsor (see [24,14]) is

a pair (P, s) where P is a B-torsor and s a section of σ∗(P)
def
= P ∧B C . A morphism between two pairs (P, s) and
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(P ′, s′) is a morphism f : P → P ′ of B-torsors such that σ∗( f )(s) = s′. With these definitions the (B,C)-torsors
form a category, in fact a gerbe, TORS(B,C), and we denote by H1(X, B → C) the set of isomorphism classes.
There is an obvious forgetful functor TORS(B,C) −→ TORS(B), and a corresponding map of cohomology sets
H1(X, B → C) −→ H1(X, B).

When B and C are abelian, which is the case of interest here, the cohomology set classifying isomorphism classes
of (B,C)-torsors is isomorphic to the standard hypercohomology group.

Suppose we are given a map of complexes

B
σ //

g

��

C

h
��

B ′
σ ′ // C ′

then we obtain a functor

(g, h)∗ : TORS(B,C) −→ TORS(B ′,C ′),

which is defined as follows. To an object (P, s) of TORS(B,C) we associate the pair (g∗P, h∗(s)), where
g∗P = P ∧B B ′. This is well-defined, since σ ′∗g∗P ∼= h∗σ∗P. Then it is immediate to verify that morphisms
(P, s)→ (P ′, s′) in TORS(B,C) are brought to morphisms in TORS(B ′,C ′).

The following alternative characterization will be useful in the following. Using [23, III.1.6.1], it is easily seen that
the structure of (B,C)-torsor on P corresponds to the datum of a C-equivariant map:

σ∗(P) −→ HomB(P,C)

t 7−→ [s 7→ t−1σ∗s]
(3.1.1)

where HomB denotes (right) B-equivariant maps, and C is considered as a right B-space via σ .

3.2. (A, B,C)-gerbes

Let A
δ
→ B

σ
→C be a complex of abelian groups on C/X , and let p : G → C/X be a gerbe with band A.

Definition 3.1. We say that G is bound by the complex A → B → C , or that is an (A, B,C)-gerbe, if there is a
morphism

µ̃ : G −→ TORS(B,C)

such that G is an (A, B)-gerbe for the δ-morphism defined by the composition of µ̃ with the forgetful functor
TORS(B,C)→ TORS(B).

In other words, the structure of (A, B,C)-gerbe on G is a factorization of the morphism µ defining the structure of
(A, B)-gerbe through TORS(B,C). For an object x ∈ Ob GU , denote

µ̃(x) = (µ(x), ν(x)),

where µ = forget ◦ µ̃, and ν(x) is a section of σ∗(µ(x)).
Next, we can consider the notion of morphism of two such gerbes along the same lines as for (A, B)-gerbes. Thus,

let us be given a morphism of complexes of abelian sheaves over C/X :

A
δ //

f
��

B
σ //

g

��

C

h
��

A′
δ′ // B ′

σ ′ // C ′

Let G and G ′ be two gerbes bound by (A, B,C) and (A′, B ′,C ′), respectively.
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Definition 3.2. An ( f, g, h)-morphism from G to G ′ consists of:

(1) an f -morphism λ : G −→ G ′;
(2) a natural isomorphism of functors

α̃ : (g, h)∗ ◦ µ̃ =⇒ µ̃′ ◦ λ

from G to TORS(B ′,C ′) such that the composition (=pasting) F ′ ∗ α̃ with the forgetful functor
F ′ : TORS(B ′,C ′) −→ TORS(B ′) is the natural isomorphism associated with an ( f, g)-morphism as in
Definition 2.5.

The second condition in the definition can be explained as follows. Consider the diagram

G
µ̃

//

λ

��

TORS(B,C) F //

(g,h)∗

��

α̃ow

TORS(B)

g∗

��

G ′
µ̃′

// TORS(B ′,C ′)
F ′ // TORS(B ′)

Pasting with F ′ gives

F ′ ∗ α̃ : F ′ ◦ (g, h)∗ ◦ µ̃ =⇒ F ′ ◦ µ̃′ ◦ λ

that is,

F ′ ∗ α̃ : g∗ ◦ F ◦ µ̃ =⇒ µ′ ◦ λ.

We require this to coincide with the isomorphism α in Definition 2.5.
Again, we call this morphism an equivalence, or more precisely, an ( f, g, h)-equivalence, if so is the underlying

functor λ : G −→ G ′. In particular, this is the case when A′ = A, B ′ = B, C ′ = C and f , g, and h are the identity
maps, which we refer to as an (A, B,C)-equivalence. Being equivalent in this sense is an equivalence relation, and
we have:

Proposition 3.3. Classes of equivalences of (A, B,C)-gerbes are classified by the hypercohomology group

H2(X, A→ B → C).

Proof. We will just sketch how to obtain the class corresponding to a gerbe G on C/X bound by the complex
A → B → C . Let us proceed under the assumption that working with Čech cohomology is sufficient. Thus, let
(Ui → X)i∈I be a cover for X and assume that G is decomposed [12] by the choice of objects xi ∈ Ob GUi and
morphisms ϕi j : x j |Ui j → xi |Ui j .

For each object xi the functor µ̃ : G −→ TORS(B,C) gives us a pair µ̃(xi ) = (µ(xi ), ν(xi )), where ν(xi ) ∈

Γ (σ∗(xi )). Then, from the morphism ϕi j we obtain the morphism of torsors

(ϕi j )∗ ≡ µ(ϕi j ) : µ(x j ) −→ µ(xi )

so that

ν(xi ) = σ∗((ϕi j )∗)(ν(x j )). (3.2.1)

The decomposition (xi , ϕi j ) of G gives a cocycle (ai jk) ∈ Z2((Ui → X), A) in the usual way, [12], [23, IV.3.5.1].
Furthermore, let (si )i∈I be a collection where si is a section of the B|Ui -torsor µ(xi ). It follows that a cochain (bi j )

with values in B is defined by

(ϕi j )∗(s j ) = si bi j ,

and the usual argument shows that

ai jk = b−1
ik bi j b jk . (3.2.2)
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Now, since µ̃(xi ) is a (B,C)-torsor, we have that

σ∗(si ) = ν(xi )ci ,

for an appropriate section ci of C |Ui , for each i ∈ I . On the one hand, this gives:

σ∗((ϕi j )∗(s j )) = ν(xi )ciσ(bi j ).

On the other hand, by functoriality we have

σ∗((ϕi j )∗(s j )) = σ∗(µ(ϕi j ))(σ∗(s j ))

= σ∗((ϕi j )∗)(ν(x j ))c j ,

and using (3.2.1) we finally obtain

ciσ(bi j ) = c j . (3.2.3)

Then (3.2.2), (3.2.3), and the cocycle property for (ai jk) give the desired 2-cocycle with values in the complex
A→ B → C . �

The alternative characterization of (B,C)-torsor at the end of Section 3.1, and the technique used in the proof of the
proposition can be put together to provide the following alternative characterization of the notion of (A, B,C)-gerbe.

Let A
δ
→ B

σ
→C be a complex of abelian groups over C/X .

Lemma 3.4. The structure of (A, B,C)-gerbe on G −→ C/X is equivalent to the following data:

(1) µ : G −→ TORS(B) making G into an (A, B)-gerbe;
(2) for each object x ∈ Ob GU a map ν(x) : µ(x) −→ C |U such that:

(a) ν(x)(sb) = ν(x)(s)σ (b) for each section s of µ(x) and b of B|U ;
(b) for each morphism f : x −→ y in GU a commutative diagram

µ(x)
µ( f )

//

ν(x) ))

µ(y)

ν(y)uu
C |U

Proof. The existence of the map ν(x) is simply a consequence of the existence of a section ν(x) of σ∗(µ(x)) in the
structure of (B,C)-torsor of µ(x) determines a morphism µ(x) −→ C |U according to (3.1.1).

The commutativity of the diagram follows then from the fact that the structure of (B,C)-torsor of µ(x) implies
that ν(y) = σ∗µ( f )(ν(x)). �

A different characterization of (A, B,C)-gerbes in terms of torsors over a morphism of gr-stacks will appear in
Section 6.1, when we will be discussing 2-gerbes bound by complexes (of gr-stacks).

3.3. Examples: Curvings

The main example we want to consider, is that of a curving on a O"
X -gerbe G equipped with a connective structure.

The concept, introduced by Brylinski [3], but attributed to Deligne, is the analogous of the curvature of a connection
on a line bundle.

G possesses a connective structure if it is a gerbe bound by O"
X

d log
−−→ Ω1

X . We can move one step forward and
consider instead the longer complex:

O"
X

d log
−−→ Ω1

X
d
−→Ω2

X . (3.3.1)

Definition 3.5. A curving on G is the structure of gerbe bound by the complex (3.3.1).
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According to Lemma 3.4, a curving on a gerbe G with connective structure C o will be given by a map

K (x) : C o(x) −→ Ω2
U

for each object x ∈ Ob GU , and open U → X , such that

K (x)(∇ + α) = K (x)(∇)+ dα,

where ∇ is a section of C o(x) and α is a section of Ω1
U . Moreover, if f : x −→ y is a morphism in GU , then the

commutative diagram in Lemma 3.4 translates into

K (y)( f∗(∇)) = K (x)(∇).

By direct comparison, we can see that these are exactly the properties of the curving listed in [3], hence our definition
agrees with the one in loc. cit.

It follows from the classification result above that we have a gerbe G equipped with connective structure and
curving defines a class in the hypercohomology group:

H2(X,O"
X

d log
−−→ Ω1

X
d
−→Ω2

X ) ' H3
D(X,Z(3)).

The isomorphism with the Deligne cohomology group follows from the quasi-isomorphisms:(
O"

X
d log
−−→ Ω1

X
d
−→Ω2

X

)
[−1]

'
−→

(
Z(3) −→ OX

d
−→Ω1

X
d
−→Ω2

X

)
,

the complex on the right-hand side being Z(3)•D.

4. 2-Gerbes: Main definitions

In this section we review some basic definitions and relevant facts about 2-gerbes here. The standard reference
is [12], which should be referred to for a complete treatment.

Recall that a 2-gerbe is a 2-stack, in particular a fibered 2-category, satisfying local non-emptiness and connectivity
requirements generalizing those of a gerbe. The general definition of fibered 2-categories can be found in [25].
Analogously to loc. cit., we will assume that given a fibration p : G −→ S of 2-categories, the base 2-category is in
effect a category regarded as a discrete 2-category—namely, one with all 2-arrows being identities. In other words,
S = 2—Cat(S), where S is a category. To avoid overburdening our notation, we will simply write our fibrations as
p : G −→ S, without risk of confusion. In the following, the category S will in fact be the site C/X , with all our
standing assumptions concerning C/X to be kept for 2-gerbes as well.

4.1. 2-Stacks

A 2-stack is a fibered 2-category p : G −→ S such that:

(1) 1-arrows and 2-arrows can be glued, a fact that can be succinctly stated by saying that for any two objects
x, y ∈ Ob GU over U ∈ Ob S, the fibered category HomU (x, y) is stack over S/U ;

(2) Objects can be glued, namely 2-descent on objects holds.

(A pre-2-stack is a fibered 2-category satisfying only the first condition above.)
Without entering into too many details, it is worthwhile making the gluing condition on objects more explicit.

Thus, let U be an object of S, and let (Ui → U ) be a cover as usual. The assignment of 2-descent data over U is the
assignment of a collection of objects xi ∈ Ob GUi such that there is a 1-arrow:

ϕi j : x j −→ xi

over Ui j and a 2-arrow (in fact, a 2-isomorphism):

x j φi j

��
αi jk

��xk

φ jk 33

φik

// xi
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over Ui jk such that the following compatibility condition holds:

αikl ◦ (αi jk ∗ ϕkl) = αi jl ◦ (ϕi j ∗ α jkl).

The assignment of the triple (xi , ϕi j , αi jk), is called 2-Descent data. Condition (2) above then means that there exists
an object x ∈ Ob GU with 1-arrows

ψi : xi −→ x

and 2-isomorphisms

xi ψi

��
χi j

��x j

φi j 22

ψ j

// x

satisfying the now obvious compatibility conditions with the isomorphisms αi jk . This is referred to by saying that the
2-descent data is effective.

4.2. 2-Gerbes

In words, a 2-gerbe G −→ S is a 2-stack in 2-groupoids which is locally non-empty and connected. A detailed
account of several variants of this definition of a 2-gerbe is given in the text [12]. Following loc. cit., the properties
characterizing a 2-Gerbe are the following:

(1) G is locally non-empty: assuming that S = C/X , there exists a cover U → X such that Ob GU is not empty.
(2) G is locally connected: for each x, y ∈ Ob GU , for some object U of S, there exists a cover ϕ : V → U such that

the set of arrows from xV to yV
9 is not empty.

(3) 1-arrows are weakly invertible: for any 1-arrow f : x → y in GU , U ∈ Ob G, there is an inverse g : y → x up to
two 2-arrows.

(4) 2-arrows are (strictly) invertible in GU .

There are different equivalent forms of the last two axioms, as well as local versions of all four to be obtained
by considering coverings of U , see [12] for more details. Here we only quote the fact that condition (3) above is
equivalent (if condition (4) is also satisfied) to:

(3′) Given two 1-arrows f : x → y and g : x → z in GU , there exists a 1-arrow h : y → z and a 2-arrow
α : h ◦ f ⇒ g.

Finally, a note of caution: although the stack HomU (x, y) is locally non-empty by condition (2), in general it will not
be connected, so that condition (3) does not quite imply that HomU (x, y) is a gerbe. This is the case when x = y for
fully abelian 2-gerbes, to be discussed below.

4.2.1. Gr-stacks of automorphisms
To conclude these remarks of preparatory nature, let us briefly discuss automorphisms of objects.
For any given object x ∈ Ob GU , the stack AutU (x) of self-arrows of x is a stack in groupoids equipped with a

strictly associative monoidal structure, that is a functor AutU (x) × AutU (x) −→ AutU (x) implementing a product
law on AutU (x). It follows from the 2-gerbe axioms that AutU (x) admits a choice of inverses, compatible with
descent, hence it is a group-like stack, or gr-stack, for short, cf. [13,12,26].

Analogously to the gerbe case, if A is a fixed gr-stack on S, we define a 2-A -gerbe to be a 2-gerbe G over S such
that for every object x ∈ Ob GU there is an equivalence

ax : AutU (x)
∼
−→A |U .

9 Note that given ϕ : V → U and an object x above U thanks to the axioms of a fibered 2-category we can speak of “the” object xV above V
with an arrow xV → x above ϕ up to 2-equivalence.
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4.3. Abelian 2-gerbes

A 2-A -gerbe to be abelian if the equivalences ax introduced above are natural in the sense specified in [12,
Definition 4.13]. As shown in loc. cit., this has the consequence that A is braided, that is, there is a commutativity
functor for the monoidal structure.

An additional commutativity condition is to assume that

A = TORS(A),

for a sheaf of abelian groups A over S. (Since A is abelian, this is a gr-stack under the standard contracted product of
A-torsors.)

As explained in loc. cit., these two requirements have the consequence that the gr-stack AutU (x) is a gerbe over
S/U , and in fact a neutral one, i.e. it is equivalent to TORS(A|U ), since it has the global object idx . Automorphisms
of 1-arrows are then equivalent to sections of the sheaf of groups A, as in [4]. If both commutativity conditions hold,
we commit a mild abuse of language and say that the 2-gerbe G is bound by the sheaf of abelian groups A, or that it
is a 2-A-gerbe, dropping the typographical reference to the gr-stack A .

It is by now standard that the fully abelian 2-gerbes, or 2-A-gerbes, are classified up to equivalence by the ordinary
cohomology group H3(X, A).

In what follows we will limit our consideration to abelian 2-gerbes which are not, however, necessarily fully
abelian.

4.3.1. Morphisms
As noted, a morphism between two 2-gerbes G and H is a cartesian 2-functor F : G −→ H between the underlying

2-stacks.
Suppose that G is a 2-A -gerbe and H is a 2-B-gerbe, and λ : A −→ B is a morphism of gr-stacks, where we

assume that both A and B are at least braided. By analogy with the case of gerbes, we will call F a λ-morphism if
the obvious commutative diagrams (up to 2-isomorphism, this time) are satisfied. In particular, this means that F must
be compatible with the morphisms ax in the sense that we have the following diagram:

A ut(x) //

ax

��

A ut(F(x))

bx

��

A |U
λ

//

νx

�	
B|U

for an appropriate isomorphism νx .
In particular, we are interested in the situation where a homomorphism δ : A −→ B of abelian groups is given, and

λ = δ∗ is simply the induced functor:

δ∗ : TORS(A) −→ TORS(B)

between the corresponding gr-stacks. In this case we will refer to F as a δ-morphism, with a mild abuse of language.
The salient property of a δ-morphism in this sense is that if a section a ∈ A|U corresponds to an automorphism of a
1-arrow f of GU , then the corresponding automorphism of F( f ) in HU will be δ(a) ∈ B|U .

4.3.2. Classification
As already mentioned, a 2-A-gerbe is classified by an element of the (ordinary) cohomology group H3(X, A): Let

us briefly recall here the well-known local calculation leading to the classification.
For simplicity, let us remain in the Čech setting, so let us once again consider a cover (Ui → X)i∈I of X . Now,

given a 2-gerbe G, let us choose a decomposition by selecting a collection of objects xi in GUi . There is a 1-arrow

ϕi j : x j → xi

between their restrictions to GUi j . Then axiom (3′) in Section 4.2, and the abelianness assumptions imply that there
exist 2-arrows such that:

αi jk : ϕi j ◦ ϕ jk =⇒ ϕik .
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Over a 4-fold intersection Ui jkl , we have two 1-arrows ϕi j ◦ ϕ jk ◦ ϕkl : xl → xi and ϕil : xl → xi and between them
two 2-arrows, namely αi jl ◦ (idϕi j ∗α jkl) and αikl ◦ (αi jk ∗ idϕkl ). Since 2-arrows are strictly invertible, it follows again
from the axioms that there exists a section ai jkl of A over Ui jkl such that

αi jl ◦ (idϕi j ∗α jkl) = ai jkl ◦ αikl ◦ (αi jk ∗ idϕkl ). (4.3.1)

This section is a 3-cocycle and the assignment G 7→ [a] gives the classification isomorphism.

5. 2-Gerbes bound by a complex

5.1. B-torsors

The notion of torsor under a gr-stack will play a significant role below. The definition has been given in full
generality in [14, (6.1)], [13], so here we will confine ourselves to only recalling the main points.

Let B be a gr-stack on C/X . Briefly, a stack in groupoids P will be a (right) B-torsor if there is a morphism of
stacks

m : P ×B −→P

compatible with the group law of B in the sense specified in loc. cit., and such that the morphism

m̃ = (pr1,m) : P ×B −→P ×P

is an equivalence. As in loc. cit., there will be an associativity natural isomorphism:

µx,b,b′ : (x · b) · b
′ ∼
−→ x · (b · b′),

where x · b stands for m(x, b). This isomorphism will have to satisfy the standard pentagon diagram.
Having so far defined what ought to be called a pseudo-torsor, we need to complete the definition by adding the

condition that there exists a cover U → X such that the fiber category PU is non-empty.
There are a few constructions for B-torsors that are generalizations of well-known ones for standard torsors which

we are going to recall now: cocycles and contracted products.

5.1.1. Contracted product of torsors
The notion of contracted product for torsors over a gr-stack is introduced in [14, Section 6.7].
If P (resp. Q) is a right (resp. left) B-torsor, the contracted product P ∧B Q is defined as follows. The objects

are pairs (x, y) ∈ Ob P ×Q. A morphism (x, y)→ (x ′, y′), however, is an equivalence classes of triples ( f, b, g),
where b ∈ Ob B, and f : x ·b→ x ′ and g : y → b · y′ are morphisms of P and Q, respectively. Two triples ( f, b, g)
and ( f ′, b′, g′) are equivalent if there is a morphism β : b→ b′ in B such that f = f ′ ◦ (x · β) and g′ = (β · y′) ◦ g.

Properties analogous to the familiar ones for ordinary torsors hold. For example, one has the isomorphism

(x · b, y)
∼
−→(x, b · y),

given by the pair (idx ·b, b, idb·y).
In the following we will be considering braided (and in fact, Picard) gr-stacks exclusively, hence the distinction

between left and right torsor will not matter. In principle, by analogy with the case of standard torsors over an abelian
group we could dispense with the notation for the contracted product and denote the product with the symbol P⊗Q,
instead. We will not do so, however.

5.1.2. Cocycles
A torsor P over a (not necessarily braided) gr-stack B can also be characterized by a cocycle with respect to a

cover.
Given a cover (Ui → X)i∈I , the torsor P has non-empty fiber categories over it. Thus choose objects

xi ∈ Ob PUi . Since by definition P is locally (i.e. over the cover) equivalent to B, it follows that we can obtain

isomorphism x j
∼
−→ xi · bi j , where bi j is an object of B over Ui j , and the isomorphism takes place in PUi j . (We are
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systematically ignoring the isomorphisms resulting from the pull-back functors.) By pulling back to Ui jk we obtain a
1-cocycle with values in B:

βi jk : bi j · b jk
∼
−→ bik . (5.1.1)

The isomorphisms βi jk in B|Ui jk turn out to satisfy the obvious compatibility condition on quadruple intersections
Ui jkl , which we do not explicitly write here. The pair (bi j , βi jk) is the 1-cocycle with values in the gr-stack B
determined by P .

5.1.3. B-torsors and B-gerbes
It arises from the general classification theory of 2-gerbes that TORS(B) is a 2-B-gerbe. Moreover, it follows from

the general discussion in [14, Section 7.2 and Proposition 7.3] that if B = TORS(B), then TORS(B) is equivalent to
GERBES(B), the 2-gerbe of B-gerbes over X .

It is possible to see this via the 1-cocycle pair (5.1.1) as follows. Recall that B = TORS(B) with B abelian, so we
obtain a “torsor cocycle” in the sense of [27]. It follows that the groupoids TORS(B)|Ui can be glued in the standard
way to give a B-gerbe.

Remark 5.1. The argument just outlined is of course not specific to B being abelian. Upon replacing TORS(B) with
BITORS(B) everything works in general.

Remark 5.2. The 1-cocycle written above coincides with Hitchin’s notion of “gerbe data,” [28]. The latter lacks the
categorical input, however.

5.2. Crossed modules of gr-categories

It was observed above that the complex δ : A −→ B of abelian groups ought to be considered as an abelian crossed
module, namely one where we impose strict commutativity on the associated gr-category. (That is, we demand it be
strictly Picard.)

It turns out that a similar pattern holds in the case of a crossed module of gr-categories in the sense of [13, Définition
2.2.8]. It requires that there exist additive functors

λ : A −→ B,  : B −→ E q(A )

such that the relations determined by the following diagrams hold:

B 

��
µ

��
A

λ
66

ıA
// E q(A )

B ×A
̂

//

1B×λ

��

A

λ

��

B ×B
ı̂B

// B

ν

�


where E q(A ) denotes the gr-stack of self-equivalences of A , ıA denotes the inner conjugation, and the top and
bottom horizontal arrows in the diagram to the right are the actions of B on A and on itself induced by  and the
inner conjugation.

Now observe that requiring the resulting group law on A ×B to be commutative (up to natural isomorphism),
entails that both A and B are braided, and that the action of B on A is trivial. Thus, an abelian crossed module of
gr-categories will simply be an additive functor

λ : A −→ B, (5.2.1)

between braided gr-categories. The same conclusions hold if we replace gr-categories with gr-stacks over C/X . We
will also refer to (5.2.1) as a complex of (braided) gr-stacks.

If both A and B have strict group laws, then they are the gr-categories associated with crossed modules, so we
obtain a “crossed module of crossed modules,” namely a crossed square, see [29,13]. Thus (5.2.1) reduces to the
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commutative square

A

δ

��

f
// B

σ

��

G u
// H

(5.2.2)

where the vertical arrows are the crossed modules associated with A and B, respectively, and the horizontal arrows,
as well as the composite diagonal one, are also crossed modules. There are other axioms, for which we refer the reader
to the treatment in loc. cit. We will not need them here, however, because if both A and B are strictly commutative,
their associated crossed modules become complexes of abelian groups, so that (5.2.2) becomes a commutative square
of homomorphisms of abelian groups, which is the situation we will be interested in. Thus “crossed square” will be
meant as a synonym for a morphism of complexes of abelian groups.

5.3. 2-(A ,B)-gerbes

We are now going to consider the analog of Definition 2.1 for abelian 2-gerbes. We proceed by giving a direct
generalization of Definition 2.1, where we replace the complex A→ B with the length 2-complex (that is a morphism)
of gr-stacks, which we assume braided, heeding to the principle that we climb the ladder of the higher algebraic
structures by promoting the coefficients of cohomology from sheaves of (abelian) groups, to gr-stacks, etc.

Definition 5.3. A 2-gerbe bound by the complex (5.2.1) is a 2-A -gerbe G over C/X , equipped with a λ-morphism:

J : G −→ TORS(B).

A 2-gerbe bound by the complex (5.2.1) will be called a 2-(A ,B)-gerbe. (Notice that TORS(B) is a 2-B-gerbe in
an obvious way, hence the notion of λ-morphism makes sense.)

If G is actually a 2-A-gerbe, and B = TORS(B), where B is a sheaf of abelian groups over C/X , with a
homomorphism δ : A −→ B, we call it a 2-(A, B)-gerbe, or a 2-gerbe bound by A → B. (The morphism J in
the definition is a λ = δ∗-morphism.)

For a 2-(A, B)-gerbe, owing to the last remark in Section 5.1, Definition 5.3 can be recast in the form used in [7,
Definition 5.5.1] (in a special case), which we state here as a lemma:

Lemma 5.4. The datum of a 2-(A, B)-gerbe is equivalent to that of a Cartesian 2-functor

J : G −→ GERBES(B)

which is a δ-morphism of 2-gerbes.

Morphisms of 2-gerbes bound by a complex of length 2 can be defined by promoting Definition 2.5 to using braided
gr-stacks and then (for those coming from abelian groups) using Lemma 5.4. Specifically, analogously to what was
done in Section 2.1, consider the square of gr-stacks:

A
λ //

φ

��

B

ψ

��

A ′
λ′

//



�

B′

(5.3.1)

Definition 5.5. A (ϕ, ψ)-morphism (F, µ) : (G, J ) −→ (G′, J ′) consists of:

(1) a ϕ-morphism F : G −→ G′;
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(2) a natural transformation of 2-functors:

µ : ψ∗ ◦ J =⇒ J ′ ◦ F : G −→ TORS(B′),

where ψ∗ : TORS(B) −→ TORS(B′) is induced from ψ in the obvious way.

In particular, the special case where (5.3.1) is induced by the morphism of complexes

( f, g) : (A, B, δ) −→ (A′, B ′, δ′)

of abelian groups will be referred to as an ( f, g)-morphism of the 2-(A, B)-gerbe (G, J ) to the 2-(A′, B ′)-gerbe
(G′, J ′). Using Lemma 5.4, condition (2) in Definition 5.3 says that we have a natural transformation of 2-functors

µ : g∗∗ ◦ J =⇒ J ′ ◦ F : G −→ GERBES(B ′),

where g∗∗ : GERBES(B) −→ GERBES(B ′) is induced from g : B −→ B ′.
We speak of a (A ,B)-morphism if A ′ = A and B′ = B and both ϕ and ψ are identities. We shorten this to

(A, B)-morphism if both gr-stacks arise from abelian groups A and B in the usual way. We speak of an equivalence
if the underlying 2-functor F is an equivalence of 2-stacks.

5.4. Classification I

The classification of 2-(A, B)-gerbes follows the usual pattern. The following theorem generalizes previous results
on connective and Hermitian structures on 2-gerbes, see [5–7].

Theorem 5.6. Let δ : A→ B be a complex of abelian groups over C/X. Equivalence classes of 2-(A, B)-gerbes are
classified by the elements of the (ordinary) hypercohomology group

H3(X, A→ B).

Proof. We only need to sketch the proof, for the details can be lifted from the above quoted references and adapted to
the present situation without difficulty. Therefore let us only indicate how to obtain the cocycle representing the class
of a given 2-(A, B)-gerbe.

Let us work in the Čech setting, so let (Ui → X)i∈I be a cover as usual. Let (G, J ) be a 2-(A, B)-gerbe over X ,
and let xi , ϕi j , and αi jk be objects, morphisms, and 2-morphisms providing a full decomposition of G relative to the
chosen cover as in Section 4.3.2. In addition, let us pick a decomposition of the gerbes J (xi ) over Ui by choosing
objects ri and arrows ξi j : J (ϕi j )(r j )→ ri .

Over Ui jk we obtain the following diagram in J (xi )|Ui jk :

J (ϕi j ) ◦ J (ϕ jk)(rk)

��

J (ϕi j )(ξ jk )
// J (ϕi j )(r j )

ξi j
// ri

bi jk

��
J (ϕi j ◦ ϕ jk)(rk)

J (αi jk )(rk )
// J (ϕik)(rk)

ξik

// ri

which defines the section bi jk ∈ Aut(ri ) ' B|Ui jk . (The left vertical arrow comes from the natural transformation
built from the definition of 2-functor [25].)

Pulling back to Ui jkl we obtain a cubical diagram determined by the objects ri , . . . , rl as follows: four faces are
built from copies of the previous (commutative) diagram. The top face is:

J (ϕi j ) ◦ J (ϕ jk) ◦ J (ϕkl)(rl) //

��

J (ϕi j ) ◦ J (ϕ jl)(rl)

��

J (ϕik) ◦ J (ϕkl)(rl) // J (ϕil)(rl)

(5.4.1)
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Note that each arrow results from the composition of the 2-arrow inherent in the definition of 2-functor J and one of
the 2-arrows J (αi jk), etc. Finally, the diagram will have a bottom face given by:

ri

bi jk

��

b jkl
// ri

bi jl

��
ri

bikl

// ri

where the top arrow results from the automorphism r j
b jkl
−−→ r j pushed forward along J (ϕi j ) to obtain an automorphism

of ri . Now, the top face (5.4.1) only commutes up to an automorphism of a 2-arrow given by relation (4.3.1), and
using the fact that J is a δ-morphism, we have:

b jklb
−1
ikl bi jlb

−1
i jk = δ(ai jkl).

Together with the cocycle relation satisfied by ai jkl (consequence of (4.3.1)), it gives the desired cocycle relation for
(ai jkl , bi jk).

To conclude, let us hint at how the procedure is reversed. The first step is to glue the local trivial 2-gerbes
GERBES(A|Ui ) via ai jkl . This is standard, see [12,4,5]. Then we define a 2-functor J by assigning to each object
xi over Ui , i.e. an A|Ui -gerbe, the trivial B|Ui -gerbe J (xi ) = TORS(B|Ui ). Over Ui jk , the section bi jk is used as an
automorphism of an object ri of J (xi ), and the cocycle condition above ensures compatibility. �

Using the results in Section 2.1 about (A, B)-gerbes we can informally reword the proof of the theorem by noticing
that the representative cocycle of the 2-(A, B)-gerbe G was given in terms of (A, B)-gerbes. We want to make this
observation precise.

To this end, let us first observe that if δ : A→ B is a complex of sheaves of abelian groups, then G = TORS(A, B),
introduced in Section 3.1, is a gr-stack: the group law is given by the standard contracted product, so for two pairs
(P, s) and (Q, t) we have (P, s)⊗ (Q, t) = (P⊗Q, st). In fact G is the gr-stack associated with the homomorphism
A→ B viewed as an abelian crossed module. Thus,

G = TORS(A, B) ' (A
δ
−→ B)˜,

cf. [14,12].
The following intermediate results (in the next proposition and theorem), are also of independent interest, as they

provide an alternative characterization of (A, B)-gerbes.

Proposition 5.7. Equivalence classes of G = TORS(A, B)-torsors are classified by the hypercohomology group
H2(X, A→ B).

Proof. Let P be a G -torsor. According to Section 5.1.3 the choice of objects xi in the fiber categories PUi with
respect to a cover (Ui → X)i∈I , determines a pair (gi j , γi jk) with values in G satisfying the cocycle identity (5.1.1).

Given the specific nature of G , each gi j is an (A|Ui j , B|Ui j )-torsor, namely it corresponds to a pair (Pi j , ti j ), where

Pi j is an A-torsor over Ui j , and ti j is a section of Pi j ∧
A B. Moreover, γi jk : Pi j ⊗ Pjk

∼
→ Pik (suitably restricted to

Ui jk), and δ∗(γi jk)(ti j t jk) = tik .
It is perhaps better not to assume at this point that the torsor Pi j is trivialized, but rather consider the full blown

hypercover (Uα
i j ,Ui ), where (Uα

i j → Ui j )α∈Ai j is a cover, and assume that sαi j is a trivializing section of Pi j over Uα
i j .

This choice gives rise to sections aαβγi jk of A|
Uαβγ

i jk
and bαi j of B|Uα

i j
, in the usual way:

γi jk(s
α
i j ⊗ sβjk) = sγikaαβγi jk , ti j = (s

α
i j ∧ 1)bαi j .

Then, using s · a ∧ 1 = s ∧ δ(a) = (s ∧ 1) · δ(a), it is easily checked that (aαβγi jk , bαi j ) satisfies the cocycle condition
with values in the complex A→ B with respect to the chosen (hyper)cover. The rest of the details (to check that this
is well-defined on classes) are routine and left to the reader.
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Conversely, given a cocycle with values in A → B with respect to the above hypercover, we can reconstruct
(A|Ui j , B|Ui j )-torsors (Pi j , ti j ) satisfying the cocycle condition. We can then glue the various GUi using this cocycle
to obtain a G -torsor on X . Details are again left to the reader. �

Now we consider the trivial 2-gerbe TORS(G ) of torsors over the gr-stack G . Also recall that GERBES(A, B) denotes
the fibered 2-category of (A, B)-gerbes over X .

Proposition 5.7, and the fact that the same hypercohomology group classifies (A, B)-gerbes as well, suggest the
following theorem, which is an extension, in the abelian context, of [14, Proposition 7.3]. To prepare the statement,
observe that there is an action

TORS(A)× TORS(A, B) −→ TORS(A)

given on objects by

(Q, (P, t)) 7−→ (P ⊗ Q),

where (P, t) is an (A, B)-torsor, and Q is an A-torsor. Of course, since A is an abelian group, TORS(A) is itself a
gr-stack. Also, by the local triviality of torsors, an A-torsor is locally isomorphic to an (A, B)-torsor, thereby making
TORS(A) a TORS(A, B)-torsor.

Theorem 5.8. Let G = TORS(A, B). There is an equivalence (of 2-stacks)

F : TORS(G )
∼
−→GERBES(A, B)

given by:

F : P 7−→ TORS(A)∧G P.

In fact, the equivalence in the proposition is an equivalence of neutral (or trivial) 2-gerbes bound by G .

Proof. We will confine ourselves to give a description of the 2-functor F , as well as its quasi-inverse, following
loc. cit., and leave the verification of the details to the reader.

Given a cover U → X , by definition we have an equivalence

PU
∼
−→GU = TORS(A|U , B|U ).

Moreover, observe that for any gr-stack G and for any stack in groupoid with G -action P , we have an equivalence

P
∼
−→P ∧G G x 7−→ (x, oG ),

where oG is the unit object in G . By the same argument in the proof of [14, Proposition 7.3], we have the equivalence:

TORS(A|U )
∼
−→ TORS(A|U )∧

GU GU
∼
−→ TORS(A|U )∧

G |U PU ,

showing that TORS(A)∧G P is locally equivalent to TORS(A), hence it is an A-gerbe. We make it into an (A, B)-
gerbe by defining

µ
def
= δ∗ ∧ 1 : TORS(A)∧G P −→ TORS(B).

This is well-defined, since locally the definition dictates (Q, (P, t)) 7→ δ∗(Q) and, using the properties of the
contracted product, we have

(Q, (P, t))
∼
−→(Q · (P, t), (A, 1)) = (P ⊗ Q, (A, 1)),

so that

(Q, (P, t)) 7−→ δ∗(P ⊗ Q) ' δ∗(P)⊗ δ∗(Q) ' δ∗(Q),

since δ∗(P) ' B, by definition of (A, B)-torsor. (The pair (A, 1) represents the unit element in G = TORS(A, B).)
Conversely, let (Q, µ) be an (A, B)-gerbe. Since it is in particular an A-gerbe, there is an equivalence

Q|U ' TORS(A|U )
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with respect to a cover U → X , so that locally the structure of (A, B)-gerbe becomes

TORS(A|U )
µ|U
−−→ TORS(B|U ).

In turn this is isomorphic to δ∗, the “change of structure group” functor. To see this, consider the image E = µ(A) of
the trivial torsor. Since µ commutes with the product of torsors (since Q1⊗Q2 ' Q1 ∧

A Q2 for A abelian), it follows
from Q ' Q ⊗ A that E ' B, the trivial B-torsor. By local triviality over U and the fact that µ is a δ-morphisms, it
follows that µ(Q) ' δ∗(Q).

A calculation identical to the one carried out to show that δ∗ ∧ 1 is well-defined, shows that if (P, t) is an (A, B)-
torsor, then the morphism

P ⊗−: TORS(A|U ) −→ TORS(A|U )

preserves the functor δ∗, namely the diagram

TORS(A|U )
P⊗−

//

δ∗
%%

TORS(A|U )

δ∗
yy

TORS(B|U )

commutes. In other words, tensoring with an (A, B)-torsor is locally a morphism of (A, B)-gerbes. Moreover, since
any equivalence ν : TORS(A|U ) → TORS(A|U ) can be realized as Q 7→ Pν ⊗ Q for an appropriate torsor Pν ,
compatibility with the previous diagram forces Pν to be an (A, B)-torsor. Denoting by E q the stack of equivalences,
the foregoing proves that the correspondence

Q 7−→ E q(TORS(A),Q)

gives the required quasi-inverse equivalence to F . �

Remark 5.9. The theorem gives another perspective on the canonical morphism introduced in Section 2.1.2. Namely,
if we have a morphism (5.2.1) of Picard gr-stacks coming from the crossed square (5.2.2), from the theorem we obtain
a morphism

GERBES(A,G) −→ GERBES(B, H)

as the conjugate FB ◦ λ∗ ◦ F∗A of the induced morphism

λ∗ : TORS(A ) −→ TORS(B),

where F• is the appropriate equivalence from Theorem 5.8 and F∗• its quasi-inverse. It is immediately seen that this
morphism corresponds to the canonical morphism ( f, u)∗.

We return to 2-gerbes. The following proposition generalizes Section 4.3.2 and Theorem 5.6, and it can be considered
as the analog of Proposition 5.7 to the case of 2-gerbes.

Proposition 5.10. Let G = TORS(A, B). Equivalence classes of 2-G -gerbes are classified by the hypercohomology
group H3(X, A→ B).

Proof. Most of the ingredients of the proof can be extracted from the cocycle analysis in [12], c.f. in particular Section
4.7.

Let G be a 2-G -gerbe. Given a cover (Ui → X)i∈I , the choice of objects xi ∈ GUi determines, by analogy with
Section 5.1.3, G -torsors Ei j =Hom(x j |Ui j , xi |Ui j ) over Ui j . Note that Ei j is a G -torsor, rather than a bi-torsor, thanks
to the fact that G is braided. The torsors Ei j satisfy the following cocycle condition: we have equivalences

gi jk : Ei j ∧
G E jk

∼
−→Eik (5.4.2a)

and natural transformations (isomorphisms):

νi jkl : gikl ◦ (gi jk ∧ 1) =⇒ gi jl ◦ (1 ∧ g jkl) (5.4.2b)
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arising from the pentagonal 2-cell determined by starting at(
Ei j ∧

G E jk

)
∧

G Ekl ,

and associating with the help of (5.4.2a). Moreover, the morphisms νi jkl satisfy the appropriate coherence condition
extracted from (5.4.2b) over Ui jklm .

Notice that a section of, say, Ei j over Uα
i j → Ui j is a 1-arrow f αi j : x j |Uα

i j
→ xi |Uα

i j
, and similarly for the other

indices. Therefore the restriction gαβγi jk of gi jk to Uαβγ

i jk can be identified with an object of G |
Uαβγ

i jk
. The same reasoning

leads to the identification of the restriction of νi jkl , with the appropriate decoration of upper indices, with an arrow of
(a corresponding restriction of) G . Finally, we note that the equivalence in Eq. (5.4.2a) is given by the composition of
1-arrows and 2-arrows in G. Thus Eqs. (5.4.2) can be interpreted as giving a cocycle condition for (gi jk, νi jkl) with
values in G .

Now, since G = TORS(A, B), is the stack associated with the abelian crossed module (i.e. complex of abelian
groups) δ : A→ B, the corresponding sheaf of groupoids will be

A × B
s //

t
// B

with source and target maps given by s(a, b) = b and t (a, b) = δ(a)b, so that (neglecting the upper indices) the
object gi jk can be identified with a section bi jk of B, and the morphism νi jkl with a section ai jkl of A. Now (5.4.2b)
reads:

δ(ai jkl)bi jkbikl = b jklbi jl

which is the desired relation. Putting it together with the cocycle condition for ai jkl determined by the coherence
condition on the νi jkl alluded to above, provides the required 3-cocycle with values in the complex A→ B. �

Methods similar to the approach of the proof of Theorem 5.8 give the following theorem. We omit the proof.

Theorem 5.11. Again let G = TORS(A, B). Then a 2-G -gerbe is equivalent to a 2-(A, B)-gerbe, where the
equivalence takes place in the appropriate 3-category.

The upshot of the foregoing unfortunately rather lengthy discussion can be summarized as follows. Given a complex
of abelian groups δ : A→ B, the following two structures on a 2-A-gerbe G are equivalent:

(1) 2-gerbe bound by δ : A→ B, and:
(2) 2-gerbe bound by G = TORS(A, B).

They correspond to the following crossed squares of the type (5.2.2):

item 1:

A
δ //

��

B

��

1 // 1

item 2:

A //

δ

��

1

��

B // 1

where for case (1) we consider A and B as crossed modules A→ 1 and B → 1, whereas case (2) corresponds to the
crossed module λ : G → H where H is associated with 1→ 1. The equivalence can be traced to the symmetry of
the crossed square.

Next, we are going to explore the case when the crossed square (5.2.2) is non-trivial.

5.5. Classification II

Our first step is to address the case of a 2-gerbe bound by a crossed module of braided gr-stacks (5.2.1) in greater
generality than in the preceding sections. Note that there is an obvious induced map:

λ∗ : TORS(A ) −→ TORS(B), (5.5.1)

given by P →P ∧A B. It is convenient to have the following definition at hand:
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Lemma–Definition 5.12. Given a cover UX = (Ui → X)i∈I , a 1-cocycle with values in (5.5.1) is the datum of
A -torsors Ei j over Ui j and B-torsors Fi over Ui , such that the cocycle condition (5.4.2) holds for the Ei j ’s, and
moreover there are equivalences of B-torsors

ξi j : λ∗(Ei j )∧
B F j

∼
−→Fi (5.5.2a)

and natural transformations (isomorphisms):

mi jk : ξi j ◦ (1 ∧ ξ jk) =⇒ ξik ◦ (λ∗(gi jk) ∧ 1). (5.5.2b)

The natural transformations mi jk are subject to the following coherence condition:

ξil ∗ λ∗(νi jkl) ◦ mi jl ∗ (1 ∧ λ∗(g jkl) ∧ 1) ◦ ξi j ∗ m jkl

= mikl ∗ (λ∗(gi jk) ∧ 1 ∧ 1) ◦ mi jk ∗ (1 ∧ 1 ∧ ξkl). (5.5.3)

Remark 5.13. An easier (but less precise) way of displaying (5.5.3) is to ignore the pastings with the identity 2-
arrows, so that we have:

λ∗(νi jkl) ◦ mi jl ◦ m jkl = mikl ◦ mi jk .

Proof. The calculations are tedious, but entirely straightforward. We will content ourselves to note that one has to
form the standard cube of morphisms ξi j , etc. starting from

λ∗

(
Ei j ∧

A (E jk ∧
A Ekl)

)
∧

B Fl (5.5.4)

and ending at Fi , modulo the association isomorphisms for the contracted product, which have been ignored in Eq.
(5.5.3). Then (5.5.3) is the result of composing the faces of this cube. Note that in (5.5.3) there are five terms, since
one of the faces will be strictly commutative, namely the one corresponding to contracting the first two, and the second
two terms in (5.5.4). �

We complement the definition of 1-cocycle with the notion of equivalence as follows:

Definition 5.14. Two 1-cocycles (Ei j ,Fi ) and (E ′i j ,F
′

i ) with values in (5.5.4) are equivalent if there exist A |Ui -
torsors Qi over Ui such that there are equivalences:

E ′i j ∧
A Q j

∼
−→Qi ∧

A Ei j (5.5.5a)

λ∗(Qi )∧
B Fi

∼
−→F ′i . (5.5.5b)

The following is a mild extension of the statement in [13, 4.1.11] in the braided case.

Theorem 5.15. Equivalence classes of 2-(A ,B)-gerbes are classified by the set

H1(X, TORS(A )→ TORS(B)),

namely the (pointed) set of equivalence classes of 1-cocycles in Lemma–Definition 5.12 under the equivalence of
Definition 5.14.

Proof. Let G be a 2-(A ,B)-gerbe. Since it is in particular a 2-A -gerbe, the choice of objects xi ∈ Ob GUi with
respect to an open cover UX = (Ui → X)i∈I will generate a 1-cocycle {Ei j } with values in TORS(A ), as in the proof
of Proposition 5.10, Eqs. (5.4.2). This part and the rest of the cocycle analysis of the 2-gerbe G is as in [12], especially
Section 4.7, with the additional hypothesis that we are in the braided case (so that we are in the “decoupled” situation).
Full details will be found in loc. cit.

The new part is the one related to the extra structure given by the 2-functor

J : G −→ TORS(B),
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as part of the definition of 2-(A ,B)-gerbe. Using J , for each object xi we obtain a B-torsor Fi
def
= J (xi ). Now, recall

that Ei j =Hom(x j |Ui j , xi |Ui j ). Objects and arrows of Ei j over Uα
i j → Ui j correspond to 1-arrows between x j |Uα

i j
and

xi |Uα
i j

and 2-arrows between them. Via J , we get equivalences and natural isomorphisms between the corresponding
torsors F j and Fi . In short, there is an equivalence:

Ei j
∼
−→Hom(F j ,Fi ),

where the Hom on the right-hand side denotes the category of morphisms of torsors (defined e.g. as in [14, Section 6]).
That is, it is the Hom in TORS(B). In turn, this equivalence can be written in the form of Eq. (5.5.2a), using the
correspondence

f αi j 7−→ [y 7−→ λ∗( f αi j )(y)] ' λ∗( f αi j ) ∧ y 7−→ λ∗( f αi j )(y),

where f αi j is an object of Ei j , i.e. 1-morphism of G, over Uα
i j , and similarly for 2-arrows. Here we have also used the

fact that J is a λ-morphism, therefore an A -torsor P corresponds to λ∗(P) =P ∧A B.
The inverse correspondence is obtained by generalizing the standard gluing of local trivial 2-gerbes TORS(A |Ui )

in a way analogous to the proof of Theorem 5.6. Namely, given a 1-cocycle (Ei j ,Fi ), first we glue TORS(A |U j )|Ui j

with TORS(A |Ui )|Ui j via Ei j by

P 7−→P ∧A Ei j ,

and verify that this is coherent thanks to Eqs. (5.4.2). Thus we obtain a 2-A -gerbe G, and, as a byproduct, this
procedure gives a collection of objects xi providing the labeling with respect to which the newly obtained 2-gerbe G
is represented by the cocycle Ei j . We then define J as:

J |Ui : GUi ' TORS(A |Ui ) −→ TORS(B|Ui )

by assigning to xi the B-torsor Fi . More generally, to any object of GUi , i.e. to any A |Ui -torsor P , we assign the
B|Ui -torsor

λ∗(P)∧B Fi .

We leave to the reader the task to verify that the two constructions are the inverse of one another.
Finally, given a 2-(A ,B)-gerbe, a second collection of objects {yi } subordinated to the same cover determines a

new cocycle (E ′i j ,F
′

i ). Moreover, for each i ∈ I we have the A |Ui -torsor Qi =Hom(xi , yi ). It is easily verified that
the collection {Qi } satisfies both Eqs. (5.5.5). �

When the coefficient complexes of braided stacks come from complexes of abelian groups the previous theorem can
be rephrased in terms of ordinary hypercohomology. More precisely, we have the following statement.

Theorem 5.16. If the braided gr-stacks A and B are strict and correspond to abelian crossed modules A→ G and
B → H, respectively, then equivalence classes of 2-(A ,B)-gerbes are classified by the (ordinary) hypercohomology
group

H3(X, A→ B ⊕ G → H),

namely the coefficient complex is the cone (shifted by 1) of the abelian crossed square (5.2.2).

Proof. We will need to show how to extract an ordinary cocycle with value in the cone of (5.2.2) from the abstract
cocycle of Theorem 5.15.

Let A = TORS(A,G) and B = TORS(B, H) with complexes δ : A → G and σ : B → H and homomorphisms
f : A→ B and u : G → H arranged to make the square (5.2.2). The corresponding (sheaf of) crossed module(s) is:

A × G

s
��

t
��

( f,u)
// B × H

s
��

t
��

G u
// H
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where in both cases the source and target maps s and t are as in the proof of Proposition 5.10. Thus the additive functor
λ : A → B is induced (after having taken the associate stack functor) by the pair ( f, u).

After having gone through these recollections, let us consider a 2-(A ,B)-gerbe G, and let us once again choose a
cover UX = (Ui → X), and objects xi ∈ Ob GUi . By Theorem 5.15, we obtain a 1-cocycle (Ei j ,Fi ) with values in
the complex (5.5.1) satisfying Eqs. (5.4.2) and (5.5.2). Our first task is to complement the proof of Proposition 5.10,
and obtain a 1-cocycle with values in the complex λ : A −→ B itself.

To this end, we will need to decompose the torsors Ei j as well as Fi with respect to some choice of objects,
and then apply the reasoning preceding Eq. (5.1.1). More precisely, consider objects f αi j and yi

α
j , of Ei j and Fi ,

respectively, given (Uα
i j → Ui j )α∈Aαi j

. (Similarly, we denote by y j
α

i an object of F j over Uα
i j .) Then, since Fi is a

B-torsor, the morphism ξi j in Eq. (5.5.2a) translates into

( f αi j )∗(y j
α

i ) ' yi
α

j · h
α
i j , (5.5.6)

where hαi j is an object of B over Uα
i j . (Here we have used the notation ( f αi j )∗ = J ( f αi j ).) Moreover, yi

α
j and yi

β
k are

related by:

yi
α

j ' yi
β

k · q
βα
ki j , (5.5.7)

with qβαki j an object of B over Uαβ
i jk . It is easily seen that these new objects satisfy the identity (up to isomorphism):

qβαki j · q
αγ

j il ' qβγkil . (5.5.8)

For the part of the cocycle involving the Ei j ’s alone, subject to Eqs. (5.4.2), our choice of objects determines an object

gαβγi jk of A obtained from Eq. (5.4.2a) in the standard way:

f αi j ∧ f βjk 7−→ f αi j ◦ f βjk ' gαβγi jk ◦ f γik .

(Recall that the map gi jk is just a composition of 1-arrows of G.) Moreover, still using the arguments in [12], starting
from Eq. (5.4.2b) we arrive at the morphism in A :

ν
αβδγ ηε

i jkl : gαβγi jk · g
γ δε

ikl
∼
−→ gβδηjkl · g

αηε
i jl . (5.5.9a)

To translate Eq. (5.5.2b), compute the composition over Uαβγ

i jk :

( f αi j ◦ f βjk)∗(yk
β

j )

in the two possible ways. A standard calculation, where we use (5.5.6) and (5.5.7), yields the sought-after arrow in B:

mαβγ

i jk : hαi j q
αβ
i jkhβjk

∼
−→ λ(gαβγi jk )q

αγ

j ikhγikqγβik j . (5.5.9b)

This arrow in turn satisfies a cocycle condition, which is the translation of Eq. (5.5.3). We arrive at it by considering
the expression

hαi j q
αβ
i jkhβjkqβδjklh

δ
kl ,

which would correspond to ξi j◦(1∧ξ jk)◦(1∧1∧ξkl), and computing it in the two possible obvious ways using (5.5.9b),
the braiding of B – and the help of (5.5.8). The calculation itself proceeds according to the techniques expounded
in [12], therefore we will not reproduce it here. The result is that the arrows mαβγ

i jk satisfy the cocycle condition:

λ(ν
αβδγ ηε

i jkl ) ◦ mγ δε

ikl ◦ mαβγ

i jk = mαηε
i jl ◦ mβδη

jkl . (5.5.9c)

Of course this identity holds modulo the obvious isomorphisms arising from the association and braiding functors in
B, which we have silently ignored, as well as the pull-back functors between different fiber categories.

The cocycle with values in the complex λ : A → B we have obtained comprises the quintuple:(
hαi j , qαβi jk,mαβγ

i jk , gαβγi jk , ν
αβδγ ηε

i jkl

)
(5.5.10)
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subject to Eqs. (5.5.9) plus the cocycle condition on the terms ναβδγ ηεi jkl arising from the coherence condition on the
maps (5.4.2b). We refrain from displaying such conditions here.

Now let us use the fact that both the gr-stacks A and B are strict and in fact associated with crossed modules.
From the recollections at the beginning we have that in the above quintuple gαβγi jk will be a section of the abelian group

sheaf G, hαi j and qαβi jk are both sections of H , whereas the arrows mαβγ

i jk and ναβδγ ηεi jkl will correspond to sections of B

and A, respectively denoted bαβγi jk and aαβδγ ηεi jkl , satisfying the (strict) identities:

δ(aαβδγ ηεi jkl ) · gαβγi jk · g
γ δε

ikl = gβδηjkl · g
αηε
i jl , (5.5.11a)

σ(bαβγi jk ) · h
α
i j · q

αβ
i jk · h

β
jk = u(gαβγi jk ) · q

αγ

j ik · h
γ

ik · q
γβ

ik j , (5.5.11b)

f (aαβδγ ηεi jkl ) · bγ δεikl · b
αβγ

i jk = bαηεi jl · b
βδη
jkl . (5.5.11c)

To these equations we have to add the condition satisfied by the aαβδγ ηεi jkl as a consequence of the identity satisfied by

the arrows ναβδγ ηεi jkl .
It is just a matter of using the definition of the mapping cone of a complex to realize that (5.5.11) express the

condition for the quintuple(
hαi j , qαβi jk, bαβγi jk , gαβγi jk , aαβδγ ηεi jkl

)
(5.5.12)

to define a cocycle of degree 3 with values in the complex

A
( f,δ)
−−→ B ⊕ G

σ ·u−1

−−−→ H, (5.5.13)

with A placed in degree 0. This finishes the proof. �

Remark 5.17. Ignoring the intimidating upper indices relative to the hypercover used in the proof allows us to set
qαβi jk = 1 so that Eqs. (5.5.11), plus the cocycle identity on ai jkl , will assume the standard form for a Čech cocycle of
degree 3 with values in (5.5.13).

Remark 5.18. The proof of Theorem 5.16 actually gives slightly more, in that it gives the 3-cocycle with values in the
complex λ : A → B corresponding to the torsor 1-cocycle with values in (5.5.1), regardless of whether the involved
(braided) gr-stacks are associated with crossed modules.

Remark 5.19. The statement (but not the proof) of Theorem 5.16 subsumes those of Theorem 5.6 and
Proposition 5.10.

Remark 5.20. The cocycle identities (5.5.11) satisfied by the quintuple (5.5.12) are symmetric under the exchange

bαβγi jk ←→ gαβγi jk ,

and the corresponding exchanges f ↔ δ and σ ↔ u. This symmetry rests upon that of the crossed square (5.2.2)
determined by the crossed module of strict gr-categories under consideration. Thus, calling P the crossed
square (5.2.2), a 2-gerbe G satisfying the hypotheses of Theorem 5.16 ought be more properly called a 2-P-gerbe.

Let us also observe that the situation described by the hypotheses of Theorem 5.16 has another interesting subcase.
Namely, we can consider a complex of length 3 as it was done is Section 3, and then define the notion of a 2-gerbe
bound by this complex. This is clearly possible using Theorem 5.16 by setting G = 1 (or B = 1). Thus we can state
the following definition, generalizing Definition 3.1.

Definition 5.21. Let A
δ
−→ B

σ
−→C be a complex of (sheaves of) abelian groups on C/X . A 2-(A, B,C)-gerbe is a

2-A-gerbe G equipped with a structure of 2-(A ,B)-gerbe where A = TORS(A) and B = TORS(B,C).

In the previous definition A is the gr-stack associated with the abelian group A viewed as a crossed module A→ 1.
The additive functor λ is thus determined by the pair (δ, 1). Of course, up to a trivial isomorphism on the resulting
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cohomology group, we could have chosen the combination A = TORS(A, B), B = TORS(1,C) due to the symmetry
of the two resulting crossed squares.

In the end, one outcome of the material expounded in this section is that the theory of 2-(A ,B)-gerbes can account
for 2-gerbes bound by complexes of abelian groups which are in fact of length 3. It is particularly relevant, as we will
see in the applications to Hermitian Deligne cohomology further below, that hypercohomology groups with values in
the cone of a square can naturally be obtained in this framework.

Two issues however suggest to push this circle of ideas a little further. On the one hand, it is natural to ask
whether Definition 5.21 admits a “naive” generalization by simply replacing groups with gr-stacks. On the other
hand, capturing the geometric meaning of the hypercohomology groups with values in the complex (1.2.11) requires
that we have a theory of 2-gerbes bound by complexes of the appropriate length, which cannot be obtained from what
we have right now.

We will address the issue in Section 6.

5.6. Examples

We review here a few fairly standard examples to illustrate the foregoing theory. In fact, the following examples are
the 2-gerbe counterpart of the examples presented in Sections 2.2 and 2.3. The analysis of more interesting examples
will be deferred until the last section dedicated to the interpretation of certain Deligne cohomology groups.

X is an algebraic manifold, and we work with the standard site determined by Xan (see above).

5.6.1. Connective structures (or “concept of connectivity”)
This is the classical example due to Brylinski and McLaughlin (see [4–6]).
Let G be a 2-gerbe over X . As expected, a connective structure (or “concept of connectivity” as it was originally

called) on G is a structure of 2-gerbe bound by the complex

O"
X

d log
−−→ Ω1

X

in the sense of Definition 5.3 and Lemma 5.4. Thus we retrieve Brylinski and McLaughlin’s original definition,
wherein the connective structure is seen as a 2-functor assigning to each local object of G over U a corresponding
Ω1

U -gerbe. In light of Proposition 5.10 and Theorem 5.11 G can just as well be considered as a 2-gerbe bound by the
gr-stack of (O"

X ,Ω
1
X )-torsors.

From the classification results (see loc. cit. for the original arguments) we have that 2-gerbes with this connective
structure are classified by the hypercohomology group:

H3(X,O"
X

d log
−−→ Ω1

X ) ' H4
D(X,Z(2)).

5.6.2. Hermitian structures
This version of the idea of Hermitian structure was introduced in [7] by analogy with the notion of connective

structure in the above mentioned works by Brylinski and McLaughlin. Thus, a 2-O"
X -gerbe G over X with Hermitian

structure is a 2-gerbe bound by the complex:

O"
X
|·|

2

−→ E +X ,

or, alternatively, by the gr-stack of (O"
X ,E

+

X )-torsors. Equivalence classes of such 2-gerbes are classified by the
Hermitian Deligne cohomology group of weight 1:

H3(X,O"
X
|·|

2

−→ E +X ) ' Ĥ4
D(X, 1),

where we use the same quasi-isomorphism as in Section 2.3.1.
It is easy to continue the list of examples by promoting those of Section 2.3 to the realm of 2-gerbes. We will not

do so here, and leave this task to the interested reader. We will examine finer examples of geometric structures on
2-gerbes in Section 7.
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6. 2-Gerbes bound by complexes of higher degree

So far, we have outlined a theory of 2-gerbes bound (in the appropriate sense) by a two-step complex of braided
gr-stacks. We have found that this theory is powerful enough to provide an interpretation in geometric terms of
the elements of degree three hypercohomology groups with values in (cones of) crossed squares of abelian groups.
However, as pointed out above, we need to address the case where the coefficient complexes have degree higher than 3,
where the degree loosely corresponds to the length. We set out to accomplish this goal by generalizing the concept of
(A, B,C)-gerbe, introduced in Section 3.2, to the case of 2-gerbes by promoting the coefficient groups to be gr-stacks
instead. We will ultimately be interested in the case of gr-stacks associated with abelian crossed modules, therefore
the general style for this section will be slightly more descriptive – and perhaps informal – compared to the preceding
ones.

6.1. (B,C )-torsors

Consider a complex (i.e. a morphism) of two (braided, as usual) gr-stacks µ : B −→ C on C/X . By analogy with
Section 3.1, define a (B,C )-torsor to be a pair (P, σ ), where P is a B-torsor, and σ is an equivalence:

σ : P ∧B C
∼
−→C

where on the right-hand side C is considered as a trivial torsor. Equivalently, we require that there be a morphism:

σ : P −→ C ,

namely a global object (over C/X ) of the fibered category Hom(P,C ). Yet another equivalent point of view is to
regard σ as a global object of the torsor P ∧B C . The latter point of view is useful to arrive at a description in terms
of cocycles. Suppose indeed that P is decomposed as in Section 5.1.3, with associated 1-cocycle (bi j , βi jk) with
values in B satisfying (5.1.1). By the stack condition, an object of P ∧B C is equivalent to a collection of pairs

(xi , ci ) ∈ Ob(P ∧B C )|Ui

satisfying the descent condition on objects. Using the description of contracted product found in [14, Section 6.7], we
find that the objects ci ∈ Ob C |Ui satisfy the condition

ρi j : c j
∼
−→µ(b∗i j ) · ci (6.1.1a)

(where b∗ is a quasi-inverse of b). This essentially follows from the fact that a morphism (x j , c j )|Ui j → (xi , ci )|Ui j

in P ∧B C corresponds to the triple(
x j · b j i

∼
−→ xi , b j i , c j

∼
−→µ(b j i ) · ci

)
modulo an equivalence explained in loc. cit. The ρi j are morphisms in CUi j which then satisfy the coherence condition:

µ(βi jk) ◦ ρi j ◦ ρ jk = ρik . (6.1.1b)

This and (5.1.1) ensure, via the above mentioned equivalence relation, that bki and bk j · b j i correspond to the same
morphism, thereby ensuring that the cocycle condition in the descent condition is indeed satisfied.

Definition 6.1. The triple (bi j , βi jk, ρi j ) satisfying Eqs. (6.1.1), plus (5.1.1) and the coherence condition on the βi jk
is a 1-cocycle with values in the complex µ : B −→ C .

Given the square of gr-stacks

B
µ

//

ψ

��

C

π

��

B′
µ′

//

k

�

C ′



E. Aldrovandi / Journal of Pure and Applied Algebra 212 (2008) 994–1038 1027

we obtain a morphism

(ψ, π)∗ : TORS(B,C ) −→ TORS(B′,C ′) (6.1.2)

by sending a B-torsor P to P ∧B B′ and the morphism σ to π ◦ σ .
A morphism from a (B,C )-torsor (P, σ ) to a (B′,C ′)-torsor (P ′, σ ′) consists of a square

P
σ //

ξ

��

C

π

��

P ′
σ ′

//

t

�

C ′

(6.1.3)

In particular, for B′ = B, C ′ = C , it reduces to a triangle

P

σ

��

ξ

��

P ′
σ ′

//

t
��

C

(6.1.4)

Actually, any morphism (6.1.3) can be factored as the canonical morphism (6.1.2) followed by a morphism of
(B′,C ′)-torsors. A morphism will be called an equivalence if so is the underlying functor ξ .

In summary, a (B,C )-torsor P determines (and it is determined by, up to equivalence) an equivalence class of
1-cocycles as in the definition. The equivalence relation being the obvious one, we obtain the following

Proposition 6.2. (1) Equivalence classes of (B,C )-torsors are classified by the cohomology set:

H1(X,B −→ C ).

(2) Moreover, if µ : B→ C comes from the crossed square of abelian groups:

B

σ

��

g
// C

τ

��

H v
// K

then the above cohomology set can be identified with the hypercohomology group

H2(X, B → C ⊕ H → K ).

Proof. This repeats previous arguments, hence is omitted. �

Remark 6.3. We can use the statement in the above proposition to obtain another characterization of gerbes bound
by length 3-complex, specifically, the cone of the above crossed square. This gives an alternative point of view for the
discussion in Section 3.2.

Since by definition (B,C )-torsors are B-torsors which become trivial as C -torsors, the following alternative
characterization of (B,C )-torsors coming from a crossed square as in Proposition 6.2(2) is an immediate consequence
of Theorem 5.8:

Proposition 6.4. Let µ : B → C arise from a crossed square as in Proposition 6.2(2). The 2-functor F of
Theorem 5.8 induces an equivalence

TORS(B,C )
∼
−→GERBES(B, H)(TORS(C),τ∗)
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where the right-hand side denotes the “fiber” of the canonical morphism

(g, v)∗ : GERBES(B, H)→ GERBES(C, K )

over the neutral (C, K )-gerbe, that is τ∗ : TORS(C)→ TORS(K ).

Proof. If P is a (B,C )-torsor, by definition there is a morphism σ : P → C , and the diagram

TORS(B)
FB //

µ∗

��

GERBES(B, H)

(g,v)∗
��

TORS(C )
FC

// GERBES(C, K )

from Remark 5.9 gives

P
� //

σ

��

TORS(B) ∧BP

g∗∧σ

��

C
� // TORS(C)

and the lower right corner gives the neutral (C, K )-gerbe. �

6.2. Complexes of braided gr-stacks

Let A , B, and C be braided gr-stacks over C/X , and let λ : A → B and µ : B → C be additive functors. We
define the composition

A
λ
−→B

µ
−→C (6.2.1)

a complex of gr-stacks if µ ◦ λ is isomorphic to the “null” functor A −→ 1, to the punctual category determined by
the unit object oC of C .

As before, a situation of particular interest for us will be when everything in sight is strict, and all the gr-stacks
above are in fact associated with abelian crossed modules. Building on what we have already seen in Section 5.2,
assume that the morphisms λ and µ are associated with the squares

A

δ

��

f
// B

σ

��

G u
// H

B

σ

��

g
// C

τ

��

H v
// K

respectively, which we splice together to obtain the map of complexes:

(6.2.2)

In all the above we have of course assumed C to be associated with the complex τ : C → K , the rest of the notations
being as in Section 5.2.

6.3. 2-(A ,B,C )-gerbes

The main idea is to define 2-gerbes bound by the complex (6.2.1) of braided gr-stacks by analogy with what was
done for gerbes in Section 3.2.
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Definition 6.5. Let G be a 2-gerbe over C/X . We say that G is bound by the complex (6.2.1), or that is a 2-(A ,B,C )-
gerbe, for short, if there is a 2-functor

J̃ : G −→ TORS(B,C )

such that G is a 2-(A ,B)-gerbe for the λ-morphism defined by the composition of J̃ with the obvious morphism
TORS(B,C )→ TORS(B).

Next, we can consider the diagram of gr-stacks:

A
λ //

φ

��

B
µ

//

ψ

��

C

π

��

A ′
λ′

//



�

B′

µ′
//

k

�

C ′

where the top and bottom rows are complexes in the sense specified above in Section 6.2. Still by analogy with
Section 3.2, where the corresponding concept for gerbes was introduced, we define a morphism of a 2-(A ,B,C )-
gerbe G to a 2-(A ′,B′,C ′)-gerbe G′ to be a cartesian 2-functor

F : G −→ G′

which is a ϕ-morphism, supplemented by a 2-natural transformation

α̃ : (ψ, π)∗ ◦ J̃ =⇒ J̃ ′ ◦ F : G −→ TORS(B,C ).

We require that composing (pasting) this with the obvious morphism TORS(B,C ) → TORS(B) gives (up to a
modification) the natural morphism associated with the underlying (ϕ, ψ)-morphism.

6.4. Classification III

Given the complex (6.2.1), we obtain a corresponding “complex” of trivial 2-gerbes:

TORS(A )
λ∗
−→ TORS(B)

µ∗
−→ TORS(C ) (6.4.1)

where µ∗ ◦ λ∗ ' (µ ◦ λ)∗ ' 1.

Lemma–Definition 6.6. Given a cover UX = (Ui → X)i∈I , a 1-cocycle with values in (6.4.1) is given by the same
data as those for a 1-cocycle with values in (5.5.1) stated in Lemma–Definition 5.12, supplemented by the requirement
that there exist morphisms

σi : Fi −→ C |Ui (6.4.2)

such that given the morphism ξi j in (5.5.2a) there is a morphism of (B,C )-torsors

(ξi j , ti j ) : (F j , σ j )|Ui j −→ (Fi , σi )|Ui j (6.4.3)

satisfying a triangle analogous to (6.1.4), namely:

F j

σ j

��

ξi j

��

Fi σi
//

ti j

��
C
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Proof. We need only observe that a morphism

λ∗(Ei j )∧
B F j −→ C |Ui j

can equivalently be seen as a morphism of C -torsors:

(λ∗(Ei j )∧
B F j )∧

B C |Ui j −→ C |Ui j .

But we have

(λ∗(Ei j )∧
B F j )∧

B C |Ui j ' λ∗(Ei j )∧
B(F j ∧

B C |Ui j ) ' F j ∧
B C |Ui j

since µ∗ ◦ λ∗ ' (µ ◦ λ)∗ ' 1. �

The argument of the proof also implies that two 1-cocycles (Ei j ,Fi , σi ) and (E ′i j ,F
′

i , σ
′

i ) with values in (6.4.1) ought
to be considered equivalent if the same conditions of Definition 5.14 are satisfied, with the additional requirement that
the morphism (5.5.5b) induces a morphism of (B,C )-torsors

(Fi , σi ) −→ (F ′i , σ
′

i ).

We leave to the reader the task of spelling out the rest of the details.
The next results combines the generalizations of Theorems 5.15 and 5.16 to the present case. Large parts of the

proof can be simply carried over, therefore we will be sketchy.

Theorem 6.7. (1) Equivalence classes of 2-(A ,B,C )-gerbes are classified by the (pointed) set

H1(X, TORS(A )→ TORS(B)→ TORS(C ))

of equivalence classes of 1-cocycles with values in the complex (6.4.1), according to the Lemma–Definition 6.6.
(2) If the braided gr-stacks are all strict and associated with abelian cross modules as in Section 6.2, then the above

pointed set of equivalence classes is actually in one-to-one correspondence with the hypercohomology group

H3(X, A→ B ⊕ G → C ⊕ H → K )

where we recognize the cone (shifted by 1) of the morphism (6.2.2).

Proof. Let (G, J̃ ) be a 2-gerbe over C/X bound by the complex (6.2.1). Let us make the usual choice of a cover
UX , to be enhanced to a hypercover below. The proof of Part I rests upon the choice of a decomposition of G with
respect to a collection of objects xi ∈ Ob GUi . By applying J̃ we obtain (B,C )-torsors J̃ (xi ) = F̂i ≡ (Fi , σi ) and
morphisms

Ei j −→Hom(F̂ j |Ui j , F̂i |Ui j ).

Forgetting the morphisms into C gives the underlying functor in TORS(B), therefore Part I follows from
Theorem 5.15 (or rather, its proof) and the argument made in the proof of Lemma–Definition 6.6 to handle the extra
morphisms into C .

The proof of Part 2 is more laborious, but only computationally so. Fortunately everything that was done in the
proof of Theorem 5.16 can be transported verbatim here, so that we only have to deal with the extra data ensuing from
the (B,C )-torsor.

Our first task is to rewrite the classifying 1-cocycle with values in (6.4.1) from Part I in terms of a cocycle with
values in the complex of gr-stacks (6.2.1). As before, this is accomplished by decomposing the cocycle (Ei j ,Fi , σi )

with respect to a choice of objects subordinated to a given hypercover. As in the proof of Theorem 5.16, we refine UX
by (Uα

i j → Ui j )α∈Aαi j
. We also keep all the choices and notations made there.

Recall that we had obtained the quintuple (5.5.10) which we rewrite here for convenience:(
hαi j , qαβi jk,mαβγ

i jk , gαβγi jk , ν
αβδγ ηε

i jkl

)
where hαi j , qαβi jk are objects of B, mαβγ

i jk are morphisms of B, and gαβγi jk and ναβδγ ηεi jkl are objects and morphisms of A ,
respectively. They satisfy the cocycle conditions given by the Eqs. (5.5.9) and (5.4.2b).
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Since the morphism σi : Fi → C |Ui are global over Ui , the arguments in Section 6.1 imply that there are objects
zi
α

j ∈ Ob C |Uα
i j

and morphisms tαi j and ραβj ik in C |Uα
i j

and C |
Uαβ

i jk
such that:

tαi j : z j
α

i
∼
−→µ(hαi j ) · zi

α
j (6.4.4a)

and

ρ
βα
ki j : zi

α
j
∼
−→µ(qαβj ik) · zi

β
k . (6.4.4b)

Both Eqs. (6.4.4) are obtained by applying the morphisms σi , σ j , etc., namely the triangle right after Eq. (6.4.3), to

Eqs. (5.5.6) and (5.5.7), respectively. We have used the relation qαβj ik ' (q
βα
ki j )
∗, easily derived from (5.5.7), where (·)∗

denotes the quasi-inverse. The final piece of the cocycle condition is a relation for the morphisms tαi j and ρβαki j which
is computed by passing from zk

γ
i to zi

α
j in two different ways. Either as:

ρ
αγ

j ik ◦ tγik : zk
γ

i
∼
−→µ(hγki ) · µ(q

γα

ki j ) · zi
α

j , (6.4.5)

or as:

tαi j ◦ ρ
αβ
i jk ◦ tβjk ◦ ρ

βγ

jki : zk
γ

i
∼
−→µ(qγβik j ) · µ(h

β
k j ) · µ(q

βα
k ji ) · µ(h

α
j i ) · zi

α
j , (6.4.6)

where, as before, we are ignoring the various associator isomorphisms and natural transformations associated with µ.
If we replace the three middle terms in the right-hand side of (6.4.6) using (5.5.9b) and the relations µ◦λ(gβαγk ji ) '

oC and qγβik j · q
βγ

jki ' oC , where oC is the unit element of C , we find

µ(mβαγ

k ji ) ◦ tαi j ◦ ρ
αβ
i jk ◦ tβjk ◦ ρ

βγ

jki : zk
γ

i
∼
−→µ(hγki ) · µ(q

γα

ki j ) · zi
α

j .

Comparing with (6.4.5), we obtain the desired relation:

µ(mβαγ

k ji ) ◦ tαi j ◦ ρ
αβ
i jk ◦ tβjk ◦ ρ

βγ

jki = ρ
αγ

j ik ◦ tγik . (6.4.7)

Thus, starting from the cocycle (Ei j ,Fi , σi ) with values in (6.4.1), the corresponding cocycle with values in the
complex (6.2.1) is the 8-tuple(

zi
α

j , tαi j , ρ
αβ
ki j , hαi j , qαβi jk,mαβγ

i jk , gαβγi jk , ν
αβδγ ηε

i jkl

)
(6.4.8)

satisfying the conditions (5.5.9), (5.4.2b), (6.4.4) and (6.4.7).
To complete the proof, we need to specialize (6.4.8) and the relations it satisfies to the case where all the involved

gr-stacks are Picard and associated with the abelian crossed modules introduced in Section 6.2. That is, we are going
to operate under the same assumptions as those spelled out at the beginning of the proof of Theorem 5.16, so that
for A and B the appropriate notations and relations can be taken directly from there, in particular Eqs. (5.5.11).
Similarly, we set C = TORS(C, K ), for the complex τ : C → K , and TORS(C, K ) can be realized as the gr-stack
associated with the sheaf of groupoids C × K ⇒ K determined by the crossed module C → K , whose source and
target maps are given by (c, z) → z and (c, z) → τ(c)z, respectively. In addition to the various sections of A, G,
etc. introduced before Eqs. (5.5.11), the objects zi

α
j will be identified with sections of the group K |Uα

i j
, and we will

introduce sections cαi j of C |Uα
i j

and lαβi jk of C |
Uαβ

i jk
to account for the morphisms tαi j and ραβi jk , respectively. With these

provisions, the 8-tuple (6.4.8) becomes(
zi
α

j , cαi j , l
αβ
ki j , hαi j , qαβi jk, bαβγi jk , gαβγi jk , aαβδγ ηεi jkl

)
, (6.4.9)

and (6.4.4) and (6.4.7) become

τ(cαi j ) · z j
α

i = v(h
α
i j ) · zi

α
j (6.4.10a)

τ(lβαki j ) · zi
α

j = v(q
αβ
j ik) · zi

β
k (6.4.10b)

g(bβαγk ji ) · c
α
i j · l

αβ
i jk · c

β
jk · l

βγ

jki = lαγj ik · c
γ

ik . (6.4.10c)
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The full cocycle condition for the 8-tuple (6.4.9) is then given by Eqs. (6.4.10) plus Eqs. (5.5.11), which we rewrite
here:

δ(aαβδγ ηεi jkl ) · gαβγi jk · g
γ δε

ikl = gβδηjkl · g
αηε
i jl ,

σ (bαβγi jk ) · h
α
i j · q

αβ
i jk · h

β
jk = u(gαβγi jk ) · q

αγ

j ik · h
γ

ik · q
γβ

ik j ,

f (aαβδγ ηεi jkl ) · bγ δεikl · b
αβγ

i jk = bαηεi jl · b
βδη
jkl .

Finally we need also to add the cocycle condition on the elements aαβδγ ηεi jkl .
The amount of typographical decoration provided by the upper indices related to the hypercover can be quite

daunting. Ignoring these indices (that is, reducing everything to the Čech case), although potentially less precise
from the cohomological point of view (cf. the discussion in [12]) does shed some light on how the various parts are
organized. Without upper indices we need to set qαβi jk = 1 and lαβi jk = 1 in the above formulas. Thus, the 8-tuple (6.4.9)
becomes a sextuple(

zi , ci j , hi j , bi jk, gi jk, ai jkl
)

satisfying the cocycle condition:

τ(ci j ) · z j = v(hi j ) · zi

g(bk ji ) · ci j · c jk = cik

δ(ai jkl) · gi jk · gikl = g jkl · gi jl

σ(bi jk) · hi j · h jk = u(gi jk) · hik

f (ai jkl) · bikl · bi jk = bi jl · b jkl .

Now write the cone of the the morphism of complexes (6.2.2) in the form:

A

(
f
δ

)
−−→ B ⊕ G

( g 1
σ u−1

)
−−−−−→ C ⊕ H

( τ v−1 )
−−−−→ K

It can now be seen in a direct way that the 8-tuple (6.4.9) (or its simplified Čech version) indeed defines a 3-cocycle
with values in the cone of (6.2.2). This is straightforward and left to the reader. We will also omit the verification that
passing to an equivalent torsor 1-cocycle (E ′i j ,F

′

i , σ
′

i ) representing (G, J̃ ), we obtain an equivalent 3-cocycle. �

An even more special case of Theorem 6.7(2) is when the diagram (6.2.2) reduces to the complex A
f
−→ B

g
−→C . Let

(G, J̃ ) be a 2-gerbe over C/X bound by TORS(A)→ TORS(B)→ TORS(C). By comparing the classifying cocycles
we immediately obtain the following

Corollary 6.8. (G, J̃ ) is equivalent to a 2-(A, B,C)-gerbe in the sense of Definition 5.21.

7. Applications

In this section we will address a few questions about the correspondence between certain Hermitian Deligne
Cohomology groups and equivalence classes of 2-gerbes equipped with various geometric structures of the type
described in the previous sections.

For consistency with the results of [7] and previous work in Deligne cohomology we will be placing Z(p)X in
degree zero, therefore all cohomology degrees will be shifted up in comparison with those appearing in the previous
sections.

7.1. Truncated Hermitian Deligne complexes

Besides the Hermitian Deligne complexes recalled in Section 1.2, we need two more complexes that we introduced
in [7], namely
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plus the truncation

where the maps are the same as in the corresponding places in the diagram defining Dh.h.(2)•X . (It is convenient to pass,
from now on, to an additive notation.) Note that Γ (2)• is an obvious truncation of the Hermitian Deligne complex
Dh.h.(2)•X , while Γ̃ (2)

•
is in turn a truncation of Γ (2)•. These two complexes were introduced as part of the effort to

analyze the interplay and compatibility of different types of differential geometric structures on 2-gerbes. Indeed, it
can be shown that Γ (2)• arises from the diagram of complexes:

Z(2)•D,X −→ C(2)•←− 2π
√
−1⊗Dh.h.(1)•X

in the sense of [30], namely as the cone of the difference of the two maps. Here C(2)• is the complex

Z(2)X −→ OX −→ E 1
X (1).

Similarly, Γ̃ (2)
•

arises in the same way from the diagram:

Z(2)•D,X −→ Z(1)•D,X ←− 2π
√
−1⊗Dh.h.(1)•X ,

where the two maps are just the forgetful maps. We have repeatedly seen how the complexes Z(2)•D,X (resp. Dh.h.(1)•X )
intervene in the definition of connective (resp. Hermitian) structures. Note, however, that the above complexes and
their geometric role were introduced rather informally in the context of [7]. The results of Section 7.2 provide a more
rigorous footing.

We quote from [7] the following exact sequences. From the definitions we immediately have:

0 −→ E 1
X (1)[−3] −→ Γ (2)• −→ Γ̃ (2)

•
−→ 0

and

0 −→ E 2
X (1) ∩A 1,1

X [−4] −→ Dh.h.(2)•X −→ Γ (2)• −→ 0.

Furthermore, using the standard arguments, as well as the softness of E 1
X (1), E 2

X (1), and A 1,1
X , we obtain:

· · · −→ E1
X (1) −→ H3(X,Γ (2)•) −→ H3(X, Γ̃ (2)

•
) −→ 0

· · · −→ E2
X (1) ∩ A1,1

X −→ Ĥ4
D(X, 2) −→ H4(X,Γ (2)•) −→ 0

and the isomorphism

Hk(X,Γ (2)•) ' Hk(X, Γ̃ (2)
•
), k ≥ 4.

7.2. Geometric interpretation of some cohomology groups

Observe that using OX/Z(2)X ' O"
X , the complex Γ (2)• can be identified (modulo the index shift) with the cone

of the square

(7.2.1)
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and similarly for Γ (2)• by replacing E 1
X (1) with 0:

(7.2.2)

Both cases correspond to the diagram (5.2.2).
To make contact with the contents of Section 5, let us set

A = TORS(OX/Z(2)X ,E
0
X (1)), B = TORS(Ω1

X ,E
1
X (1))

so that we have the equivalences

TORS(A )
∼
−→GERBES(OX/Z(2)X ,E

0
X (1))

and

TORS(B)
∼
−→GERBES(Ω1

X ,E
1
X (1)).

Using Theorem 5.8 and Proposition 6.4 we find the following alternative characterization of O"
X -gerbes with

compatible Hermitian and connective structure:

Corollary 7.1. The group H3(X,Γ (2)•) classifies equivalence classes of gerbes bound by OX/Z(2)X → E 0
X (1), that

is, Hermitian gerbes in the sense of Section 2.3.1, which become neutral as (Ω1
X ,E

1
X (1))-gerbes.

Of course, the other possible but entirely equivalent statement would have been that the cohomology group under
scrutiny classifies (A ,B)-torsors, where A = TORS(OX/Z(2)X ,E

0
X (1)) and B = TORS(Ω1

X ,E
1
X (1)). We leave to

the reader the task of formulating a similar statement for the complex Γ̃ (2)
•
.

Remark 7.2. A short remark is in order about other possible ways of interpreting the same cohomology group. As
noted, we can take advantage of the symmetry of the square (7.2.1) in the sense explained in Remark 5.20, and modify
things accordingly. This preserves the cone, namely Γ (2)•, and does not alter the classifying group. It does change
the gr-stacks A and B, but ultimately not the fact that we are dealing with O"

X -gerbes.

Remark 7.3. The above characterization (and the general theory it descends from) provides a finer description of the
corresponding geometric objects whose equivalence classes correspond to the group elements when the coefficient
complex come from a cone. Had we just used the complex Γ (2)• as it stands, we would have been in the rather
awkward position of calling something with values in Ω1

X ⊕ E 0
X (1) a “connective structure,” a fact that does not seem

to sit well with the degrees.

The corresponding result for 2-gerbes provides a similar interpretation for the group of equivalence classes of
2-O"

X -gerbes with compatible Hermitian and connective structure defined in [7]. It is an immediate consequence of
Theorem 5.16 as follows:

Corollary 7.4. Elements of the hypercohomology group H4(X,Γ (2)•) are in one-to-one correspondence with
equivalence classes of 2-gerbes on X bound by the square (7.2.1) (in the sense of Remark 5.20). A similar conclusion
holds by replacing Γ (2)• with Γ̃ (2)

•
.

Note that a remark concerning the square similar to the one just made for gerbes holds in this case as well.
In a similar vein to what was just done for the complex Γ (2)•, we can identify Dh.h.(2)•X defined in Eq. (1.2.11)

with the cone of

(7.2.3)
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which will correspond to the diagram (6.2.2). We have explicitly written the last column as 0 → E 2
X (1) ∩ A 1,1

X in
order to emphasize the correspondence. To take the point of view of Section 6, let us introduce the discrete gr-stack

C = TORS(0,E 2
X (1) ∩A 1,1

X ) ' E 2
X (1) ∩A 1,1

X ,

namely the only morphisms are the identity maps. Note that since C is discrete, the corresponding 2-gerbe is discrete
as well, that is we have:

TORS(C ) ' TORS(E 2
X (1) ∩A 1,1

X ).

In other words, it has only identity 2-arrows, and it corresponds to the neutral gerbe of torsors.
Now, as a consequence of Theorem 6.7 we obtain the following general geometric interpretation for the Hermitian

Deligne cohomology group:

Corollary 7.5. Elements of the Hermitian Deligne cohomology group Ĥ4
D(X, 2) are in one-to-one correspondence

with equivalence classes of 2-gerbes on X bound by the diagram (7.2.3), that is, by the complex (6.2.1) of gr-stacks
associated with the columns of (7.2.3).

7.3. Geometric construction of some cup products

7.3.1
If (L , ρ) and (M , σ ) are two metrized line bundles (invertible sheaves) over X , their isomorphism classes

determine elements of Ĥ2
D(X, 1) ' P̂icX . According to the last paragraph of Section 1.2, the cup product

[L , ρ] ∪ [M , σ ] in Hermitian Deligne cohomology will land in Ĥ4
D(X, 2).

It is known from the works of Brylinski and McLaughlin [4–6] that the corresponding problem in standard Deligne
cohomology has a geometric interpretation: there is a 2-gerbe (L ,M ] bound by Z(2)•D,X whose class is the cup

product [L ]∪[M ] ∈ H4
D(X,Z(2)) of the elements in Pic X determined by L and M . Similarly, in [7] we constructed

a modified cup product

Pic X ⊗ Pic X −→ Ĥ4
D(X, 1)

and a corresponding “tame symbol”, namely a 2-gerbe (L ,M ]h.h. bound by Dh.h.(1)•X . It turns out that both symbols
have the “same” (in the sense of equivalent) underlying 2-gerbe, obtained by applying a suitable forgetful functor to
both sides. In other words we have a lift

Pic X ⊗ Pic X −→ H4(X, Γ̃ (2)
•
)

and it follows from the material recalled in Section 7.1 that at the level of cohomology the latter lift can be arranged
to take values in H4(X,Γ (2)•). Thus, from a pair of invertible sheaves L and M we obtain (canonically) a 2-gerbe
bound by the square (7.2.2), and (non-canonically) by way of softness of one of the sheaves involved, a 2-gerbe bound
by the square (7.2.1).

The cohomology exact sequences recalled in Section 7.1, and the fact that truncation will map the diagram (7.2.3)
to the square (7.2.1), and then to the square (7.2.2), show that the 2-gerbe bound by (7.2.3) corresponding to the cup
product [L , ρ] ∪ [M , σ ] will provide the required lift.

7.3.2
We will denote by (L ,M ]ĥ.h. the 2-gerbe bound by (7.2.3) corresponding to the cup product of the two metrized

line bundles. Let us sketch the geometric construction of such 2-gerbe borrowing the corresponding constructions
of [5,7].

If we work locally with respect to some cover U → X of X , any 2-A -gerbe G will be a 2-gerbe of torsors, namely
there is an equivalence:

GU
∼
−→ TORS(A |U )

∼
−→GERBES(OX/Z(2)X |U ,E

0
X (1)|U ),
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where the latter equivalence follows from Theorem 5.8. Thus if G is bound by the complex of gr-stacks determined
by the diagram (7.2.3), with A , B, and C as in Section 7.2, then locally it has the form

TORS(A |U ) −→ TORS(B|U ,C |U ).

Note that, thanks to 6.2(2), Proposition 6.4, and to the fact that in the relevant diagram one of the group is zero, we
have an equivalence:

TORS(B|U ,C |U )
∼
−→GERBES(Ω1

X |U ,E
1
X (1)|U ,E

2
X (1) ∩A 1,1

X |U ).

Let 〈L ,M ] denote the underlying 2-gerbe of both (L ,M ] and (L ,M ]h.h.. The local objects of 〈L ,M ] over U
are in one-to-one correspondence with the non-vanishing sections of L |U . We may denote such a section s, which is
thought of as an object, by 〈s,M ].

The choice of s will determine an A |U -torsor as follows. Given any other non-vanishing section s′, write
s = s′ · g where g ∈ OX/Z(2). The A |U -torsor Hom(s, s′) can be identified with the (OX/Z(2)X |U ,E

0
X (1)|U )-

gerbe (g,M ]h.h. by the above equivalence. Let us denote by 〈g,M ] the underlying OX/Z(2)X -gerbe. Recall from [5,
7] that its objects over U are in one-to-one correspondence with the non-vanishing sections t of M |U , denoted 〈g, t],
and that an arrow ϕ : 〈g, t] → 〈g, t ′] is identified with a section of Deligne’s torsor (g, g′], where t = t ′ · g′, for
g′ a section of OX/Z(2)X over U , see [31]. We reserve the notation (g, g′] for the same torsor equipped with the
connection defined in loc. cit., whereas the notation (g, g′]h.h. denotes the same underlying torsor equipped with the
Hermitian structure defined in [7].

To summarize, to define (L ,M ]ĥ.h. we have to define a 2-functor J̃U from GU to the fibered 2-category of gerbes
bound by

Ω1
X |U

π1
−→E 1

X (1)|U
π◦d
−→E 2

X (1) ∩A 1,1
X .

To begin with, let us define a 2-functor JU to GERBES(Ω1
X |U ,E

1
X (1)|U ) as follows. To an object 〈s,M ] assign the

trivial B|U -torsor T (B|U ) ' TORS(Ω1
U ,E

1
U (1)). To a 1-arrow

〈g, t] : 〈s,M ] −→ 〈s′,M ]

the functor 〈g, t]∗ : T (B|U )→ T (B|U ) is defined as follows: an object of T (B|U ) is identified with an object (C, ξ)
of TORS(Ω1

U ,E
1

U (1)), where C is a Ω1
U -torsor which becomes trivial as a E 1

U -torsor by way of ξ , which in turn can be
identified with a section of E 1

U . Then we define 〈g, t]∗ by

〈g, t]∗ : (C, ξ) 7−→ (C, ξ + ξt ), (7.3.1)

where the underlying map on TORS(Ω1
U ) is the identity, and ξt is the imaginary 1-form:

ξt = −
1
2

log |g| · dc log σ(t)+
1
2

dc log |g| · log σ(t). (7.3.2)

Here we have used the notation σ(t) = |t |2σ . It is straightforward to verify that this is compatible with morphisms in
T (B|U ) and with the action of B|U : if (D, η) is an object of TORS(Ω1

U ,E
1

U (1)), then

(C, ξ) · (D, η) = (C ⊗ D, ξ + η),

and obviously this commutes with (7.3.1), making it a morphism of torsors.
Now, if ϕ is a section of 〈g, g′], the corresponding object of (g, g′]h.h. is (ϕ, ‖ϕ‖) where ‖ · ‖ is the Hermitian

structure given in [7]. To it we assign the natural transformation given by the morphism in T (B|U ):

(ϕ, ‖ϕ‖)∗ : (C, ξ + ξt ) −→ (C, ξ + ξt ′), (7.3.3)

which is defined by the underlying map

ϕ : C −→ C

c 7−→ c + ϕ−1
∇ϕ,

(7.3.4)
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where ∇ is the connection on (g, g′]. From [31] we have that locally it has the form − log g d log g′. Therefore
the section ξ + ξt will map to ξ + ξt + π1(ϕ

−1
∇ϕ) and notice that this differs from ξt ′ by 2π

√
−1 d log ‖ϕ‖,

using the fact that locally ‖ · ‖ is given by π1(log g) log
∣∣g′∣∣. Note that the addition of d log ‖ϕ‖ is just the action

of (Ω1
U , 2π

√
−1 d log ‖ϕ‖) as an object of B|U .

Finally, in order to get the functor J̃U , we need one more prescription. Namely we define it by assigning to 〈s,M ]
the (B|U ,C |U )-torsor defined as follows. It is the trivial B|U -torsor defined as above equipped with the morphism

TORS(Ω1
U ,E

1
U (1)) −→ E 2

U (1) ∩A 1,1
U

defined by the assignment

(C, ξ) 7−→ π(d ξ)−
1
4

log ρ(s) d dc log σ(t) (7.3.5)

for every object (C, ξ) of TORS(Ω1
U ,E

1
U (1)). Observe that d dc log σ(t) = c1(M ), hence there is no dependence on

t . Now, a calculation shows that

π(d ξt ) = −
1
2

log |g| d dc log σ(t)

so that it is immediately verified that the assignment (7.3.5) commutes with the morphism (7.3.1).
With these provisions we have:

Theorem 7.6. The class of the 2-gerbe (L ,M ]ĥ.h. in the cohomology group Ĥ4
D(X, 2) is the cup product

[L , ρ] ∪ [M , σ ] in Hermitian Deligne cohomology.

Proof. It follows immediately from Theorem 6.7, the form of the maps in diagrams (1.2.11) and (7.2.3), and the cup
product map

Dh.h.(1)•X ⊗Dh.h.(1)•X −→ Dh.h.(2)•X

given in [11], where the explicit cup product in Čech cohomology is computed. �

8. Conclusions

We have generalized the concept of “abelian gerbe bound by a complex” to the case of longer coefficient complexes,
and to 2-gerbes, where we have used complexes of gr-stacks of length 3. We have verified that these 2-gerbes are
classified by cohomology sets of degree 1 with values in the associated complexes of torsors over these gr-stacks.
We have also obtained, by choosing appropriate decompositions and hypercovers, that in the strictly abelian situation
the general classification reduces to degree 3 cohomology groups with values in cones of crossed squares, and other
similar diagrams. In all cases we have obtained explicit cocycles, where we have given their expression in terms of
hypercover, rather than simply in terms of Čech cocycles.

As an application, we have dealt with differential geometric structures on gerbes and 2-gerbes and questions of
geometric constructions of certain cup products in Hermitian Deligne cohomology. In particular, we have put certain
by now standard constructions of the concept of connection and curvature in the general context of gerbe (or 2-gerbe)
bound by a complex. We have further clarified the reason why there seem to exist different possibilities in defining
what a “Hermitian gerbe” should be (cf. Remark 2.8). Finally, in the last section we have geometrically constructed
a 2-gerbe bound by the Hermitian Deligne complex Dh.h.(2)•X corresponding to the cup product of two metrized line
bundles in Hermitian Deligne cohomology.

There are several possible extensions and generalizations of the work carried out in this paper. In the case of gerbes,
it would be interesting to remove the abeliannes assumption and work in the same framework as [1] to study extended
structures as coefficients, beyond crossed modules: crossed squares, 2-crossed complexes, etc. come to mind. In
particular, it would be interesting to see whether the idea of phrasing the notion of connection and curvature in terms
of gerbes bound by complexes extends to the non-abelian case, and how it compares with other existing approaches
(see, e.g. [32]). In [1] a compelling motivation was to obtain a theory of non-abelian H2 which behaved better than
Giraud’s with respect to group exact sequences. Pursuing some of these ideas in the case of 2-gerbes would also be
quite interesting. We hope to return to some of these issues in future publications.
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