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1. Introduction

In this paper, we only consider simple weighted graphs on positive weight set. Let G be a weighted
graph with vertex set {v{,V,,...,Vn}, edge set E(G) # ¢ and weight set W(G) = {w;>0:j=1,2,...,
|[E(G)|}. The function wg : E(G) — W(G) is called a weight function of G. It is obvious that each weighted
graph corresponds to a weight function. The adjacency matrix of G is the n x n matrix A(G) = (a;),
where a;; = wg(v;V;) if v;vj € E(G), and a;; = 0 otherwise. The characteristic polynomial of A(G) is said to
be the characteristic polynomial of G, denoted by ¢(G, 1) or ¢(G). Since A(G) is a nonnegative symmetric
matrix, its eigenvalues are all real numbers and its largest eigenvalue is a positive number. The largest
eigenvalue of A(G) is called the spectral radius of G, denoted by p(G).
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Since A(G) is nonnegative, there is a nonnegative eigenvector corresponding to o(G). In particular,
when G is connected, A(G) is irreducible and by the Perron-Frobenius Theorem (e.g.[1]), p(G) is simple
and there is a unique positive unit eigenvector. We shall refer to such an eigenvector as the Perron
vector of G. Let B! denote the transpose of a matrix B. All other notations and definitions not given in
the paper are standard terminology of graph theory (e.g. [2]).

Since graphs of the design of networks and electronic circuits are usually weighted, the spectrum
of weighted graphs is often used to solve problems. On the other hand, graphs may be regarded as
weighted graphs whose edges have weight 1. Therefore, it is significant and necessary to investigate the
spectrum of weighted graphs. M. Fiedler had introduced the following question: What is the optimal
distribution of nonnegative weights (with total sum 1) among the edges of a given graph, so that the
spectral radius of the resulting matrix is minimum? He himself shown that the optimum solution is
achieved and S. Poljak presented a polynomial time algorithm which finds such optimum solution [3].
Yang et al. had obtained an upper bound of spectral radius of weighted trees with fixed order and
weight set [4] and proposed the following open problem: are there better bounds of spectral radius for
all weighted paths with order n? Yuan and Shu had given the second largest value of spectral radius
of weighted trees with fixed order and weight set [5]. Tan had determined an upper bound of spectral
radius of weighted trees with fixed order, edge independence number and weight set [6].

The remainder of the paper is organized as follows. In Section 2 we will give some perturbational
results on the spectral radius of weighted graphs when some weights of edges are modified. In Section
3 we will determine the weighted tree with the largest spectral radius in the set of all weighted trees
with fixed diameter and weight set. Furthermore, an open problem of spectral radius on weighted
paths proposed in [4] is solved.

2. Some perturbational results on spectral radius

Let G be a weighted graph with a positive weight set. Let N (v) denote the set of vertices adjacent
to the vertex v in G. For convenience, we define wg(uv) = 0 if uv ¢ E(G). So G may be regarded as a
weighted graph with a nonnegative weight set, where uv € E(G) if and only if wg(uv) > 0.

Lemma 2.1 [1]. Let A be a Hermitian matrix and let p(A) be the largest eigenvalue of A. Then p(A) =
MaXy=1xern X'AX, and p(A) = x*Ax if x is a unit eigenvector corresponding to p(A).

Lemma 2.2 [7]. Let A be a nonnegative symmetric matrix and x be a unit vector of R". If p(A) = x'Ax, then
Ax = p(A)X.

Any modification of a weighted graph gives rise to perturbations of its eigenvalues. In literature,
this topic is mostly investigated for the largest eigenvalue of graphs. In the following we present some
perturbational results on the spectral radius of weighted graphs, which are useful and more ordinary
than those of graphs.

Theorem 2.3. Let a, b, u, v be four vertices of a weighted graph G and let x = (x1, X, ..., Xn)" be a nonnega-
tive unit eigenvector corresponding to p(G), where x; corresponds to the vertex v; of G. For 0 < § < wg(uv),
let G! be the weighted graph obtained from G such that

Wei (uv) = wguv) — 68, wei(ab) = wg(ab) + 6,
wei(e) =wg(e), e e E(G) —{ab,uv).

If Xuxy < XaXp, then p(G) < p (Gl> . In addition, if x,xy < XaXp, or xuXy < XqXp, and G is connected, then
PG <p (Gl> .
Proof. From Lemma 2.1, we have that
0 (Gl) — p(G) = max y'A (G1)y —x"AG)x > X! (A (Gl) - A(G)) X
Iyll=1

= 28(XaXb — XuXy) > 0. (1)
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Suppose that x;x, < xqx;,. By Eq. (1), it is obvious that p(G) < p (Gl).
Suppose that x;xy < XgXp, and G is connected. By the Perron-Frobenius Theorem, x is a positive unit
eigenvector. Assume that p(G) = p (Gl). Then from Eq. (1), we get that p <G1> =x'A (61) x. Again by

Lemma 2.2, we obtain A <G1) X=p (Gl> x. Without loss of generality, assume that a ¢ {u,v}. Then

2 (Gl) Xa=Wai@xy+ Y weax,
zeNg1 @~ (b)

= 8xp + wg(ab)xy + Z We (za)x;
zeNg(a)—{b}

=8+ Y, Weax,.
zeNg(a)

Also from A(G)x = p(G)x, we have that p(G)xs = ZZE,VG(G) wg(za)xz. So we have (,0 (Gl> = p(G)) Xq =
8xp = 0. This implies that x;, = 0, a contradiction with x;, > 0. Therefore, p(G) < p <G1>. O

Corollary 2.4. Let G and G! be the two weighted graphs defined in Theorem 2.3. Let X = (X1,X2, ..., Xn)"
and x' = (x],x1,...,x)! be two nonnegative unit eigenvectors corresponding to p(G) and p(G'), where x;
and x; correspond to the vertex v; of G and G', respectively. If xuXy < XaXp, then x}x} < xix}. In addition,
if XuXy < XX}, OF XuXy < XqXp and G is connected, then x}x} < x}x}.

Proof. We first prove that x)x} < x}x}. Assume x}x} > x}x}. It is easy to see that G can be obtained
from G! in the following way:

weuv) = wei(uv) + 8, we(ab) = wei(ab) -6,

wg(e) =wgi(e), ecE (Gl) — {ab,uv}.

Since xjx} < x}x}, by the additional claim of Theorem 2.3, we have p (G1> < p(G). On the other hand,

since x,Xy < XgXp, again by Theorem 2.3, we get that p(G) < p <G1), a contradiction. Therefore, x},x}, <
Xax}.
We next prove the additional claim. Assume x}x, > x}x]. On the one hand, since xyx, < Xqx; or

XuXv < XgXp and G is connected, by the additional claim of Theorem 2.3, we have that p(G) < p (Gl>.

On the other hand, since x}x} < x}x}, again by Theorem 2.3, we get that p (Gl) < p(G), a contradiction.
Therefore, x}x} <xix}. O

Corollary 2.5[5]. Let u, v be two distinct vertices of a connected weighted graph G and let uy, u,, . . ., us(u; #
v,s # 0) be some vertices of Ng(u) — Ng(v). Let x = (X1,X2,...,Xn)¢ be the Perron vector of G, where x;
corresponds to the vertex v; of G. Let G’ be the weighted graph obtained from G by deleting the edges uu;
and adding the edges vu; such that

We (VUj) = wg(uly), wg(e) =wg(e), e # uu;, j=1,2,...,s.
If xy > xy, then p(G) < p (G').

Proof. Put Hy = G.Forj=1,2,...,s, let H; be the weighted graph obtained from H;_; by deleting the
edge uy; and adding the edge vu; such that

W, (vuj) = WH;_, (uuy), W; (e) = WH,_, (e), eeckEMH;_1)— {uy}.

Since Why;_, (ut) > wy,_, (Vilj) = Oforj=1,2,...,s, set §; = wh;_, (uuy), then H; can be obtained from
H;_; in the following way:
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W, (VU)j) = Wh_, (Vilj) + i, W, (Ullj) = Wy (uij) — 3,
W, (e)=wy,_,(e), ee E(Hj,l) — {vu;, uu;}.

. L NS
Let ¥ = (x’1x’2 .. x{l) be a nonnegative unit eigenvector corresponding to p(Hj), where x° = x and

x:: corresponds to the vertex v; of H;. Then x, x) > x{, X3, and by the additional claim of Corollary 2.4,
we have that

x{,}_+1 j=1,2,...,s—1.
Since Hs = G/, by the additional claim of Theorem 2.3, we get that

p(G) = p(Hp) < p(Hy) < --- < p(Hs) = p(G'). O

X >

Ui "

Corollary 2.6. Let G be a connected weighted graph with total weight sum c. Then p(G) < c, with equality
if and only if G is a star with two vertices and weight c.

t
Proof. Let x = (x’f P ) denote a nonnegative unit eigenvector corresponding to p(H) of a

weighted graph H, where xl.” corresponds to the vertex v; of H. Let ab and uv be two distinct edges of G.
Without loss of generality, assume x$x$ > xSx$. Let Gy be the weighted graph obtained from G such that

wg, (ab) = wg(ab) + wg(uv), wg, (uv) =0,

wg, (e) =wg(e), e # ab,uv.

By the additional claim of Theorem 2.3, we have that p(G) < p(G1). Again let pq and gh be two distinct

edges of G;. Without loss of generality, assume xgl xgl > xgl xgl .Let G, be the weighted graph obtained

from Gy such that

we, (Pq) = Wg, (pq) + wg, (8h), W, (gh) =0,

wg,(e) = wg, (e), e # pq,gh.
By Theorem 2.3 (Note that G; may not be connected), we get p(G1) < p(Ga). To G, repeat the above
procedure until we arrive at a weighted graph Gs with a unique edge. So we get weighted graphs
G,Gq,...,Gs such that they have the weight sum c and

p(G) < p(Gy) <--- < p(Gs) =c.

It is obvious that p(G) = c if and only if G only has an edge, i.e., G is a star with two vertices and weight
c. U

Theorem 2.7. Leta, b, u, v be four distinct vertices of a connected weighted graph G and let x = (x1, Xz, ..., Xn)"
be the Perron vector of G, where x; corresponds to the vertex v; of G. For 0 < § < wg(uv) and 0 < 6 < wg(ab),
let G% be the weighted graph obtained from G such that

We2 (UV) = wg(uv) — 8, wea(ub) = wg(ub) +6, wea(ab) = wg(ab) — 6,

Wez(av) =wg(av) +6, wea(e) =wg(e), e e E(G) — {ab,uv,ub,av}.

If (xp — Xv)(8Xy — Ox4) > 0, then p(G) < p (GZ) , and with equality p(G) = p (GZ) if and only if x, = xy
and 8xy = 6x,.

Proof. From Lemma 2.1, we have that

0 (G2) - pG) = max y'A (Gz) y—xAGx = XA (62) —AG)x

= 2(Xp — Xy)(0Xy — Oxq) > 0. (2)
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Assume p(G) = p (Gz). By Eq. (2), we have that p <G2> =x'A (Gz) x. Again from Lemma 2.2, we
have that A (Gz) X=p (GZ) x. Thus
o (Gz) Xy = Wea (UV)Xy + Wez (ub)xy, + Yoo wezwx,
zeNGz (u)—{v,b}

= (WeV) — &)Xy + Wub) +Oxp + > wezwx,
zeNg(u)—{v,b}

=8(Xp—X)+ Y Weawx,
zeNg(u)

= 8(xp — Xy) + P(G)Xy.
So we obtain x;, = xy. In the similar way, we can get that

i) (Gz) Xy =—(Oxu—Oxa) + Y WG@V)Xz = —(8xu — O%a) + p(G)Xy.
zeNg(v)
Therefore, we have 8x, = 0xg.
Assume xj, = x, and 8x,, = 6x,. In the similar procedure above, we easily get that

> we@x, =8, —x)+ Y. We@wx; = p(G)xu,

zeN (W) zeNg (u)

Y We@mx, =0y —xp) + Y WX, = p(G)Xq,
zeNGz (a) zeNg(a)

Z W2 (2v)X; = Oxq — 8xy + Z Wg (V)X = p(G)Xy,
ZENGZ ) zeNg(v)

Z We2 (zbyx; = 8xy — Oxq + Z wg(@Zb)x; = p(G)xp,.
zeNg, (b) zeNg(b)

It is obvious that, for p € V(G) — {a, b, u, v}, we have that

D WaeEpx= Y we@px = pG)xp.
zeNg (p) zeNG(p)

ThusA <G2) x = p(G)x.Since x is the Perron vector, by the Perron-Frobenius Theorem, we have p (GZ> =
pG). O

Remark 1. Theorems 2.3 and 2.7 are the main tools used in Section 3. There we will apply them and
the idea from [8,9] to determine the weighted tree with the largest spectral radius in the set of all
weighted trees with fixed diameter and weight set.

3. On the weighted trees with the largest spectral radius

Let G be a weighted graph. The weight of vertex v of G, denoted by wg(v), is the weight sum of
edges incident to v in G. The distance of vertex subsets A and B of G is the minimum number in
{d(a,b) : a € A,b € B}, where d(a, b) is the distance of vertices a and b. Let H be another weighted graph.
G and H are called isomorphic, denoted by G = H, if there exists a bijection f from V(G) to V(H) such
that ab € E(G) if and only if f(a)f (b) € E(H), and w¢(ab) = wy (f(@)f (b)) for each ab € E(G). If H is a
subgraph of G and wy (e) = wg(e) for each e € E(H), then H is called a weighted subgraph of G. If H is a
weighted subgraph of G, V(H) = V(G) and E(H) # E(G), then H is called a weighted proper spanning
subgraph of G.
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d+ 2 n
1 2 k—2 k-1 k k+1 k+2 d d+1

Fig. 1. The tree T}.

Let I'(d,mq,my,...,m,_1) denote the set of all weighted trees with n vertices, diameter d and
positive weight set {my,my,...,m,_1}. Let @ (n,d) be the subset of I'(d, my,my,...,m,_1) such that
each of @ (n, d) can be obtained from some weighted path P4, ; by adding n — d — 1 pendent weighted
edges at some non-pendent vertex of Py, .

Lemma3.1. LetT € I'(d,my,my,...,my_1) — O (n,d). Then there exists a weighted tree T € ©(n,d) such
that p(T) < p(T).

Proof. Let Py, = v1Vy---V4v4,1 beapathinT.ThenT canbe obtained from Py, | by attaching a proper
weighted tree to the vertex v; for eachi = 2,3, ...,d.Let (X1,X3, . . ., Xp)" be the Perron vector of T, where
x; corresponds to the vertex v; of T.

Case 1: Suppose that T is a Caterpillar.

Since T ¢ ©(n,d), there are two vertices v; and v;(2 < i # j < d) of degree greater than 2. Without
loss of generality, assume xy, > xv;. Let vj_1,Vj,1,21,23,. .., 2 be all adjacent vertices of v; in T. Let T"
be the weighted tree obtained from T by deleting the edges vz, and adding the edges v;z; such that

wr (Viz) = Wr(vjzp), wr(e) =wr(e), e # vz, k=12,...s.

By Corollary 2.5, we have that p(T) < p (T’). To T’ repeat the above procedure until we arrive at a
weighted tree T € @ (n,d). So by Corollary 2.5, we get that

oM <p(T) <-- < p().

Case 2: Suppose that T is not a Caterpillar.

Itis obvious that T has atleast a non-pendent edge uv notin P4, 1. Without loss of generality, assume
Xy > Xy. Let Nr(u) = {v,uq, Uy, ..., us} and let T; be the weighted tree obtained from T by deleting the
edges uu; and adding the edges vu; such that

wr, (Vi) = wr(uyy), wr(e) =wr(e), e # uy;, j=1,2,---,s.

By Corollary 2.5, we have p(T) < p(T). To T; repeat the above procedure until we arrive at a weighted
tree T; such that each edge of T; not in Py, ¢ is a pendent weighted edge, i.e., T; is a caterpillar tree. So
by Corollary 2.5 and Case 1, the result holds. []

Let Tk be the tree shown in Fig. 1. Let T, be the weighted tree in @ (n,d) with the largest spectral
radius and let Py be a path of length d in Ty. Then there are a k(2 < k < d) and a disposition of
weights in all edges of T; such that Ty; = Tj,. Let x = (X1,X, ...,%n)" be the Perron vector of Ty, where
x; corresponds to the vertex i of Ty;. Without loss of generality, we also assume d > 3 (otherwise,
the problem is trivial). Next we will investigate some spectral and structural properties of Ty. For
convenience, write a; =d + 2,a; = d + 3,...,as = n, and without loss of generality, assume k < ‘142“—2.

Lemma 3.2. Let ab, uv be two distinct edges of Py.
(1) If XaXp > XuXy, then wr,, (ab) > wr,, (uv).

(2) If wr,, (ab) > wr,, (uv), then Xqxp, > XyXy.
(3) If XaXp = Xuxy, then wr,, (ab) = wr,, (uv).
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Proof. Note that (2) and (3) can be immediately deduced from (1). So we only give the proof of (1).
Assume wr,, (ab) < wr,, (uv). Put § = wr,, (uv) — wr,, (ab) and let T’ be the weighted tree obtained from
Ty such that

wri(ab) = wr, (ab) + 8, wr uv) = wr, (uv) — 68, wr(e) =wr,(e), e # ab,uv,

i.e., T" is the weighted tree obtained from T); by exchanging the weights of edges ab and uv while
making the weights of other edges not changed. Then T’ € @ (n,d), and by the additional claim of
Theorem 2.3, p (T') > p(Ty), a contradiction with the assumption of Tp;. [

Lemma 3.3. Let a, b, u, v be four distinct vertices of Py; from the left to the right and ab, uv be two edges of
Pyp. Then

(Xu — Xp)(Wr,, (@b)Xq — wr,, (UV)Xy) < 0, and xp, = Xy if and only if wr,, (ab)xq = wr, (UV)Xy.

(Xv — Xq) (Wr,, (ab)xp, — wr,, (UV)Xy) < 0, and Xq = Xy if and only if wr,, (ab)x, = wr,, (uv)xy.

Proof. We only give the proof of the first result. Assume the contrary, that is
(Xu — xp)(wWr,, (ab)xqg — wr,, (UV)xy) >0,

or that only one between x,, = x, and wr,, (ab)xq = wr,, (uv)x, holds. Take § = wr,, (ab) and 6 = wr,, (uv).
Let T” be the weighted tree obtained from Ty; such that

wrs(ab) = wr,, (ab) — 8, wp(au) = wr,, (au) + 6, wruv) = wr,, (uv) — 0,
wr (vb) = wr,, (vb) + 0, wr(e) =wr,(e), e # ab,uv,

i.e., T" is the weighted tree obtained from Ty, by deleting the edges ab, uv and adding the edges au, vb
such thatwy (au) = wr,, (ab), wr: (vb) = wr,, (uv). ThenT’ € ©(n,d),and by Theorem 2.7, o (T') > p(Typ),
a contradiction with the assumption of Ty;. [

Lemma 3.4. Let p, q be two distinct vertices of Py;.

(1) If wr, (p) > wr,, (@), then xp > x4.
(2) If xp > xq, then wr,, (p) > wr,, (Q).
(3) Ipr = Xgq, then wr,, (P) = Wr, (@)

Proof. We only prove (1). Suppose that x, < X4, and without loss of generality, assume p < g. We will
get a contradiction by distinguishing the following three cases.

Case 1: Assume p = 1.

If g=2, then 1 and 3 are the two adjacent vertices of g in Py. Thus we have that wr, (p) =
wr, (12) < wr,, (12) + wr,, (23) < wr,,(q), a contradiction.

If g = 3, then 2 and 4 are the two adjacent vertices of g in Py. Since wr,, (p2) = wr,, (p) > wr,, (q) >
wr,, (2q), by Lemma 3.2(2), we have xpX, > X,xq. This implies that x, > Xq, a contradiction.

If g > 4, then we consider the distinct vertices a =p,b=p+1,u =q - 1,v = q. From wr,, (ab) >
wr,, (uv) and Lemma 3.2(2), we have xqx; > Xuxy. Hence x; > x,. Also from Lemma 3.3, we have (x, —
Xa)(Wr,, (ab)x, — wr,, (uv)xy) < 0. Therefore, combining x4 < Xy and wr,, (ab) > wr,, (uv), we get x, < xu,
a contradiction.

Case2: Assume2 <p<qg<d+1.

Case 2.1: Assumep =kandn>d + 1.
Let T’ be the weighted tree obtained from Ty, by deleting the edges paq, pas, .. ., pas and adding the
edges qay,qay, . . ., qas such that

wr(qa;) = wr,, (pa;), wr(e) =wr,(€), e # pa;, i=12,...,s.

By Corollary 2.5, we have T' € @ (n,d) and p (T") > p(Ty), a contradiction.
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Case2.2: Assumep # korp=kandn=d+1.Seta=p-1,b=p+lu=q-1v=q+1
First assume wr,, (ap) > wr,, (qv). By Lemma 3.2(2), we have xgX, > Xgxy. Combining x, < Xq, we get
Xq > Xy. Thus
(Xg — Xp)(Wr,, (AP)Xq — Wr,, (qV)Xy) = 0, Wr,, (ap)Xq > Wr,, (qV)Xy.
These contradict to the first results of Lemma 3.3.
Next assume wr,, (ap) < wr,, (qv). If g — p = 1, i.e,, that p is adjacent to g, then
wr, (p) = wry, (@p) + wr, (PQ) < Wy, (V) + Wr, (PQ) < Wy, (),
a contradiction. Now assume q — p > 2. Then wry,, (pb) > wr,, (uq). By Lemma 3.2(2), we have that
XpXp, > XuXq. If ¢ — p = 2, then b = u. Therefore, we have that x, > x4, a contradiction. If g — p > 3, then
b # u.Combining xp < x4, we get x, > x,,. Thus
(Xq — Xp)(Wry, (Db)Xp — Wr,, (UQ)Xy) > 0, wry, (pb)X)y > wry, (U)X
These contradict to the second results of Lemma 3.3.
Case3: Assume2 <p<q=d+1.Setag=p—1.
Whenp # korp=kandn=d+1,let T" be the weighted tree obtained from Ty by deleting the
edge pag and adding the edge qag such that
wr(qdo) = wry, (pdo), Wwrr(e) = wry,(e), e € E(Ty) — {pag}.
Whilep = kandn > d + 1,let T' be the weighted tree obtained from Ty, by deleting the edges pay, pas, . . ., pas
and adding the edges qag, qay, . . ., qas such that
wr (qa;) = wr, (paj), wr(e) =wr,(e), e # pa;, i=0,1,...,s.
By Corollary 2.5, we have T' € @(n,d) and p (T') > p(Ty), a contradiction. [J

Lemma 3.5. Suppose that the vertices of Py are relabeled by vy, . .., Vg4, Vg1 SO thatxy, > --- > Xy, > Xy, ;-
Then {v4,vgq} ={1,d+1}and vy =kifn>d+ 1.

Proof. First, suppose that {vg,vg,1} # {1,d+ 1}.Thereexistsal(l <d —1)suchthat1 =vjord+1 =
v;. Without loss generality, assume d + 1 = v;. Then thereisap(2 < p < d) suchthatp = vgorp = vg,4.
Setq=d+1.Then2 < p<q=d+1andxp < Xq. In the similar way to Case 3 of Lemma 3.4, we will
get a contradiction.

Next, let n > d + 1 and assume that v; # k. Then thereexistsap(p # 1,d + 1,k) such thatv; = p.
Let T’ be the weighted tree obtained from Ty, by deleting the edges kay, ka,, . .., kas and adding the
edges pay,pas, ..., pas such that

wr (pay) = wr,, (kay), wr(e) =wr, @), e # ka;, i=1,2,...,s.

ThenT’ € @(n,d), and from x;, < x, and Corollary 2.5, we have that p (T’) > p(Ty), a contradiction. []

Let a, b be two vertices of Py;. An interval [a, b] in Py, is the set of vertices of Py; between a and b,
including a and b. In particular, [a, a] = {a}. Let Ww; > W, > ... > W, be the distinct weights of vertices
from Py in Ty;. Set

Vi=§ wn, () =wuj=12,...d+1,Vi=JV;, i=12...L
J<i

Let P =12--.s be a path of a weighted tree T. Write c¢(P) = {% %} if s is even, and c(P) = {%}
otherwise. We call c¢(P) the center of P. Let e; denote the edge i(i + 1) of P, namely e; = i(i + 1) for
i=1,2,...,s—1.If foreachi (1 <ig %) ,wr(e;) = wr(es_;), i.e., any two symmetric edges of P with
respect to its center have the same weights, then P is called symmetric in edge weights. When s =
2r+1,if

wr(er) = Wr(ery1) = Wr(er_1) = Wr(€ry2) > --- > wr(eq) > wr(eyy),

and when s = 2r, if
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wr(er) = Wr(er_1) = Wr(€ery1) 2 Wr(€r_2) > Wr(ery2) > --- > wr(ey) > wr(ezr_1),
then P (any weighted path isomorphic to it) is called an alternating weighted path in edge weights.

Lemma 3.6. If at least two components of x corresponding to the vertices of Py are equal, then Py is
symmetric in edge weights.

Proof. Letr and t be two vertices of Py; with x, = x;. Without loss of generality, let r < t. We will prove
Xr.1 = X¢_1. Assume the contrary, then, without loss of generality, X, > x;_q.Leta=r,b=r+1lu=
t —1,v = t.ThenXqx;, > xyXy. By Lemma 3.2(1), we have that wr,, (ab) > wr,, (uv).If wr,, (ab) = wr,, (uv),
thenx;, > x, and wr,, (ab)xq = wr,, (UV)xy.Ifwr,, (ab) > wr,, (uv), thenxq = xy and wr,, (ab)x, > wr,, (UV)xy.
The above results contradict with Lemma 3.3. Therefore, x,,1 = X;_1. By proceeding in this way, we
can show thatx,,; = x; ;jforeach1 <i < % and in the similar way we can also show thatx,_; = x;;
foreach1 <i<min{r—1,d+1—t}.

Assumer —1 # d+ 1 —t,and without loss of generality, assumer —1>d+1—t.Setp=r+t —
d—1,g=d+1.Then2 < p<q=d+1andxp = xq. In the similar way to Case 3 of Lemma 3.4, we will
get a contradiction. Therefore,r —1=d+ 1 —t.

Foreach1 i< dzﬂ,leta =ib=i+1l,u=d+1-1iv=d+2—ii.e,thataband uv are two sym-
metric edges of Py, with respect to its center. By the above result, we have x; = xy, X, = Xy. SO XgX) =
XuXy. From Lemma 3.2(3), we have wr,, (ab) = wr,, (uv). This indicates that Py, is symmetric in edge
weights. [

Lemma 3.7. Py is an alternating weighted path in edge weights.

Proof. Relabel the vertices of Py by vq,va,...,Vg;1 SO that xy; > Xy, > --- > xy,,,. By Lemma 3.5, we
have thatvy = k,2 < k < d. We will distinguish the following two cases depending on xy,, Xv,, . .., Xvy, ;-

Case 1: Assume Xy, > Xy, > --- > Xy, -

Letv, =1i,and assumei ¢ {k — 1,k + 1}.Ifi < k, we consider the distinct vertices:a =i,b =i+ 1,u =
k,v =k +1.1f i > k, we consider the distinct vertices: a =i,b=i—-1,v=k — 1,u = k. By Lemma 3.3,
we have that

(Xu — Xp)(Wr,, (@b)Xq — wr,, (UV)Xy) < 0, (3)

(v — Xa)(Wry, (ab)xp — wr,, (UV)xy) < 0. (4)
Note that

Xq > Xy, Xy > Xp. (5)

So from Eqgs. (3)—(5), we get that
X
wr,, (ab) < wr, (uv) - X—" <wr,, (uv)
a

and
Xu
wr,, (ab) > wr,, (uv) - o > Wi @v),
b

a contradiction. Thusi=k —1ori=k+1,ie., thatv, =k—-1orv, =k+1.

Case 1.1: Assume vy = k + 1.

SetS; =é; =k(k+1).Letvs =i,and assume i # k — 1.Ifi <k, we consider the four distinct ver-
ticessa=i,b=i+1,u=k+1,v=k+2.1fi> k + 1, we consider the four distinct vertices: a =i,b =
i—1,v=k—1,u=k. Then Egs. (3)-(5) hold. So we will get a contradiction. Therefore, i = k — 1. So
vz =k — 1, and we now put S, = €,S1(= €61 = (k — 1)k(k + 1)).

Next let v4 =i, and assume i # k+ 2.1fi <k — 1, we consider the four distinct vertices: a =i,b =
i+lu=k+1,v=k+2. 1fi>k+ 1, we consider the four distinct vertices: a=i,b=i—-1,v=k—
2,u =k — 1. Then Egs. (3)-(5) also hold. So we again get a contradiction. Therefore, i = k + 2. So v4 =
k + 2, and we now put S3 = S,€3(= é38163 = (k — Dk(k + 1)(k + 2)).
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Suppose thattheedgeséq, é,,...,€_1(4 <1< d - 1)arealready placed in the string S;_; and assume
thatS;_1 =p--- (k- 1k(k + 1)---q. Then at least two vertices of Py, are not in S;_;. By Lemma 3.5, we
have thatp # 1and q # d+ 1. Next, let v;,; =i, and assume that I is odd (for [ even the proof is
quite analogous). Then v; = p and xp < x4. Assume thati #+ q+ 1. If i <p, we consider the four dis-
tinct vertices:a =i,b=1i+ 1,u=q,v =q + 1.Ifi > q, we consider the four distinct vertices: a = i,b =
i—1,v=p-1,u=p.ThenEgs.(3)-(5) hold. These will yield a contradiction. Thus we havei = q + 1.So
Vi1 =q+ 1,andwenowputS; =S;_1€ =p---(k— Dk(k+1)---q(q + 1). Repeat the above procedure
until we get S; such that 1 € S; (where, when vy,v,,...,vq € S;_1, directly let &35 =v4,12 =12 and
Sy =€4Sr_1). Since 1 € S;, by Lemma 3.5, we must have v, € S;. If S; has included all vertices of Py,
thenlet S = S; (In this case, d is even and k = ‘”2 ). Otherwise, vy, =d+1 ¢ Sy, letég = d(d + 1) and
let S = S;é4 (In this case, d is odd and k = d# )

The sequence of edges in S forms the path Py. Let & = ab and é; = uv be two edges in S, and assume
s < t. By the structure of S, we have x,x), > X,xy. Again by Lemma 3.2(1), we have wr,, (&) > wr,, (€r).
This indicates that Py, is an alternating weighted path in edge weights.

Case 1.2: Assume v, =k — 1.
Ifk = 2, then v, = 1. From Lemma 3.5, we get d = 1 or d = 2, a contradiction with d > 3. Therefore,
k > 3. The rest of this proof is similar to Case 1.1.

Case 2: At least two of xy,, Xy,, ... 1 Xy, are equal.

We will show that each V~, is an interval fori =1,2,...,I — 1. Assume the contrary,Nand let s be the
smallest number such that Vs is not an interval. Then there are two subintervals of Vs, say U and V,
whose distance is at least 2. Let a € U and b ¢ V; be the vertices of Py chosen so that a is adjacent to
b and a is on the right side of U. If d 4 1 € Vs, then wr,, (d + 1) > wr,, (b). By Lemma 3.4(1), X4, 1 > Xp.
Setp=bandq=d+1.Then2 < p <q=d+1andx, < Xq.In the similar way to Case 3 of Lemma 3.4,
we will get a contradiction. Therefore, d + 1 ¢ Vs. So there are two vertices u € V and v ¢ Vs such that
u is adjacent to v and u is on the right side of V. Then Egs. (3) and (4) hold. Since wr,, (a) > wr,,(v) and
wr,, (1) > wr,, (b), by Lemma 3.4(1), we have xq > x, and X, > X,. Thus we get a contradiction by Eqs.
(3)-(5).

The above results also imply that V; < V, ¢ --- ¢ V}_;, and by Lemma 3.6, Py is symmetric in edge
weights. Therefore, Py is a symmetric alternating weighted path in edge weights. [

Lemma 3.8 [6]. Let G be the weighted graph obtained from two weighted graphs G; and G, by joining a
vertex u of Gy to a vertex v of Gy with a new edge uv. Then
H(G, 1) = (G1, L)P(Ga, M) — WEWv)P(Gy — U, M)P(Gy — v, A).

Lemma 3.9 [6]. Let H be a weighted proper spanning subgraph of a weighted tree T. Then for A > p(T), we
have ¢(H,A) > ¢(T, A).

Lemma 3.10. Assumes # O,i.e,thatn>d+1.

(1) Ifd =3, thenfori=1,2,...,s,
min{wr, (k1), wr,, (k3)} > wr,, (ka;) > wr,, (34).
2)Ifd>4,seta=k—-2,b=k—-1,u=k+1,v=k+2,thenfori=1,2,...,s,
min{wr,, (kb), wr,, (ku)} > wr,, (ka;) > max{wr,, (ab), wr,, (uv)}.
Proof. Without loss of generality, assume wr,, (ka;) > wr,, (kay) > - - - > wry, (kas).
(1) It is obvious that k = 2. Write ag = 1. Since the edges kag, kaq, ..., kas are symmetric in their

positions, without loss of generality, assume wr,, (kag) > wr,, (kay). Now we need show that wr,, (k3) >
wr,, (kay), wr,, (kas) > wr,,(34). By Lemma 3.8, we have that
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S
¢ 1) = 1° (32 = wi, (34)) [}\2 -3 Wi (kaj)} —2Pw (k3).
j=0
We will first prove wr,, (k3) > wr,, (kaq). Assume wr,, (k3) <wr,, (kaq). Let T’ be the weighted tree
obtained from Ty; by exchanging the weights of edges k3 and ka; while making the weights of other
edges fixed. Then for A > p (T’), we have that

G(T, 2 — ¢ (T', 1) = 2° [Wh, (kay) - wd, (k3) | W, (34)> 0.

This indicates that p (T) > p(Ty), a contradiction.

We will next prove wr,, (kas) > wr,,(34). Assume wry, (kas) < wr,, (34). Let T be the weighted tree
obtained from Tj; by exchanging the weights of edges 34 and kas while making the weights of other
edges fixed. Then for A > p (T”), we have that

s—1
Ty, ) — (T A) = A° [W%M (34) — W72-M (kas)] : ZW%M (ka;) > 0.
=0

This indicates that p (T”) > p(Ty), a contradiction.
(2) Let P(i,j) denote the subpath between the vertex i and the vertex j in Py, including i and j. In
particular, P(i, i) is an isolated vertex P;. Set ¢ = d + 1 and ¢(P(1,0)) = 1. By Lemma 3.8, we have

P(T, 1) = P(Ty — kay — kb) — w3, (kb)A*P(P(1,a)@(P(u, @)

—w}, ka2’ (P, )P, q), (6)
¢TI, 1) = Ty — kas — ab) — wi, (kas)A*p(P(1, )PP (u, )
~w},, @)(P(1,a— 1) [2$(G) - wf, ka2’ ' pPw.qn |, (7)

where G is the weighted graph obtained from Ty, by deleting vertices 1,2,..., k — 1, as together with
the edges incident to them. By Lemma 3.8, we have

s—1
PG =1 PPk, q) — X 2P, g) > wi (kay),
j=1

where when s = 1, we define Z;;; W%M (kay) = 0.

We will first prove min{wr,, (kb), wr,, (ku)} > wr,, (ka;). Assume the contrary, and without loss of
generality, assume wr,, (kb) < wr,, (kay). Let T” be the weighted tree obtained from Ty by exchanging
the weights of edges kb and ka; while keeping the weights of other edges not changed. Then T’ € & (n, d)
and Ty — ka; — kb = T" — ka; — kb. By Eq. (6), we have

¢(Tu, 1) — P (T',2)

=2 1pPw,q) - [Py UPA, ) — P, b))].
W%M(kaﬂ—w%M(kb) ¢PW, Q) - [p(P; (1,@) — ¢(P(1,b))]

Since P; U P(1,a) is a weighted proper spanning subgraph of P(1, b), by Lemma 3.9, for A > p(P(1, b)),
¢(P1 UP(,a)) > ¢(P(1,b)). But P(1,b) and P(u, q) are two proper subgraphs of T’, by the Perron-Frobe-
nius Theorem, p (T") > max{p(P(1, b)), p(P(u,q))}. So for A > p (T’),¢(Ty, L) > ¢ (T’, 1). This indicates
that o (T") > p(Ty), a contradiction.

We will next show wr,, (kas) > max{wr,, (ab), wr,, (uv)}. Assume the contrary, and without loss of
generality, assume wr,, (kas) < wr,, (ab). Let T” be the weighted tree obtained from Ty by exchanging
the weights of edges ab and kas while keeping the weights of other edges fixed. Then T” € @ (n,d) and
Ty — kas — ab = T — kas — ab. By Eq. (7), we have

T A) — AT, A 1 1
¢ 1) = ¢T". 1) :A0+X¢(P(1yk*3))¢(1)(k+1vQ))ZW72'M(kaj),

25 [w%M (ab) — W72-M (kas)] =1
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where
Aj =Pk =2 = NPPk +1+]j,q) — pP(1,k =3 = NGP& +j, ).
Now assume A > o (T”). By Lemma 3.8, we have

Ag =wi, @PP(1,k =3Pk +2,q) — Wi, (e_3)p(P(1,k — 4) PPk +1,)),

where e; denotes the edge i(i + 1) of Py. Since k = d%z by Lemma 3.7, the distance of e;_3 and the

center of Py is greater than that of e, and the center of Py;. But Py is an alternating weighted path in
edge weights, so wr,, (ey) > wr,, (e;_3). Hence we get 4 > W%M (ex_3)41. Repeat the above procedure,
we have

k-3
Ao > Wi, (Wi, (@) da > -+ > A3 - [ [ Wi, (e
j=1

k-3
=[P UP2k - 2,9)) — p(Pk — 3,q)] - [ | Wi, (e).
j=1

Since P; U P2k — 2, q) is a weighted proper spanning subgraph of P(2k — 3, q), by Lemma 3.9, for A >
o(P(2k — 3,q)), we have ¢(P; UPQ2k — 2,q)) > ¢(P(2k — 3,q)), i.e., Ag > 0. But P(2k — 3,q) is a proper
subgraphs of T”, by the Perron-Frobenius Theorem, p (T”) > p(P(2k — 3, q)). Hence for A > p(T”),
@ (Tm, A) > @ (T”, ). This implies that p (T”) > p(Ty), a contradiction. [J

By Lemmas 3.7 and 3.10, we see, if d = 2r, that

wr,, (er) Ty (T + 1Day) > wr, (r+1)az) > --- > wr,, (r + 1)as)

Ty (€r42) = Wi, (6r_2) = -+ > Wr,, (€1) = Wry,(€2r),

wr,, (ér41

)
wr,, (ér_1)

\YARY,
g =

=
=

and if d = 2r — 1, that

wr, (ér) > wry, (er_1

wr,, (ér_2

wr,, (raq

) = wr, (raz) > --- > wr, (ras) > wr,, (€r41)
wp(€ri2) )=

> ) > = >
> ) > > wp(er_3 - > wry, (e1) = wry, (é2r—1)-
This indicates that, for given parameters my,my,...,m,_1, Ty is uniquely determined. Therefore, by

Lemmas 3.1 and 3.7 and the definition of Ty;, we immediately get the following main result.

Theorem 3.11. For n > 2, Ty, is the unique weighted tree in I'(d,mq,my,...,my_1) having the largest
spectral radius.

Example. In Fig. 2, two weighted trees are displayed, where the numbers on the edges denote the
weights of edges. The first has the largest spectral radius in

I's,12,11,10,9,8,7,6,5,4,3,2),
while the second has the largest spectral radius in

I'(7,11,10,9,8,7,6,5,4,3,2).

Remark 2. Theorem 3.11 indicates that the alternating weighted path Py, with n vertices is the unique
weighted path having the largest spectral radius in the set of all weighted paths with n vertices and
positive weight set {mq,my, ..., m,_1}. Suppose that at least two of my,m,, ..., m,_q are distinct and
m = max{my, my,...,My_1}.Itis obvious that p(Py;) < 2mcos % This indicates that p(Py;) is a better

upper bound than 2m cos % which gives an answer of an open problem proposed in [4].
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3 .5 10N/ 11 6 4 2

Fig. 2. Examples of two weighted trees with the largest spectral radius.

Write T,{’,, = Ty Let T’ be the weighted tree obtained from Ty, by deleting the edge k(k + 1), identi-
fying the vertices k and k + 1 and adding the pendent edge kas 1 such that wy (kas, 1) = wr,, (k(k + 1)).
ThenT e I'(d — 1,my,my,...,m,_1),and by Corollary 2.5, we have p(TI‘\’/,) <p(T) < p(Tﬁf]).Thus we
get the following results.

Corollary 3.12 [4]. Let T be a weighted tree with n vertices and positive weight set. Then p(T) < p(TAZ/I),
with equality if and only if T = T2 (= K1 n_1).

Corollary 313 [5]. Let T + T,%,, be a weighted tree with n vertices and positive weight set. Then p(T) <
p(T3), with equality if and only if T = T3,.
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