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Abstract We have previously identified two homologous groups
of BnDREBs in Brassica napus, the trans-active BnDREBI and
the trans-inactive BnDREBII, which provided an ideal system to
study the trans-activation of DREB1/CBF. Deletion analysis
indicated that the two additional regions in BnDREBI contrib-
uted little to the transcriptional activity. Domain swapping anal-
ysis indicated that all the domains contributed to the activity of
BnDREBI, including the ERF/AP2 DNA binding domain.
Through site-directed mutagenesis, we identified nine residues
that were involved in the activity of BnDREBI, among which
six residues are specific to BnDREBI, and three are common
to DREB1A.
� 2007 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

During the course of growth and development, plants might

be exposed to various abiotic stresses, such as cold, drought

and high salinity. Under these conditions, a number of signal

pathways will be activated, which results in the transcriptional

reprogramming to bestow plants with the resistance to these

stresses [1–5]. Many transcriptional factors involved in these

stress-resistance pathways have been identified, among which

the drought responsive element binding factors (DREBs)/C-re-

peat binding factors (CBF) are one of the most important fac-

tors [6–8]. The DREBs/CBFs have been shown to mediate the

expression of various stress-inducible genes, and they play a

significant role in plant stress tolerance [6–10]. Over-expression

of Arabidopsis DREB1A (AtDREB1) or CBF1 greatly in-

creased the tolerance to freezing, high salinity and drought
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in transgenic Arabidopsis [7,11,12], and over-expression of

the constitutive active AtDREB2A greatly enhanced drought

stress tolerance in Arabidopsis [13].

The plant specific ERF/AP2 DNA-binding domain of

DREBs have been well characterized, and it is also quite con-

served in ethylene responsive element binding proteins (ERE-

BPs) [14,15]. The ERF/AP2 domain of AtERF1, a member

of EREBPs family, consists of a three-stranded anti-parallel

b-sheet and an a-helix packed approximately parallel to the

b-sheet [16]. Arginine and tryptophan residues in the b-sheet

are identified to recognize the GCC-box element [16]. The

ERF/AP2 domain of DREBs is highly homologous with that

of EREBPs, but the key amino acids for binding of the cis-ele-

ments are different [17]. Val14 and Glu19, especially Val14,

have been demonstrated to be essential for specific binding

with drought responsive element (DRE) [17,18]. There are also

some proteins that were reported to be able to bind with both

GCC-box and DRE, such as AtDREB2A [17], TINY2 [19],

Tsi1[20] and BnDREBIII [21]. Our recent studies found that

Ala37 in the ERF/AP2 domain plays a crucial role in binding

both DRE and GCC-box [21].

However, little is known about the activity of the special

family to activate transcription. The C-terminal 98 amino acids

were essential for the activity of CBF1, and four hydrophobic

motifs were identified to function positively, but redundantly

[22]. The essential domain in the activity of AtDREB2A was

located between residues 254–335, and there was a negative

regulatory domain located between the residues 136–165 [13].

By far, there is no report about the amino acids that are crucial

in the activity of DREB1/CBFs.

In a previous paper, we have reported two highly homolo-

gous groups of BnDREBs, which had similar DNA binding

abilities, but completely different activities to activate tran-

scription: BnDREBI is trans-active, while BnDREBII is

trans-inactive [23]. Then the two groups of DREBs provide a

favorable system to study the activities of DREB1/CBFs.

Here, through domain swapping analysis, we found that

replacing any of the domains, even the ERF/AP2 domain, of

BnDREBII with the counterpart in BnDREBI could generate

an active BnDREBII. And we found that nine amino acids

were responsible for the difference in the activities of these

two groups of BnDREBs. The findings here provided some

useful information for understanding the trans-activation

mechanism of DREB1/CBF.
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2. Materials and methods

2.1. Materials
BnDREBI-5 and BnDREBII-1 were cloned in our previous report

[23]. 3-AT and ONPG were from Sigma, St. Louis, USA. Amino acids
dropout was from Clontech, Palo Alto, USA. T4 DNA ligase was from
Promega, Madison, USA. x-b-gal was from TaKaRa, Tokyo, China.
All the other chemicals were local products of analytical grade.

2.2. Deletion and chimera constructs
BnDREBI-5 and BnDREBII-1 were constructed into the yeast

expression vector, YepGAP [7], as described previously [23]. Two sin-
gle deletion mutants of BnDREBI-5, I-5DC2 and I-5DC4, and a double
deletion mutants, I-5DC2C4, were constructed, as illustrated in
Fig. 2A. Seven chimeras of BnDREBI-5 and BnDREBII-1 were con-
structed, INIIC, IINIC, II-1SN, II-1SAP2, II-1SC1, II-1SC1C3, and
II-1SC1C3C5, as illustrated in Fig. 2C. The deletions and chimeras
were constructed by PCR-mediated overlapping using two subsequent
PCR amplifications [24,25], and all the mutants were sequenced and
cloned into YepGAP. The primers used for the constructs can be sup-
plied as requested.

2.3. Site-directed mutagenesis
According to the differences of BnDREBII with BnDREBI or

AtDREB1A (Fig. 1, Table 1), 19 site-directed mutagenesis of BnDRE-
BII-1 were constructed to identify the key amino acids for trans-activa-
Fig. 1. Sequence alignment and subdivision of the two groups of BnDRE
BnCBF16 (AF499033), BnDREBII-3 (AY444875), BnDREBII-1 (AY43787
(AY444874), BnDREBII-3 (AY444875), BnCBF5 (AF499031), BnDREB
BnDREBI-4 (EF625342), BnDREBI-5 (EF625343), AtDREB1A (AB007787
C3, C4 and C5 are the regions. HC2, HC3, HC4 and HC5 are the four hydr
BnDREBI, BnDREBII and AtDREB1A-C are indicated by closed triangles
tion. The site-directed mutants were generated by PCR-mediated
overlapping [24,25], and the mutants were sequenced and cloned into
YepGAP for yeast one hybrid assay. The primers used for site-directed
mutagenesis can be supplied as requested.

2.4. Yeast one-hybrid and b-galactosidase activity assay
To detect the mutations on the trans-activation activity, all the

constructs were transformed into the yeasts harboring wild-type
DRE or mutated DRE with HIS3 and lacZ as the reporter genes, as
was described previously [7]. The transformants were cultured on
SD/-His/-Ura/-Trp plates with or without 30 mM 3-amino-1,2,4-tria-
zole (3-AT). When the yeasts were larger than 1 mm, three clones of
each transformants were cultured in liquid SD/-His/-Ura/-Trp medium
to grow to OD600 > 1.0, and quantitative analysis of b-galactosidase
activity was carried out, using o-nitrophenyl p-DD-galactopyranoside
(ONPG) as a substrate according to the Yeast Protocols Handbook
(Clontech). Colony-lift filter assay was also carried out to give a qual-
itative assay of the trans-activation activity of the constructs.
3. Results

As was shown in our previous studies, the trans-active

BnDREBI and the trans-inactive BnDREBII were highly

homologous except that BnDREBI had two additional
Bs and AtDREB1A-C. The accession numbers of these DREBs are:
8), BnCBF7 (AF499032), BnDREBII-19 (AY444877), BnDREBII-2
II-23 (AY444876), BnCBF17 (AF499034), BnCBF1 (AAL38242),

), DREB1B (AB007788), and DREBIC (AB007789). N, AP2, C1, C2,
ophobic motifs identified previously [22]. The amino acids different in
.



Table 1
The differences in amino acids of BnDREBII-1, BnDREBI-5 and
AtDREB1A

Positiona Amino acid

BnDREBII-1 BnDREBI-5 AtDREB1A

2 T N N
81 L K Q
139–140 IN KS MC
147–148 GL DL GF
160–164 TEENN REEQR TAEQS
174 S W –b

184 S D N
202 Y D H

aNumbering according to BnDREBII-1.
bThere is no amino acid in the corresponding position in AtDREB1A.
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fragments in its C-terminal [23]. To further identify the regions

that might be responsible for the activity of DREBs to activate

transcription, a sequence alignment was made among the two

groups of BnDREBs, the reported BnCBFs [26,27] and At-

DREB1A-C [6,7,28] (Fig. 1), among which BnCBF1 [26] and

BnCBF17 [27] are quite similar to BnDREBI, and BnCBF5/

7/16 [27] to BnDREBII. The two groups of BnDREBs were

also highly homologous to AtDREB1A-C. To facilitate the

identification of the regions crucial for the activities of the

two groups of BnDREBs, the full length of these BnDREBs

were subdivided into seven regions, N, AP2, C1, C2, C3, C4

and C5, among which C2 and C4 are specific to BnDREBI

(Fig. 1). The amino acids different among BnDREBII-1,

BnDREBI-5 and AtDREB1A were listed in Table 1.

Since the most obvious difference between these two groups

of DREBs was that BnDREBI had two additional C-terminal

fragments, C2 and C4, it was meaningful to explore whether

the difference in the activities of the BnDREBs was due to

these two fragments. Three deletion mutants including two sin-

gle deletions, I-5DC2 and I-5DC4, and a double deletion I-

5DC2C4, were constructed, and the activities of these deletion

mutants were tested by yeast one-hybrid and b-galactosidase

activity assay (Fig. 2). Surprisingly, I-5D C2 and I-5DC4

showed only a slight decrease in the activity, and I-5DC2C4

had almost the same activity as BnDREBI-5 (Fig. 2A). As

shown in Fig. 2B, all the deletion mutants grew well on SD/-

His/-Ura/-Trp medium with 30 mM 3-AT and activated the

expression of the downstream HIS3 and LacZ. The control,

DREBII-1, could not activate the expression of b-galactosi-

dase. The results here indicated that the two additional C-

terminal fragments were not essential for the activity of

BnDREBI-5.

Then which regions were responsible for the activity of

BnDREBI to activate transcription? To further investigate

whether the N- or C-terminal of BnDREBI-5 contained the

information for the activity, two chimeras, INIIC and IINIC,

were constructed through domain swapping. INIIC was the fu-

sion protein of the N-terminal of BnDREI-5 (N and AP2) with

the C-terminal of BnDREBII-1 (C1, C3 and C5), and IINIC

was the fusion of the N-terminal of BnDREBII-1 (N and

AP2) and the C-terminal of BnDREBI-5 (C1, C2, C3, C4

and C5), as illustrated in Fig. 2C. Surprisingly, both INIIC

and IINIC grew well on SD/-His/-Ura/-Trp containing

30 mM 3-AT and activated the expression of the downstream

b-galactosidase. The activities of IINIC and INIIC were 93.7%

and 69.7% of BnDREBI-5, respectively (Fig. 2C). The results
here indicated that both the N- and C-terminals of BnDRE-

BI-5 participated in the activity of BnDREBI-5 to activate

transcription, and that the C-terminal might contribute more.

A more detailed study was achieved by the construction of

five more chimeras, II-1SN, II-1SAP2, II-1SC1, II-1SC1C3

and II-1SC1C3C5, which were constructed by substitution of

the N, AP2, C1, C1C3 and C1C3C5 regions of BnDREBII-1

by their counterparts in BnDREBI-5 (Fig. 2C). Surprisingly,

all the five chimeras showed the activities though to different

extents, which indicated that all these regions were involved

in the activity of BnDREBI to activate transcription.

To further determine which amino acids are essential in each

region, a series of site-directed mutants of BnDREBII-1 were

constructed according to the results of sequence alignment of

the two groups of BnDREBs and AtDREB1A-C (Fig. 1, Table

1). The major difference in the N-region was the 2nd amino

acid, which is Thr in BnDREBII, but Asn in BnDREBI and

AtDREB1A. Therefore, a site-directed mutant of BnDRE-

BII-1, II-1T2 N, was constructed to explore whether this ami-

no acid is essential for trans-activation in the N-region. Unlike

BnDREBII-1, II-1T2N activated the expression of down-

stream genes HIS3 and lacZ in yeasts (Fig. 3). The activity

of II-1T2N was 37.3% of that of BnDREBI-5, almost identical

to that of II-1SN. Then Asn2 might be the key amino acid in

the N-region. As it is Asn in the trans-active BnDREBI and

AtDREB1A-C, it might be common in DREB1/CBF that

Asn in this site was responsible for the activity.

One of the most surprising things is that the ERF/AP2 do-

main of BnDREBI-5 was also involved in the activity tran-

scription (Fig. 2C). As shown in Table 1, the difference

among BnDREBI-5, BnDREBII-1 and AtDREB1A in the

ERF/AP2 domain was that it was Leu81 in BnDREBII-1,

while Lys80 in BnDREBI-5 and Gln81 in AtDREB1A. Then

two site-directed mutants II-1L81K and II-1L81Q were con-

structed and analyzed by yeast one-hybrid and b-galactosidase

activity assay. As was shown in Fig. 3, II-1L81K could activate

the expression of the downstream genes HIS3 and lacZ, and its

activity was 28.5% of that of BnDREBI-5, similar to II-1SAP2.

However, II-1L81Q could neither activate the expression of

HIS3 and lacZ, nor show any trans-activation activity

(Fig. 3). Then the results here indicated that Lys80 was the

key amino acid in the ERF/AP2 domain, which seemed to

be specific to BnDREBI.

The major difference in the C1 region was that it was

Ile139Asn140 in BnDREBII-1, while it was Lys138 Ser139 in

BnDREBI-5, and Met139Cys140 in AtDREB1A (Table 1).

To explore the role of this small motif in the activity, two dou-

ble mutants, II-1IN-KS and II-1IN-MC, were constructed and

analyzed by yeast one-hybrid and b-galactosidase activity as-

say. As was shown in Fig. 4, II-1IN-KS activated the down-

stream HIS3 and LacZ, and showed the activity of 36.1% of

BnDREBI-5, but II-1IN-MC was trans-inactive. The results

here suggested that this small motif, Lys138Ser139, was respon-

sible for the activity of the C1 region in BnDREBI-5. To deter-

mine whether Lys138 or Ser139 is essential for the activity, two

single-site mutants of BnDREBII-1, II-1I139K and II-1N140S,

were constructed. Yeast one-hybrid and b-galactosidase activ-

ity assay showed that II-1I139K was trans-inactive, while II-

1N140S was trans-active, which suggested that Ser139 in

BnDREBI-5 was more important in this motif (Fig. 4). How-

ever, it should be noted that the activity of II-1N140S

(14.3%), although trans-active, was much lower than that of



Fig. 2. Identification of the trans-active regions in BnDREBI-5. (A) b-Galactosidase activity analysis of the deletion mutants of BnDREBI-5. (B)
Yeast one-hybrid analysis of the trans-activation ability of the deletion mutants of BnDREBI-5. (C) Yeast one-hybrid (left) and b-galactosidase
activity (right) analysis of the chimeras between BnDREBI-5 and BnDREBII-1. The trans-activation activity of BnDREBI-5 was taken as 100%. The
constructs were transformed into yeasts containing wild-type DRE (WDRE) or mutated DRE (MDRE) for yeast one-hybrid assay. The
transformants were cultured on SD/-His/-Ura/-Trp with or without 30 mM 3-AT, and used for colony-lift filter assay. W and M in the beginning of
each name indicates the transformants that harbored WDRE and MDRE, respectively.
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II-1IN-KS (36.1%). Then it can be concluded that Ser139 was

enough to bestow the C1 region with the activity, but Lys138,

though not sufficient for the activity, was also needed to exhibit

its maximum activity. The possible role of Lys138 might con-

tribute to stabilize the conformation of the activation domain.

C3 region contains two motifs that are different between the

DREBs analyzed here (Fig. 1). One motif from 160 to 164 is

TEENN in BnDREBII-1, while it is REEQR (176–180) in

BnDREBI-5 and TAEQS (160–164) in AtDREB1A. Based

on this, TEENN was mutated to REEQR and TAEQS to ex-

plore whether this motif played an essential role in the activity.

As was shown in Fig. 4, II-1REEQR showed 51% of the activ-

ity of BnDREBI-5, while II-1TAEQS was trans-inactive. Com-

paring the motifs in the three DREBs, we can deduce that the

two Arg residues in REEQR might be essential in this motif.

Then two site-directed mutants, II-1T160R and II-1N164R,

were constructed to confirm the hypothesis above. Yeast
one-hybrid and b-galactosidase activity assay showed that II-

1T160R and II-1N164R had similar abilities to activate the

expression of the downstream genes, about half of II-1REEQR

(Fig. 4). Therefore, Arg176 and Arg180 were the key amino

acids in the REEQR motif.

It can also be observed that the 147th amino acid is Gly in

BnDREBII-1 and AtDREB1A, but it is Asp163 in BnDRE-

BI-5. The 148th amino acid is Phe in AtDREB1A, but the

counterpart was Leu in BnDREBI-5 and BnDREBII-1. Two

single mutants, II-1G147D and II-1L148F, and a double mu-

tant, II-1GL-DF, were constructed to explore whether these

two amino acids are essential. Interestingly, all the mutants

can activate the expression of the downstream genes, and the

activity of II-1GL-DF was near to the sum of that of II-

1G147D and II-1L148F (Fig. 4). The results here indicated

that Asp163, specific to BnDREBI-5, and Phe148, specific to

AtDREB1A, were the key amino acids in the C3 region.



Fig. 4. Identification of the key amino acid responsible for trans-
activation in the C-terminal of BnDREBI-5 using yeast one-hybrid
(left) and b-galactosidase activity (right) assay.

Fig. 3. Identification of the essential amino acids in the N-terminal of
BnDREBI-5 by yeast one-hybrid (left) and b-galactosidase activity
(right) assay. The mutants were transformed into yeast harboring
WDRE. The transformants were cultured on SD/-His/-Ura/-Trp with
(+) or without (�) 30 mM 3-AT, and were analyzed by colony-lift filter
assay (LacZ).
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Sequence alignment in the C5 region identified three residues

(residues 174, 184, and 202 in BnDREBII-1) that were quite

different in this region (Table 1). The first one is Ser174 in

BDREBII, Trp211 in BnDREBI, while no counterpart in At-

DREB1A. As was shown in Fig. 4, mutation of Ser174 in

BnDREBII to Trp, the counterpart in BnDREBI, generated

a trans-active form of BnDREBII-1, II-1S174W, with the

activity about 17.9% of that of BnDREBI-5. Then BnDRE-

BI-specific Trp211 was the key amino acid in C5 region.

The second is Ser184 in BDREBII, Asp221 in BnDREBI,

and Asn184 in AtDREB1A. Interestingly, II-1S184D and II-

1S184N had similar abilities to activate the downstream genes

(Fig. 4). Then either Asp or Asn was enough to show trans-ac-

tive activity, which might be common in DREB1/CBF1.
The third is Tyr202 in BDREBII, Asp239 in BnDREBI, and

His202 in AtDREB1A. Similarly, II-1Y202D and II-1Y202H

could also activate the expression of downstream genes

(Fig. 4), indicating both Asp and His were the essential amino

acids in this site, which might also be common in DREB1/CBF1.
4. Discussion

Although numerous papers have been published on DREBs

or CBFs since it was first cloned [6,7], there are only few re-

ports on the characterization of the crucial domains in the

activity to activate transcription. Because there was redun-

dancy in the activity of the DREB1/CBF family [22], it would

be quite difficult to change a DREB1/CBF protein from trans-

active to trans-inactive. Even if we could obtain the inactive

mutants by deletions, the results might be not that convincing

because deletions might destroy the integrity of the protein

structure and lead to some artificial phenomena. Therefore,

it will be much better to start in the reverse direction, which

is to transfer a trans-inactive DREB1/CBF to a trans-active

one. Fortunately, we have previously reported two groups of

highly homologous BnDREBs that bind to DRE, the trans-ac-

tive BnDREBI, the trans-active BnDREBI and the trans-inac-

tive BnDREBII [23]. And the additional two fragments in

BnDREBI were not essential for the activity (Fig. 2). Then

the information must be located in the homologous regions be-

tween these two groups of BnDREBs, which makes it possible

to figure out the amino acids crucial for the activities of

BnDREBs.

Previously, the essential region of the activity of DREB1/

CBF was believed to be located in its C-terminal region

[13,22]. Here, we found that the C-terminal region did play a

more important role in the activity of BnDREBI, but the N-

terminal, including the N and AP2 regions, also contributed

to the activity (Fig. 2C). As was known, N-region of DREBs

contained the nuclear localization signal [7]. It is the first time

that we reported N region was involved in the activity of

BnDREBI, and that Asn2 was the key residue, which might

be common in DREB1/CBF.

Interestingly, the ERF/AP2 domain of BnDREBI also con-

tributed to the activity, although its principle role is supposed

to bind the DRE element. The solutions structure of the ERF/

AP2 domain indicated that the b-sheets participated in binding

the cis-element [16], but the role of the a-helix has not been

identified. Here, Lys80, the key amino acid in the ERF/AP2

domain, was located in the a-helix. Therefore the possible role

of this a-helix might be involved in the activity, although it

seemed to be specific to BnDREBI.

In the present work, we also found that the trans-active re-

gions of BnDREBI functioned in redundancy, consistent with

the previous report on CBF1 [22]. First, the N-terminal (N and

AP2) and the C-terminal of BnDREBI-5 functioned in

redundancy. The sum of the activities of IINIC (93.9%) and

INIIC (69.7%) was much higher than that of BnDREBI-5

(Fig. 2C). Second, in the C-terminal of BnDREBI-5, C1, C3

and C5 functioned in redundancy. Third, in the regions like

C3 and C5 that contained more than one trans-active motif

or amino acid, different trans-active motifs or amino acids also

functioned in redundancy (Fig. 4).

However, things are much different, when it comes to the N-

terminal and the small motifs. For one thing, N and AP2 re-
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gions functioned in a linear addition pattern toward the activ-

ity of the N-terminal of BnDREBI-5, because the activity of

INIIC (69.7%) was similar to the sum of II-1SN (35.8%) and

II-1SAP2 (25.3%) (Fig. 2C). For another, the two Arg residues

in the REEQR motif also functioned in a linear addition pat-

tern (Fig. 4). However, in the Lys138Ser139 motif of BnDRE-

BI, it was a little complicated. Lys138, unlike Ser139, did not

show any trans-active activity, but it contributed to the activity

of the motif because the double mutant, II-1KS, showed a

trans-activation activity higher than II-1N140S (Fig. 4).

Four hydrophobic motifs have been identified to function

positively towards the activity of CBF1 [22]. However,

BnDREBII also contained these hydrophobic motifs (Fig. 1),

but this group of proteins was trans-inactive. Therefore, the

existence of these motifs might not be sufficient for the activity,

at least in BnDREBII. Usually, hydrophobic residues or mo-

tifs are buried in the protein molecules, instead of being

exposed to the surface, to maintain the structural stability of

the proteins. Interestingly, the REEQR motif, Trp211,

Asp221 and Asp231 identified here were adjacent to the previ-

ous reported HC2, HC3, HC4 and HC5 [22], respectively

(Fig. 1). Mutations or deletions in the hydrophobic motifs

might affect the right positioning of these adjacent trans-active

amino acids, and thus led to the decrease in the activity to acti-

vate transcription.

In contrast, the polar amino acids might play more impor-

tant roles in the activity of BnDREBI. Most of the key amino

acids identified here are polar amino acids, except Phe148 in

AtDREB1A and Trp211 in BnDREBI. The polar amino acids

are usually located at the surface of the proteins, and they are

widely involved in protein–protein interactions [29]. Therefore,

these amino acids might participate in the interaction of

DREBs with the other components needed for transcription.

A previous study had shown that the possible mechanism of

CBF1 to activate transcription was to recruit HAT-containing

adaptor complexes to the promoter [30], and CBF1 has been

demonstrated to interact with Arabidopsis Gcn5 and ADA2

proteins [30]. Therefore, these amino acids of BnDREBI, espe-

cially the polar amino acids, might be crucial for recruiting

proteins essential for transcription, most likely the HAT-con-

taining adaptor complexes.

Acknowledgements: This work was supported by funds from the
National Key Science and Technology Item of China
(2002AA224091 and 2005AA224090), the National Key Basic Re-
search Specific Foundation of China (G 1999075607), the Natural Sci-
ence Foundation of China (30221003, 30429001 and 60401009) and
Funds from Jiaxing, Zhejiang.
References

[1] Yamaguchi-Shinozaki, K. and Shinozaki, K. (2005) Organization
of cis-acting regulatory elements in osmotic- and cold-stress-
responsive promoters. Trends Plant Sci. 10, 88–94.

[2] Shinozaki, K., Yamaguchi-Shinozaki, K. and Seki, M. (2003)
Regulatory network of gene expression in the drought and cold
stress responses. Curr. Opin. Plant Biol. 6, 410–417.

[3] Thomashow, M.F. (1999) Plant cold acclimation: freezing toler-
ance genes and regulatory mechanisms. Annu. Rev. Plant Physiol.
Plant MolBiol. 50, 571–599.

[4] Zhu, J.K. (2002) Salt and drought stress signal transduction in
plants. Annu. Rev. Plant Biol. 53, 247–273.

[5] Yamaguchi-Shinozaki, K. and Shinozaki, K. (2004) Signal
transduction pathways for the activation of ABA responsive
gene expression in drought-stress response. Plant Cell Physiol. 45,
S24.

[6] Stockinger, E.J., Gilmour, S.J. and Thomashow, M.F. (1997)
Arabidopsis thaliana CBF1 encodes an AP2 domain containing
transcriptional activator that binds to the C-repeat/DRE, a cis-
acting DNA regulatory element that stimulates transcription in
response to low temperature and water deficit. Proc. Natl. Acad.
Sci. USA 94, 1035–1040.

[7] Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamag-
uchi-Shinozaki, K. and Shinozaki, K. (1998) Two transcription
factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding
domain separate two cellular signal transduction pathways in
drought- and low-temperature-responsive gene expression, respec-
tively, in Arabidopsis. Plant Cell 10, 1391–1406.

[8] Shinozaki, K. and Yamaguchi-Shinozaki, K. (2000) Molecular
responses to dehydration and low temperature: differences and
cross-talk between two stress signaling pathways. Curr. Opin.
Plant Biol. 3, 217–223.

[9] Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow,
M.F. and Zhang, J.Z. (2002) Transcription factor CBF4 is a
regulator of drought adaptation in Arabidopsis. Plant Physiol.
130, 639–648.

[10] Kizis, D. and Pages, M. (2002) Maize DRE-binding proteins
DBF1 and DBF2 are involved in rab17 regulation through the
drought-responsive element in an ABA-dependent pathway. Plant
J. 30, 679–689.

[11] Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and
Shinozaki, K. (1999) Improving plant drought, salt, and freezing
tolerance by gene transfer of a single stress-inducible transcription
factor. Nature Biotech. 17, 287–291.

[12] Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger,
O. and Thomashow, M.F. (1998) Arabidopsis CBF1 overexpres-
sion induces COR genes and enhances freezing tolerance. Science
280, 104–106.

[13] Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M.,
Shinozaki, K. and Yamaguchi-Shinozaki, K. (2006) Functional
analysis of an Arabidopsis transcription factor, DREB2A, involved
in drought-responsive gene expression. Plant Cell 18, 1292–1309.

[14] Ohmetakagi, M. and Shinshi, H. (1995) Ethylene-inducible DNA-
binding proteins that interact with an ethylene-responsive ele-
ment. Plant Cell 7, 173–182.

[15] Jofuku, K.D., Denboer, B.G.W., Vanmontagu, M. and Okam-
uro, J.K. (1994) Control of Arabidopsis flower and seed develop-
ment by the homeotic gene Apetala2. Plant Cell 6, 1211–1225.

[16] Allen, M.D., Yamasaki, K., Ohme-Takagi, M., Tateno, M. and
Suzuki, M. (1998) A novel mode of DNA recognition by a beta-
sheet revealed by the solution structure of the GCC-box binding
domain in complex with DNA. EMBO J. 17, 5484–5496.

[17] Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K. and
Yamaguchi-Shinozaki, K. (2002) DNA-binding specificity of the
ERF/AP2 domain of Arabidopsis DREBs, transcription factors
involved in dehydration- and cold-inducible gene expression.
Biochem. Biophys. Res. Commun. 290, 998–1009.

[18] Cao, Z.F., Li, J., Chen, F., Li, Y.Q., Zhou, H.M. and Liu, Q.
(2001) Effect of two conserved amino acid residues on DREB1A
function. Biochemistry-Moscow 66, 623–627.

[19] Wei, G., Pan, Y., Lei, J. and Zhu, Y.X. (2005) Molecular cloning,
phylogenetic analysis, expressional profiling and in vitro studies of
TINY2 from Arabidopsis thaliana. J. Biochem. Mol. Biol. 38, 440–
446.

[20] Park, J.M., Park, C.J., Lee, S.B., Ham, B.K., Shin, R. and Paek,
K.H. (2001) Overexpression of the tobacco Tsi1 gene encoding an
EREBP/AP2-Type transcription factor enhances resistance
against pathogen attack and osmotic stress in tobacco. Plant Cell
13, 1035–1046.

[21] Liu, Y., Zhao, T.J., Liu, J.M., Liu, W.Q., Liu, Q., Yan, Y.B. and
Zhou, H.M. (2006) The conserved Ala37 in the ERF/AP2 domain
is essential for, binding with the DRE element and the GCC box.
FEBS Lett. 580, 1303–1308.

[22] Wang, Z.B., Triezenberg, S.J., Thomashow, M.F. and Stockinger,
E.J. (2005) Multiple hydrophobic motifs in Arabidopsis
CBF1COOH-terminus provide functional redundancy in trans-
activation. Plant Mol. Biol. 58, 543–559.

[23] Zhao, T.J., Sun, S., Liu, Y., Liu, J.M., Liu, Q., Yan, Y.B. and
Zhou, H.M. (2006) Regulating the drought-responsive element



3050 T.-J. Zhao et al. / FEBS Letters 581 (2007) 3044–3050
(DRE)-mediated signaling pathway by synergic functions of
trans-active and trans-inactive DRE binding factors in Brassica
napus. J. Biol. Chem. 281, 10752–10759.

[24] Kammann, M., Laufs, J., Schell, J. and Gronenborn, B. (1989)
Rapid insertional mutagenesis of DNA by polymerase chain
reaction (PCR). Nucl. Acids Res. 17, 5404.

[25] Landt, O., Grunert, H.P. and Hahn, U. (1990) A general method
for rapid site-directed nutagenesis using the polymerase chain
reaction. Gene 96, 125–128.

[26] Jaglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V.,
Zhang, J.Z., Deits, T. and Thomashow, M.F. (2001) Components
of the Arabidopsis C-repeat/dehydration-responsive element bind-
ing factor cold-response pathway are conserved in Brassica napus
and other plant species. Plant Physiol. 127, 910–917.

[27] Gao, M.J., Allard, G., Byass, L., Flanagan, A.M. and Singh, J.
(2002) Regulation and characterization of four CBF transcrip-
tion factors from Brassica napus. Plant Mol. Biol. 49, 459–
471.

[28] Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P.,
Houghton, J.M. and Thomashow, M.F. (1998) Low temperature
regulation of the Arabidopsis CBF family of AP2 transcriptional
activators as an early step in cold-induced COR gene expression.
Plant J. 16, 433–442.

[29] Jones, S. and Thornton, J.M. (1996) Principles of protein–protein
interactions. Proc. Natl. Acad. Sci. USA 93, 13–20.

[30] Stockinger, E.J., Mao, Y.P., Regier, M.K., Triezenberg, S.J. and
Thomashow, M.F. (2001) Transcriptional adaptor and histone
acetyltransferase proteins in Arabidopsis and their interactions
with CBF1, a transcriptional activator involved in cold-regulated
gene expression. Nucl. Acids Res. 29, 1524–1533.


	Identification of the amino acids crucial for the activities of drought responsive element binding factors (DREBs) of Brassica napus
	Introduction
	Materials and methods
	Materials
	Deletion and chimera constructs
	Site-directed mutagenesis
	Yeast one-hybrid and  beta -galactosidase activity assay

	Results
	Discussion
	Acknowledgements
	References


