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1. Introduction

In this paper, we only consider simple weighted graphs on positive weight set. Let G be a weighted

graph with vertex set {v1, v2, . . . , vn}, edge set E(G) /= ∅ and weight set W(G) = {wj >0 : j = 1, 2, . . . ,

|E(G)|}. The functionwG : E(G) → W(G) is called aweight function ofG. It is obvious that eachweighted

graph corresponds to a weight function. The adjacency matrix of G is the n × n matrix A(G) = (aij),

where aij = wG(vivj) if vivj ∈ E(G), and aij = 0otherwise. The characteristic polynomial ofA(G) is said to

be the characteristic polynomial ofG, denotedbyφ(G,λ)orφ(G). SinceA(G) is a nonnegative symmetric

matrix, its eigenvalues are all real numbers and its largest eigenvalue is a positive number. The largest

eigenvalue of A(G) is called the spectral radius of G, denoted by ρ(G).
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Since A(G) is nonnegative, there is a nonnegative eigenvector corresponding to ρ(G). In particular,

whenG is connected, A(G) is irreducible and by the Perron–Frobenius Theorem (e.g. [1]),ρ(G) is simple

and there is a unique positive unit eigenvector. We shall refer to such an eigenvector as the Perron

vector of G. Let Bt denote the transpose of a matrix B. All other notations and definitions not given in

the paper are standard terminology of graph theory (e.g. [2]).

Since graphs of the design of networks and electronic circuits are usually weighted, the spectrum

of weighted graphs is often used to solve problems. On the other hand, graphs may be regarded as

weighted graphswhose edges haveweight 1. Therefore, it is significant andnecessary to investigate the

spectrum of weighted graphs. M. Fiedler had introduced the following question: What is the optimal

distribution of nonnegative weights (with total sum 1) among the edges of a given graph, so that the

spectral radius of the resulting matrix is minimum? He himself shown that the optimum solution is

achieved and S. Poljak presented a polynomial time algorithmwhich finds such optimum solution [3].

Yang et al. had obtained an upper bound of spectral radius of weighted trees with fixed order and

weight set [4] and proposed the following open problem: are there better bounds of spectral radius for

all weighted paths with order n? Yuan and Shu had given the second largest value of spectral radius

of weighted trees with fixed order and weight set [5]. Tan had determined an upper bound of spectral

radius of weighted trees with fixed order, edge independence number and weight set [6].

The remainder of the paper is organized as follows. In Section 2 we will give some perturbational

results on the spectral radius of weighted graphswhen someweights of edges aremodified. In Section

3 we will determine the weighted tree with the largest spectral radius in the set of all weighted trees

with fixed diameter and weight set. Furthermore, an open problem of spectral radius on weighted

paths proposed in [4] is solved.

2. Some perturbational results on spectral radius

Let G be a weighted graph with a positive weight set. Let NG(v) denote the set of vertices adjacent

to the vertex v in G. For convenience, we define wG(uv) = 0 if uv /∈ E(G). So G may be regarded as a

weighted graph with a nonnegative weight set, where uv ∈ E(G) if and only if wG(uv)>0.

Lemma 2.1 [1]. Let A be a Hermitian matrix and let ρ(A) be the largest eigenvalue of A. Then ρ(A) =
max‖x‖=1,x∈Rn xtAx, and ρ(A) = xtAx if x is a unit eigenvector corresponding to ρ(A).

Lemma 2.2 [7]. Let A be a nonnegative symmetric matrix and x be a unit vector of Rn. If ρ(A) = xtAx, then

Ax = ρ(A)x.

Any modification of a weighted graph gives rise to perturbations of its eigenvalues. In literature,

this topic is mostly investigated for the largest eigenvalue of graphs. In the following we present some

perturbational results on the spectral radius of weighted graphs, which are useful and more ordinary

than those of graphs.

Theorem 2.3. Let a, b,u, v be four vertices of a weighted graph G and let x = (x1, x2, . . . , xn)
t be a nonnega-

tive unit eigenvector corresponding to ρ(G),where xi corresponds to the vertex vi of G. For 0<δ � wG(uv),

let G1 be the weighted graph obtained from G such that

wG1 (uv) = wG(uv) − δ, wG1 (ab) = wG(ab) + δ,

wG1 (e) = wG(e), e ∈ E(G) − {ab,uv}.
If xuxv � xaxb, then ρ(G) � ρ

(
G1

)
. In addition, if xuxv < xaxb or xuxv � xaxb and G is connected, then

ρ(G)<ρ
(
G1

)
.

Proof. From Lemma 2.1, we have that

ρ
(
G1

)
− ρ(G) = max

‖y‖=1
ytA

(
G1

)
y − xtA(G)x � xt

(
A

(
G1

)
− A(G)

)
x

= 2δ(xaxb − xuxv) � 0. (1)
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Suppose that xuxv < xaxb. By Eq. (1), it is obvious that ρ(G)<ρ
(
G1

)
.

Suppose that xuxv � xaxb and G is connected. By the Perron–Frobenius Theorem, x is a positive unit

eigenvector. Assume that ρ(G) = ρ
(
G1

)
. Then from Eq. (1), we get that ρ

(
G1

)
= xtA

(
G1

)
x. Again by

Lemma 2.2, we obtain A
(
G1

)
x = ρ

(
G1

)
x. Without loss of generality, assume that a /∈ {u, v}. Then

ρ
(
G1

)
xa = wG1 (ab)xb +

∑
z∈N

G1
(a)−{b}

wG1 (za)xz

= δxb + wG(ab)xb +
∑

z∈NG(a)−{b}
wG(za)xz

= δxb +
∑

z∈NG(a)

wG(za)xz .

Also from A(G)x = ρ(G)x, we have that ρ(G)xa = ∑
z∈NG(a) wG(za)xz . So we have

(
ρ

(
G1

)
− ρ(G)

)
xa =

δxb = 0. This implies that xb = 0, a contradiction with xb >0. Therefore, ρ(G)<ρ
(
G1

)
. �

Corollary 2.4. Let G and G1 be the two weighted graphs defined in Theorem 2.3. Let x = (x1, x2, . . . , xn)
t

and x1 = (x1
1
, x1

2
, . . . , x1n)t be two nonnegative unit eigenvectors corresponding to ρ(G) and ρ(G1), where xi

and x1
i
correspond to the vertex vi of G and G1, respectively. If xuxv � xaxb, then x1ux

1
v � x1ax

1
b
. In addition,

if xuxv < xaxb or xuxv � xaxb and G is connected, then x1ux
1
v < x1ax

1
b
.

Proof. We first prove that x1ux
1
v � x1ax

1
b
. Assume x1ux

1
v > x1ax

1
b
. It is easy to see that G can be obtained

from G1 in the following way:

wG(uv) = wG1 (uv) + δ, wG(ab) = wG1 (ab) − δ,

wG(e) = wG1 (e), e ∈ E
(
G1

)
− {ab,uv}.

Since x1ax
1
b
< x1ux

1
v , by the additional claim of Theorem 2.3, we have ρ

(
G1

)
<ρ(G). On the other hand,

since xuxv � xaxb, again by Theorem 2.3, we get that ρ(G) � ρ
(
G1

)
, a contradiction. Therefore, x1ux

1
v �

x1ax
1
b
.

We next prove the additional claim. Assume x1ux
1
v � x1ax

1
b
. On the one hand, since xuxv < xaxb or

xuxv � xaxb and G is connected, by the additional claim of Theorem 2.3, we have that ρ(G)<ρ
(
G1

)
.

On the other hand, since x1ax
1
b

� x1ux
1
v , again by Theorem2.3, we get thatρ

(
G1

)
� ρ(G), a contradiction.

Therefore, x1ux
1
v < x1ax

1
b
. �

Corollary2.5 [5]. Let u, v be twodistinct vertices of a connectedweightedgraphG and let u1,u2, . . . ,us(ui /=
v, s /= 0) be some vertices of NG(u) − NG(v). Let x = (x1, x2, . . . , xn)

t be the Perron vector of G, where xi
corresponds to the vertex vi of G. Let G′ be the weighted graph obtained from G by deleting the edges uuj
and adding the edges vuj such that

wG′ (vuj) = wG(uuj), wG′ (e) = wG(e), e /= uuj , j = 1, 2, . . . , s.

If xv � xu, then ρ(G)<ρ
(
G′) .

Proof. Put H0 = G. For j = 1, 2, . . . , s, let Hj be the weighted graph obtained from Hj−1 by deleting the

edge uuj and adding the edge vuj such that

wHj
(vuj) = wHj−1

(uuj), wHj
(e) = wHj−1

(e), e ∈ E(Hj−1) − {uuj}.
Since wHj−1

(uuj)>wHj−1
(vuj) = 0 for j = 1, 2, . . . , s, set δj = wHj−1

(uuj), then Hj can be obtained from

Hj−1 in the following way:
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wHj
(vuj) = wHj−1

(vuj) + δj , wHj
(uuj) = wHj−1

(uuj) − δj ,

wHj
(e) = wHj−1

(e), e ∈ E(Hj−1) − {vuj ,uuj}.

Let xj =
(
x
j
1
, x

j
2
, . . . , x

j
n

)t
be a nonnegative unit eigenvector corresponding to ρ(Hj), where x0 = x and

x
j
i
corresponds to the vertex vi of Hj . Then x0u1x

0
v � x0u1x

0
u , and by the additional claim of Corollary 2.4,

we have that

x
j
uj+1

x
j
v > x

j
uj+1

x
j
u, j = 1, 2, . . . , s − 1.

Since Hs = G′, by the additional claim of Theorem 2.3, we get that

ρ(G) = ρ(H0)<ρ(H1)< · · · <ρ(Hs) = ρ
(
G′) . �

Corollary 2.6. Let G be a connected weighted graph with total weight sum c. Then ρ(G) � c,with equality

if and only if G is a star with two vertices and weight c.

Proof. Let xH =
(
xH
1
, xH

2
, . . . , xHn

)t
denote a nonnegative unit eigenvector corresponding to ρ(H) of a

weighted graphH, where xH
i
corresponds to the vertex vi ofH. Let ab and uv be two distinct edges of G.

Without lossof generality, assume xGa x
G
b

� xGu x
G
v . LetG1 be theweightedgraphobtained fromG such that

wG1
(ab) = wG(ab) + wG(uv), wG1

(uv) = 0,

wG1
(e) = wG(e), e /= ab,uv.

By the additional claim of Theorem 2.3, we have that ρ(G)<ρ(G1). Again let pq and gh be two distinct

edges ofG1.Without loss of generality, assume x
G1
p x

G1
q � x

G1
g x

G1

h
. LetG2 be theweighted graph obtained

from G1 such that

wG2
(pq) = wG1

(pq) + wG1
(gh), wG2

(gh) = 0,

wG2
(e) = wG1

(e), e /= pq, gh.

By Theorem 2.3 (Note that G1 may not be connected), we get ρ(G1) � ρ(G2). To G2, repeat the above

procedure until we arrive at a weighted graph Gs with a unique edge. So we get weighted graphs

G,G1, . . . ,Gs such that they have the weight sum c and

ρ(G)<ρ(G1) � · · · � ρ(Gs) = c.

It is obvious that ρ(G) = c if and only if G only has an edge, i.e., G is a star with two vertices and weight

c. �

Theorem 2.7. Leta, b,u, vbe fourdistinct verticesof a connectedweightedgraphGand let x = (x1, x2, . . . , xn)
t

be the Perron vector of G,where xi corresponds to the vertex vi of G. For0<δ � wG(uv) and0<θ � wG(ab),

let G2 be the weighted graph obtained from G such that

wG2 (uv) = wG(uv) − δ, wG2 (ub) = wG(ub) + δ, wG2 (ab) = wG(ab) − θ,

wG2 (av) = wG(av) + θ, wG2 (e) = wG(e), e ∈ E(G) − {ab,uv,ub, av}.

If (xb − xv)(δxu − θxa) � 0, then ρ(G) � ρ
(
G2

)
, and with equality ρ(G) = ρ

(
G2

)
if and only if xb = xv

and δxu = θxa.

Proof. From Lemma 2.1, we have that

ρ
(
G2

)
− ρ(G) = max

‖y‖=1
ytA

(
G2

)
y − xtA(G)x � xt(A

(
G2

)
− A(G))x

= 2(xb − xv)(δxu − θxa) � 0. (2)
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Assume ρ(G) = ρ
(
G2

)
. By Eq. (2), we have that ρ

(
G2

)
= xtA

(
G2

)
x. Again from Lemma 2.2, we

have that A
(
G2

)
x = ρ

(
G2

)
x. Thus

ρ
(
G2

)
xu = wG2 (uv)xv + wG2 (ub)xb +

∑
z∈N

G2
(u)−{v,b}

wG2 (zu)xz

= (wG(uv) − δ)xv + (wG(ub) + δ)xb +
∑

z∈NG(u)−{v,b}
wG(zu)xz

= δ(xb − xv) +
∑

z∈NG(u)

wG(zu)xz

= δ(xb − xv) + ρ(G)xu.

So we obtain xb = xv. In the similar way, we can get that

ρ
(
G2

)
xv = −(δxu − θxa) +

∑
z∈NG(v)

wG(zv)xz = −(δxu − θxa) + ρ(G)xv.

Therefore, we have δxu = θxa.
Assume xb = xv and δxu = θxa. In the similar procedure above, we easily get that

∑
z∈N

G2
(u)

wG2 (zu)xz = δ(xb − xv) +
∑

z∈NG(u)

wG(zu)xz = ρ(G)xu,

∑
z∈N

G2
(a)

wG2 (za)xz = θ(xv − xb) +
∑

z∈NG(a)

wG(za)xz = ρ(G)xa,

∑
z∈N

G2
(v)

wG2 (zv)xz = θxa − δxu +
∑

z∈NG(v)

wG(zv)xz = ρ(G)xv,

∑
z∈N

G2
(b)

wG2 (zb)xz = δxu − θxa +
∑

z∈NG(b)

wG(zb)xz = ρ(G)xb.

It is obvious that, for p ∈ V(G) − {a, b,u, v}, we have that∑
z∈N

G2
(p)

wG2 (zp)xz =
∑

z∈NG(p)

wG(zp)xz = ρ(G)xp.

ThusA
(
G2

)
x = ρ(G)x. Sincex is thePerronvector, by thePerron–FrobeniusTheorem,wehaveρ

(
G2

)
=

ρ(G). �

Remark 1. Theorems 2.3 and 2.7 are the main tools used in Section 3. There we will apply them and

the idea from [8,9] to determine the weighted tree with the largest spectral radius in the set of all

weighted trees with fixed diameter and weight set.

3. On the weighted trees with the largest spectral radius

Let G be a weighted graph. The weight of vertex v of G, denoted by wG(v), is the weight sum of

edges incident to v in G. The distance of vertex subsets A and B of G is the minimum number in

{d(a, b) : a ∈ A, b ∈ B}, where d(a, b) is the distance of vertices a and b. LetH be anotherweighted graph.

G and H are called isomorphic, denoted by G = H, if there exists a bijection f from V(G) to V(H) such

that ab ∈ E(G) if and only if f (a)f (b) ∈ E(H), and wG(ab) = wH(f (a)f (b)) for each ab ∈ E(G). If H is a

subgraph of G andwH(e) = wG(e) for each e ∈ E(H), then H is called a weighted subgraph of G. If H is a

weighted subgraph of G, V(H) = V(G) and E(H) /= E(G), then H is called a weighted proper spanning

subgraph of G.
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Fig. 1. The tree T̃k .

Let �(d,m1,m2, . . . ,mn−1) denote the set of all weighted trees with n vertices, diameter d and

positive weight set {m1,m2, . . . ,mn−1}. Let �(n, d) be the subset of �(d,m1,m2, . . . ,mn−1) such that

each of�(n, d) can be obtained from someweighted path Pd+1 by adding n − d − 1 pendent weighted

edges at some non-pendent vertex of Pd+1.

Lemma 3.1. Let T ∈ �(d,m1,m2, . . . ,mn−1) − �(n, d). Then there exists a weighted tree T̃ ∈ �(n, d) such

that ρ(T)<ρ(̃T).

Proof. Let Pd+1 = v1v2 · · · vdvd+1 be a path in T . Then T can be obtained from Pd+1 by attaching a proper

weighted tree to the vertex vi for each i = 2, 3, . . . , d. Let (x1, x2, . . . , xn)
t be the Perron vector of T , where

xi corresponds to the vertex vi of T .

Case 1: Suppose that T is a Caterpillar.

Since T /∈ �(n, d), there are two vertices vi and vj(2 � i /= j � d) of degree greater than 2. Without

loss of generality, assume xvi � xvj . Let vj−1, vj+1, z1, z2, . . . , zs be all adjacent vertices of vj in T . Let T ′
be the weighted tree obtained from T by deleting the edges vjzk and adding the edges vizk such that

wT ′ (vizk) = wT (vjzk), wT ′ (e) = wT (e), e /= vjzk , k = 1, 2, . . . , s.

By Corollary 2.5, we have that ρ(T)<ρ
(
T ′). To T ′ repeat the above procedure until we arrive at a

weighted tree T̃ ∈ �(n, d). So by Corollary 2.5, we get that

ρ(T)<ρ
(
T ′) < · · · <ρ(̃T).

Case 2: Suppose that T is not a Caterpillar.

It is obvious that T has at least a non-pendent edgeuv not in Pd+1.Without loss of generality, assume

xv � xu. Let NT (u) = {v,u1,u2, . . . ,us} and let T1 be the weighted tree obtained from T by deleting the

edges uuj and adding the edges vuj such that

wT1 (vuj) = wT (uuj), wT1 (e) = wT (e), e /= uuj , j = 1, 2, · · · , s.
By Corollary 2.5, we have ρ(T)<ρ(T1). To T1 repeat the above procedure until we arrive at a weighted

tree Tl such that each edge of Tl not in Pd+1 is a pendent weighted edge, i.e., Tl is a caterpillar tree. So

by Corollary 2.5 and Case 1, the result holds. �

Let T̃k be the tree shown in Fig. 1. Let TM be the weighted tree in �(n, d) with the largest spectral

radius and let PM be a path of length d in TM . Then there are a k(2 � k � d) and a disposition of

weights in all edges of T̃k such that TM = T̃k . Let x = (x1, x2, . . . , xn)
t be the Perron vector of TM , where

xi corresponds to the vertex i of TM . Without loss of generality, we also assume d � 3 (otherwise,

the problem is trivial). Next we will investigate some spectral and structural properties of TM . For

convenience, write a1 = d + 2, a2 = d + 3, . . . , as = n, and without loss of generality, assume k � d+2
2

.

Lemma 3.2. Let ab,uv be two distinct edges of PM .

(1) If xaxb � xuxv, then wTM (ab) � wTM (uv).

(2) If wTM (ab)>wTM (uv), then xaxb > xuxv.

(3) If xaxb = xuxv, then wTM (ab) = wTM (uv).



92 S.-w. Tan, Y.-h. Yao / Linear Algebra and its Applications 431 (2009) 86–98

Proof. Note that (2) and (3) can be immediately deduced from (1). So we only give the proof of (1).

AssumewTM (ab)<wTM (uv). Put δ = wTM (uv) − wTM (ab) and let T ′ be the weighted tree obtained from

TM such that

wT ′ (ab) = wTM (ab) + δ, wT ′ (uv) = wTM (uv) − δ, wT ′ (e) = wTM (e), e /= ab,uv,

i.e., T ′ is the weighted tree obtained from TM by exchanging the weights of edges ab and uv while

making the weights of other edges not changed. Then T ′ ∈ �(n, d), and by the additional claim of

Theorem 2.3, ρ
(
T ′) >ρ(TM), a contradiction with the assumption of TM . �

Lemma 3.3. Let a, b,u, v be four distinct vertices of PM from the left to the right and ab,uv be two edges of

PM . Then

(xu − xb)(wTM (ab)xa − wTM (uv)xv) � 0, and xb = xu if and only if wTM (ab)xa = wTM (uv)xv.

(xv − xa)(wTM (ab)xb − wTM (uv)xu) � 0, and xa = xv if and only if wTM (ab)xb = wTM (uv)xu.

Proof. We only give the proof of the first result. Assume the contrary, that is

(xu − xb)(wTM (ab)xa − wTM (uv)xv)>0,

or that only onebetween xb = xu andwTM (ab)xa = wTM (uv)xv holds. Take δ = wTM (ab) and θ = wTM (uv).

Let T ′ be the weighted tree obtained from TM such that

wT ′ (ab) = wTM (ab) − δ, wT ′ (au) = wTM (au) + δ, wT ′ (uv) = wTM (uv) − θ,

wT ′ (vb) = wTM (vb) + θ, wT ′ (e) = wTM (e), e /= ab,uv,

i.e., T ′ is the weighted tree obtained from TM by deleting the edges ab,uv and adding the edges au, vb

such thatwT ′ (au) = wTM (ab),wT ′ (vb) = wTM (uv). Then T ′ ∈ �(n, d), andbyTheorem2.7,ρ
(
T ′) >ρ(TM),

a contradiction with the assumption of TM . �

Lemma 3.4. Let p, q be two distinct vertices of PM .

(1) If wTM (p)>wTM (q), then xp > xq.

(2) If xp > xq, then wTM (p) � wTM (q).

(3) If xp = xq, then wTM (p) = wTM (q).

Proof. We only prove (1). Suppose that xp � xq, and without loss of generality, assume p< q. We will

get a contradiction by distinguishing the following three cases.

Case 1: Assume p = 1.

If q = 2, then 1 and 3 are the two adjacent vertices of q in PM . Thus we have that wTM (p) =
wTM (12)<wTM (12) + wTM (23) � wTM (q), a contradiction.

If q = 3, then 2 and 4 are the two adjacent vertices of q in PM . SincewTM (p2) = wTM (p)>wTM (q)>
wTM (2q), by Lemma 3.2(2), we have xpx2 > x2xq. This implies that xp > xq, a contradiction.

If q � 4, then we consider the distinct vertices a = p, b = p + 1,u = q − 1, v = q. From wTM (ab)>
wTM (uv) and Lemma 3.2(2), we have xaxb > xuxv. Hence xb > xu. Also from Lemma 3.3, we have (xv −
xa)(wTM (ab)xb − wTM (uv)xu) � 0. Therefore, combining xa � xv andwTM (ab)>wTM (uv), we get xb < xu,

a contradiction.

Case 2: Assume 2 � p< q<d + 1.

Case 2.1: Assume p = k and n>d + 1.

Let T ′ be the weighted tree obtained from TM by deleting the edges pa1, pa2, . . . , pas and adding the

edges qa1, qa2, . . . , qas such that

wT ′ (qai) = wTM (pai), wT ′ (e) = wTM (e), e /= pai, i = 1, 2, . . . , s.

By Corollary 2.5, we have T ′ ∈ �(n, d) and ρ
(
T ′) >ρ(TM), a contradiction.
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Case 2.2: Assume p /= k or p = k and n = d + 1. Set a = p − 1, b = p + 1,u = q − 1, v = q + 1.

First assumewTM (ap)>wTM (qv). By Lemma 3.2(2), we have xaxp > xqxv. Combining xp � xq, we get

xa > xv. Thus

(xq − xp)(wTM (ap)xa − wTM (qv)xv) � 0, wTM (ap)xa >wTM (qv)xv.

These contradict to the first results of Lemma 3.3.

Next assume wTM (ap) � wTM (qv). If q − p = 1, i.e., that p is adjacent to q, then

wTM (p) = wTM (ap) + wTM (pq) � wTM (qv) + wTM (pq) � wTM (q),

a contradiction. Now assume q − p � 2. Then wTM (pb)>wTM (uq). By Lemma 3.2(2), we have that

xpxb > xuxq. If q − p = 2, then b = u. Therefore, we have that xp > xq, a contradiction. If q − p � 3, then

b /= u. Combining xp � xq, we get xb > xu. Thus

(xq − xp)(wTM (pb)xb − wTM (uq)xu) � 0, wTM (pb)xb >wTM (uq)xu.

These contradict to the second results of Lemma 3.3.

Case 3: Assume 2 � p< q = d + 1. Set a0 = p − 1.

When p /= k or p = k and n = d + 1, let T ′ be the weighted tree obtained from TM by deleting the

edge pa0 and adding the edge qa0 such that

wT ′ (qa0) = wTM (pa0), wT ′ (e) = wTM (e), e ∈ E(TM) − {pa0}.
Whilep = kandn>d + 1, letT ′ be theweighted treeobtained fromTM bydeleting theedgespa0, pa1, . . . , pas
and adding the edges qa0, qa1, . . . , qas such that

wT ′ (qai) = wTM (pai), wT ′ (e) = wTM (e), e /= pai, i = 0, 1, . . . , s.

By Corollary 2.5, we have T ′ ∈ �(n, d) and ρ
(
T ′) >ρ(TM), a contradiction. �

Lemma 3.5. Suppose that the vertices of PM are relabeled by v1, . . . , vd, vd+1 so that xv1 � · · · � xvd � xvd+1
.

Then {vd, vd+1} = {1, d + 1} and v1 = k if n>d + 1.

Proof. First, suppose that {vd, vd+1} /= {1, d + 1}. There exists a l(l � d − 1) such that 1 = vl or d + 1 =
vl .Without loss generality, assume d + 1 = vl . Then there is a p(2 � p � d) such that p = vd or p = vd+1.

Set q = d + 1. Then 2 � p< q = d + 1 and xp � xq. In the similar way to Case 3 of Lemma 3.4, we will

get a contradiction.

Next, let n>d + 1 and assume that v1 /= k. Then there exists a p(p /= 1, d + 1, k) such that v1 = p.

Let T ′ be the weighted tree obtained from TM by deleting the edges ka1, ka2, . . . , kas and adding the

edges pa1, pa2, . . . , pas such that

wT ′ (pai) = wTM (kai), wT ′ (e) = wTM (e), e /= kai, i = 1, 2, . . . , s.

Then T ′ ∈ �(n, d), and from xk � xp and Corollary 2.5, we have that ρ
(
T ′) >ρ(TM), a contradiction. �

Let a, b be two vertices of PM . An interval [a, b] in PM is the set of vertices of PM between a and b,

including a and b. In particular, [a, a] = {a}. Let w̃1 > w̃2 > · · · > w̃l be the distinct weights of vertices

from PM in TM . Set

Vi = {j : wTM (j) = w̃i, j = 1, 2, . . . , d + 1}, Ṽi =
⋃
j�i

Vj , i = 1, 2, . . . , l.

Let P = 12 · · · s be a path of a weighted tree T . Write c(P) =
{
s
2
, s+2

2

}
if s is even, and c(P) =

{
s+1
2

}
otherwise. We call c(P) the center of P. Let ei denote the edge i(i + 1) of P, namely ei = i(i + 1) for

i = 1, 2, . . . , s − 1. If for each i
(
1 � i � s−1

2

)
,wT (ei) = wT (es−i), i.e., any two symmetric edges of P with

respect to its center have the same weights, then P is called symmetric in edge weights. When s =
2r + 1, if

wT (er) � wT (er+1) � wT (er−1) � wT (er+2) � · · · � wT (e1) � wT (e2r),

and when s = 2r, if
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wT (er) � wT (er−1) � wT (er+1) � wT (er−2) � wT (er+2) � · · · � wT (e1) � wT (e2r−1),

then P (any weighted path isomorphic to it) is called an alternating weighted path in edge weights.

Lemma 3.6. If at least two components of x corresponding to the vertices of PM are equal, then PM is

symmetric in edge weights.

Proof. Let r and t be two vertices of PM with xr = xt . Without loss of generality, let r< t. Wewill prove

xr+1 = xt−1. Assume the contrary, then, without loss of generality, xr+1 > xt−1. Let a = r, b = r + 1,u =
t − 1, v = t. Then xaxb > xuxv. By Lemma3.2(1),wehave thatwTM (ab) � wTM (uv). IfwTM (ab) = wTM (uv),

thenxb > xu andwTM (ab)xa = wTM (uv)xv. IfwTM (ab)>wTM (uv), thenxa = xv andwTM (ab)xb >wTM (uv)xu.

The above results contradict with Lemma 3.3. Therefore, xr+1 = xt−1. By proceeding in this way, we

can show that xr+i = xt−i for each 1 � i � t−r
2
, and in the similar way we can also show that xr−i = xt+i

for each 1 � i � min{r − 1, d + 1 − t}.
Assume r − 1 /= d + 1 − t, and without loss of generality, assume r − 1>d + 1 − t. Set p = r + t −

d − 1, q = d + 1. Then 2 � p< q = d + 1 and xp = xq. In the similar way to Case 3 of Lemma 3.4, wewill

get a contradiction. Therefore, r − 1 = d + 1 − t.

For each 1 � i< d+2
2

, let a = i, b = i + 1, u = d + 1 − i, v = d + 2 − i, i.e., that ab and uv are two sym-

metric edges of PM with respect to its center. By the above result, we have xa = xv, xb = xu. So xaxb =
xuxv. From Lemma 3.2(3), we have wTM (ab) = wTM (uv). This indicates that PM is symmetric in edge

weights. �

Lemma 3.7. PM is an alternating weighted path in edge weights.

Proof. Relabel the vertices of PM by v1, v2, . . . , vd+1 so that xv1 � xv2 � · · · � xvd+1
. By Lemma 3.5, we

have that v1 = k, 2 � k � d.Wewill distinguish the following two cases depending on xv1 , xv2 , . . . , xvd+1
.

Case 1: Assume xv1 > xv2 > · · · > xvd+1
.

Let v2 = i, and assume i /∈ {k − 1, k + 1}. If i< k, we consider thedistinct vertices: a = i, b = i + 1,u =
k, v = k + 1. If i> k, we consider the distinct vertices: a = i, b = i − 1, v = k − 1,u = k. By Lemma 3.3,

we have that

(xu − xb)(wTM (ab)xa − wTM (uv)xv) � 0, (3)

(xv − xa)(wTM (ab)xb − wTM (uv)xu) � 0. (4)

Note that

xa > xv, xu > xb. (5)

So from Eqs. (3)–(5), we get that

wTM (ab) � wTM (uv) · xv
xa

<wTM (uv)

and

wTM (ab) � wTM (uv) · xu
xb

>wTM (uv),

a contradiction. Thus i = k − 1 or i = k + 1, i.e., that v2 = k − 1 or v2 = k + 1.

Case 1.1: Assume v2 = k + 1.

Set S1 = ẽ1 = k(k + 1). Let v3 = i, and assume i /= k − 1. If i< k, we consider the four distinct ver-

tices: a = i, b = i + 1,u = k + 1, v = k + 2. If i> k + 1, we consider the four distinct vertices: a = i, b =
i − 1, v = k − 1,u = k. Then Eqs. (3)–(5) hold. So we will get a contradiction. Therefore, i = k − 1. So

v3 = k − 1, and we now put S2 = ẽ2S1(= ẽ2ẽ1 = (k − 1)k(k + 1)).

Next let v4 = i, and assume i /= k + 2. If i< k − 1, we consider the four distinct vertices: a = i, b =
i + 1,u = k + 1, v = k + 2. If i> k + 1, we consider the four distinct vertices: a = i, b = i − 1, v = k −
2,u = k − 1. Then Eqs. (3)–(5) also hold. So we again get a contradiction. Therefore, i = k + 2. So v4 =
k + 2, and we now put S3 = S2ẽ3(= ẽ2ẽ1ẽ3 = (k − 1)k(k + 1)(k + 2)).
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Suppose that the edges ẽ1, ẽ2, . . . , ẽl−1(4 � l � d − 1) are alreadyplaced in the string Sl−1 andassume

that Sl−1 = p · · · (k − 1)k(k + 1) · · · q. Then at least two vertices of PM are not in Sl−1. By Lemma 3.5, we

have that p /= 1 and q /= d + 1. Next, let vl+1 = i, and assume that l is odd (for l even the proof is

quite analogous). Then vl = p and xp < xq. Assume that i /= q + 1. If i<p, we consider the four dis-

tinct vertices: a = i, b = i + 1,u = q, v = q + 1. If i> q, we consider the four distinct vertices: a = i, b =
i − 1, v = p − 1,u = p. ThenEqs. (3)–(5)hold. Thesewill yieldacontradiction. Thuswehave i = q + 1. So

vl+1 = q + 1, andwenowput Sl = Sl−1ẽl = p · · · (k − 1)k(k + 1) · · · q(q + 1). Repeat the above procedure

until we get Sr such that 1 ∈ Sr (where, when v1, v2, . . . , vd ∈ Sr−1, directly let ẽd = vd+12 = 12 and

Sr = ẽdSr−1). Since 1 ∈ Sr , by Lemma 3.5, we must have vd ∈ Sr . If Sr has included all vertices of PM ,

then let S = Sr (In this case, d is even and k = d+2
2

). Otherwise, vd+1 = d + 1 /∈ Sr , let ẽd = d(d + 1) and

let S = Sr ẽd (In this case, d is odd and k = d+1
2

).

The sequence of edges in S forms the path PM . Let ẽs = ab and ẽt = uv be two edges in S, and assume

s< t. By the structure of S, we have xaxb > xuxv. Again by Lemma 3.2(1), we have wTM (ẽs) � wTM (ẽt).

This indicates that PM is an alternating weighted path in edge weights.

Case 1.2: Assume v2 = k − 1.

If k = 2, then v2 = 1. From Lemma 3.5, we get d = 1 or d = 2, a contradiction with d � 3. Therefore,

k � 3. The rest of this proof is similar to Case 1.1.

Case 2: At least two of xv1 , xv2 , . . . , xvd+1
are equal.

We will show that each Ṽi is an interval for i = 1, 2, . . . , l − 1. Assume the contrary, and let s be the

smallest number such that Ṽs is not an interval. Then there are two subintervals of Ṽs, say U and V ,

whose distance is at least 2. Let a ∈ U and b /∈ Ṽs be the vertices of PM chosen so that a is adjacent to

b and a is on the right side of U. If d + 1 ∈ Ṽs, then wTM (d + 1)>wTM (b). By Lemma 3.4(1), xd+1 > xb.

Set p = b and q = d + 1. Then 2 � p< q = d + 1 and xp � xq. In the similar way to Case 3 of Lemma 3.4,

we will get a contradiction. Therefore, d + 1 /∈ Ṽs. So there are two vertices u ∈ V and v /∈ Ṽs such that

u is adjacent to v and u is on the right side of V . Then Eqs. (3) and (4) hold. SincewTM (a)>wTM (v) and

wTM (u)>wTM (b), by Lemma 3.4(1), we have xa > xv and xu > xb. Thus we get a contradiction by Eqs.

(3)–(5).

The above results also imply that Ṽ1 ⊆ Ṽ2 ⊆ · · · ⊆ Ṽl−1, and by Lemma 3.6, PM is symmetric in edge

weights. Therefore, PM is a symmetric alternating weighted path in edge weights. �

Lemma 3.8 [6]. Let G be the weighted graph obtained from two weighted graphs G1 and G2 by joining a

vertex u of G1 to a vertex v of G2 with a new edge uv. Then

φ(G,λ) = φ(G1,λ)φ(G2,λ) − w2
G(uv)φ(G1 − u,λ)φ(G2 − v,λ).

Lemma 3.9 [6]. Let H be a weighted proper spanning subgraph of a weighted tree T . Then for λ � ρ(T),we

have φ(H,λ)>φ(T ,λ).

Lemma 3.10. Assume s /= 0, i.e., that n>d + 1.

(1) If d = 3, then for i = 1, 2, . . . , s,

min{wTM (k1),wTM (k3)} � wTM (kai) � wTM (34).

(2) If d � 4, set a = k − 2, b = k − 1,u = k + 1, v = k + 2, then for i = 1, 2, . . . , s,

min{wTM (kb),wTM (ku)} � wTM (kai) � max{wTM (ab),wTM (uv)}.

Proof. Without loss of generality, assume wTM (ka1) � wTM (ka2) � · · · � wTM (kas).

(1) It is obvious that k = 2. Write a0 = 1. Since the edges ka0, ka1, . . . , kas are symmetric in their

positions, without loss of generality, assumewTM (ka0) � wTM (ka1). Nowwe need show thatwTM (k3) �
wTM (ka1),wTM (kas) � wTM (34). By Lemma 3.8, we have that
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φ(TM ,λ) = λs
(
λ2 − w2

TM
(34)

) ⎡
⎣λ2 −

s∑
j=0

w2
TM

(kaj)

⎤
⎦ − λs+2w2

TM
(k3).

We will first prove wTM (k3) � wTM (ka1). Assume wTM (k3)<wTM (ka1). Let T
′ be the weighted tree

obtained from TM by exchanging the weights of edges k3 and ka1 while making the weights of other

edges fixed. Then for λ � ρ
(
T ′), we have that

φ(TM ,λ) − φ
(
T ′,λ

) = λs
[
w2

TM
(ka1) − w2

TM
(k3)

]
w2

TM
(34)>0.

This indicates that ρ
(
T ′) >ρ(TM), a contradiction.

We will next prove wTM (kas) � wTM (34). Assume wTM (kas)<wTM (34). Let T ′′ be the weighted tree

obtained from TM by exchanging the weights of edges 34 and kas while making the weights of other

edges fixed. Then for λ � ρ
(
T ′′), we have that

φ(TM ,λ) − φ(T ′′,λ) = λs
[
w2

TM
(34) − w2

TM
(kas)

]
·
s−1∑
j=0

w2
TM

(kaj)>0.

This indicates that ρ
(
T ′′) >ρ(TM), a contradiction.

(2) Let P(i, j) denote the subpath between the vertex i and the vertex j in PM , including i and j. In

particular, P(i, i) is an isolated vertex P1. Set q = d + 1 and φ(P(1, 0)) = 1. By Lemma 3.8, we have

φ(TM ,λ) = φ(TM − ka1 − kb) − w2
TM

(kb)λsφ(P(1, a))φ(P(u, q))

−w2
TM

(ka1)λ
s−1φ(P(1, b))φ(P(u, q)), (6)

φ(TM ,λ) = φ(TM − kas − ab) − w2
TM

(kas)λ
sφ(P(1, a))φ(P(u, q))

−w2
TM

(ab)φ(P(1, a − 1))
[
λφ(G) − w2

TM
(kas)λ

s−1φ(P(u, q))
]
, (7)

where G is the weighted graph obtained from TM by deleting vertices 1, 2, . . . , k − 1, as together with

the edges incident to them. By Lemma 3.8, we have

φ(G) = λs−1φ(P(k, q)) − λs−2φ(P(u, q))

s−1∑
j=1

w2
TM

(kaj),

where when s = 1, we define
∑s−1

j=1 w2
TM

(kaj) = 0.

We will first prove min{wTM (kb),wTM (ku)} � wTM (ka1). Assume the contrary, and without loss of

generality, assume wTM (kb)<wTM (ka1). Let T
′ be the weighted tree obtained from TM by exchanging

theweightsof edgeskbandka1 whilekeeping theweightsof otheredgesnot changed. ThenT ′ ∈ �(n, d)

and TM − ka1 − kb = T ′ − ka1 − kb. By Eq. (6), we have

φ(TM ,λ) − φ
(
T ′,λ

)
w2

TM
(ka1) − w2

TM
(kb)

= λs−1φ(P(u, q)) · [φ(P1 ∪ P(1, a)) − φ(P(1, b))].

Since P1 ∪ P(1, a) is a weighted proper spanning subgraph of P(1, b), by Lemma 3.9, for λ � ρ(P(1, b)),

φ(P1 ∪ P(1, a))>φ(P(1, b)). But P(1, b) and P(u, q) are two proper subgraphs of T ′, by the Perron–Frobe-
nius Theorem, ρ

(
T ′) > max{ρ(P(1, b)),ρ(P(u, q))}. So for λ � ρ

(
T ′) ,φ(TM ,λ)>φ

(
T ′,λ

)
. This indicates

that ρ
(
T ′) >ρ(TM), a contradiction.

We will next show wTM (kas) � max{wTM (ab),wTM (uv)}. Assume the contrary, and without loss of

generality, assume wTM (kas)<wTM (ab). Let T ′′ be the weighted tree obtained from TM by exchanging

the weights of edges ab and kas while keeping the weights of other edges fixed. Then T ′′ ∈ �(n, d) and

TM − kas − ab = T ′′ − kas − ab. By Eq. (7), we have

φ(TM ,λ) − φ(T ′′,λ)

λs
[
w2

TM
(ab) − w2

TM
(kas)

] = �0 + 1

λ
φ(P(1, k − 3))φ(P(k + 1, q))

s−1∑
j=1

w2
TM

(kaj),
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where

�j = φ(P(1, k − 2 − j))φ(P(k + 1 + j, q)) − φ(P(1, k − 3 − j))φ(P(k + j, q)).

Now assume λ � ρ
(
T ′′). By Lemma 3.8, we have

�0 = w2
TM

(ek)φ(P(1, k − 3))φ(P(k + 2, q)) − w2
TM

(ek−3)φ(P(1, k − 4))φ(P(k + 1, q)),

where ei denotes the edge i(i + 1) of PM . Since k =
⌊
d+2
2

⌋
by Lemma 3.7, the distance of ek−3 and the

center of PM is greater than that of ek and the center of PM . But PM is an alternating weighted path in

edge weights, so wTM (ek) � wTM (ek−3). Hence we get �0 � w2
TM

(ek−3)�1. Repeat the above procedure,

we have

�0 � w2
TM

(ek−3)w
2
TM

(ek−4)�2 � · · · � �k−3 ·
k−3∏
j=1

w2
TM

(ej)

= [φ(P1 ∪ P(2k − 2, q)) − φ(P(2k − 3, q))] ·
k−3∏
j=1

w2
TM

(ej).

Since P1 ∪ P(2k − 2, q) is a weighted proper spanning subgraph of P(2k − 3, q), by Lemma 3.9, for λ �
ρ(P(2k − 3, q)), we have φ(P1 ∪ P(2k − 2, q))>φ(P(2k − 3, q)), i.e., �0 >0. But P(2k − 3, q) is a proper

subgraphs of T ′′, by the Perron–Frobenius Theorem, ρ
(
T ′′) >ρ(P(2k − 3, q)). Hence for λ � ρ

(
T ′′),

φ
(
TM ,λ

)
>φ

(
T ′′,λ

)
. This implies that ρ

(
T ′′) >ρ(TM), a contradiction. �

By Lemmas 3.7 and 3.10, we see, if d = 2r, that

wTM (er) � wTM (er+1) � wTM ((r + 1)a1) � wTM ((r + 1)a2) � · · · � wTM ((r + 1)as)

� wTM (er−1) � wTM (er+2) � wTM (er−2) � · · · � wTM (e1) � wTM (e2r),

and if d = 2r − 1, that

wTM (er) � wTM (er−1) � wTM (ra1) � wTM (ra2) � · · · � wTM (ras) � wTM (er+1)

� wTM (er−2) � wP(er+2) � wP(er−3) � · · · � wTM (e1) � wTM (e2r−1).

This indicates that, for given parameters m1,m2, . . . ,mn−1, TM is uniquely determined. Therefore, by

Lemmas 3.1 and 3.7 and the definition of TM , we immediately get the following main result.

Theorem 3.11. For n � 2, TM is the unique weighted tree in �(d,m1,m2, . . . ,mn−1) having the largest

spectral radius.

Example. In Fig. 2, two weighted trees are displayed, where the numbers on the edges denote the

weights of edges. The first has the largest spectral radius in

�(8, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2),

while the second has the largest spectral radius in

�(7, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2).

Remark 2. Theorem 3.11 indicates that the alternating weighted path PM with n vertices is the unique

weighted path having the largest spectral radius in the set of all weighted paths with n vertices and

positive weight set {m1,m2, . . . ,mn−1}. Suppose that at least two of m1,m2, . . . ,mn−1 are distinct and

m = max{m1,m2, . . . ,mn−1}. It is obvious that ρ(PM)<2m cos π
n+1

. This indicates that ρ(PM) is a better

upper bound than 2m cos π
n+1

, which gives an answer of an open problem proposed in [4].
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Fig. 2. Examples of two weighted trees with the largest spectral radius.

Write Td
M = TM . Let T ′ be the weighted tree obtained from TM by deleting the edge k(k + 1), identi-

fying the vertices k and k + 1 and adding the pendent edge kas+1 such thatwT ′ (kas+1) = wTM (k(k + 1)).

Then T ′ ∈ �(d − 1,m1,m2, . . . ,mn−1), and by Corollary 2.5, we have ρ(Td
M)<ρ

(
T ′) � ρ(Td−1

M ). Thus we

get the following results.

Corollary 3.12 [4]. Let T be a weighted tree with n vertices and positive weight set. Then ρ(T) � ρ(T2
M),

with equality if and only if T = T2
M(= K1,n−1).

Corollary 3.13 [5]. Let T /= T2
M be a weighted tree with n vertices and positive weight set. Then ρ(T) �

ρ(T3
M), with equality if and only if T = T3

M .
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