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This paper contains data to establish the optimal standard regimen
and predicting the response to docetaxel therapy (Moawad, 2014)
[1]. Docetaxel has been in use for over a decade without demon-
strating data indicates a predictable response in the treatment of
cancer. Data of puzzling response to docetaxel therapy was due to
its cell cycle specific effect. Although several administered sche-
dules were investigated, the relative therapeutic advantage of high
versus low doses has not been identified yet. Also the antitumor
target of docetaxel has not yet been identified to optimize therapy
by predicting the response of patients prior to therapy to provide a
protection against treatment failure. In the present paper, we
demonstrate the data used to optimize docetaxel therapy and
investigate the possibility of predicting for the first time the
antitumor target of docetaxel.

& 2015 The Author. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Specifications Table
ubject area
 Medical oncology

ore specific sub-
ject area
Docetaxel therapy – cancer staging – identifying the effectiveness of anti-
tumor drugs.
ype of data
 Table, text file, graph.
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ow data was
acquired
Data was acquired from each of a previously published data of docetaxel
cancer growth inhibition in vivo and data of previously published methods
for cancer staging and identifying effectiveness of antitumor drugs.
ata format
 Dose modeling was performed by analyzing the acquired data.

xperimental
factors
Staging and grading tumors.
xperimental
features
Tumor growth inhibition in vivo.
ata source
location
Earlier studies conducted by the author of current article – earlier studies
conducted by different schools of medicine published on the Internet.
ata accessibility
 Staging and grading cancer.
[http://www.ncbi.nlm.nih.gov/pubmed/25013524
http://www.ncbi.nlm.nih.gov/pubmed/26069487
http://www.ncbi.nlm.nih.gov/pubmed/26069495
http://link.springer.com/article/10.1007/s00580-012-1603-6
http://www.hrpub.org/journals/article_info.php?aid¼660]
[Identifying effectiveness of antitumor drugs.
http://www.ncbi.nlm.nih.gov/pubmed/24248635
http://www.ncbi.nlm.nih.gov/pubmed/25985771
http://www.ncbi.nlm.nih.gov/pubmed/26346504
http://www.ncbi.nlm.nih.gov/pubmed/25298625
http://link.springer.com/article/10.1007/s40944-015-0001-9]
Docetaxel cancer growth inhibition.
[http://cancerres.aacrjournals.org/content/67/1/281
http://onlinelibrary.wiley.com/doi/10.1002/1097-0045(20000901)44:4%
3C275::AID-PROS3%3E3.0.CO;2-9/pdf
http://www.sciencedirect.com/science/article/pii/S0014299908003683
http://cancerres.aacrjournals.org/content/66/9/4816
http://cancerres.aacrjournals.org/content/67/8/3818
http://mct.aacrjournals.org/content/4/6/1004
http://clincancerres.aacrjournals.org/content/15/2/543
http://archotol.jamanetwork.com/article.aspx?articleid¼649061
http://www.ncbi.nlm.nih.gov/pubmed/25771878]
2. Value of the data
● Although docetaxel has been in use for over a decade, optimal dosing and scheduling are still the
most important issues regarding the use of docetaxel [2–9].

● In the same time, predicting patient's response has become a necessity to preserve patient's right
against treatment failure or non-optimal treatments [10–17].

● The acquired data was for identifying the energy yield by docetaxel doses to investigate the pos-
sibility of predicting for the first time the antitumor target of docetaxel.

● Assessment of the efficient regimen for optimizing cell-cycle specific therapy would be based on
achieving an accumulated doubling time–energy conversion in the tumor cells by the regimen
doses [1,12].

● The higher the energy yields by the same docetaxel dose the more effectiveness of the applied
regimen and vice versa.

● Then, efficiency of those applied standard and metronomic regimens on different types of tumor
models would be determined to assess the specifications of the personalized treatment schedule
[10–14].
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● The correlation and regression between the energy yield by the applied docetaxel doses in optimal
schedules (dependent variable) and value of those doses (independent variable) would be inves-
tigated. If both variables were perfectly correlated, the target of our thesis would be achieved.

● In such a case, a dose–energy model with perfect fit for docetaxel would be constructed to
administer the optimal (personalized) dose in an efficient schedule as conducted before in earlier
studies [10–14].

● Accordingly, the therapeutic response of cancer to docetaxel could be predicted prior to therapy by
identifying each of patient's histologic grade (HG Control)—in vitro or in vivo—and energy yield by the
proposed dose using the constructed dose–energy model of docetaxel [10–20].
3. Data

3.1. Docetaxel cancer growth inhibition

Data shows that schedule of the applied regimen is responsible for the puzzling response to
therapy due to the cell cycle specific effect of docetaxel.

3.2. Clinical model of staging and grading cancer

The processes of tumor formation and cancer therapy are based mainly on the concept of doubling
time–energy conversion (DT–EC) in which the conversion of doubling time into growth energy takes
place [10–21]. The fundamental principle for cell cycle duration in relation to the physical energy
condition of a cell has been derived and confirmed [17,21]. In which, the duration of the mitosis stage
is defined by cell doubling time or division time and denoted by tD. While the growth energy ðEGÞ of
the biological cell in terms of tD was expressed by the DT–EC formula:

EG ¼ ln ln
ln2
tD

� �� �2

Emad ð1Þ

which is known also by Emad formula referring to the unit used in identifying the converted
energy [17–26]. The Emad unit of each of the biological cell growth energy and the radionuclide
Iodine-131ð131IÞ decaying energy were taken equivalent, where 131I is the commonest safely used
radionuclide [17,21]. Thus the conversion factor from Emad unit to Mega electron volt (MeV) unit is as
follows [10–30]:

1 Emad¼ 23234:59 MeV: ð2Þ
This concept for DT–EC in the biological systems was established to asses the limits of energy that

is suitable for energy conversion processes.
Monitoring the mechanical behavior of the tumor response to therapy is assessed by determining

the growth/or shrinkage constants of those tumors of different volumes along the corresponding
periods [21–24]. The growth constant (ln2tD , where tD is the tumor doubling time in seconds)/or
shrinkage constant (ln2t1=2

, where t1=2 is the tumor half-life time in seconds) of the tumor at a certain
time expresses the rate of the difference between mitosis and apoptosis with respect to the total
number of the tumor cells (M–A) that characterize the tumor response at that time [10–17]. If rate of
mitosis is greater than that of apoptosis, tumor grows by the growth constant, and vice versa if rate of
mitosis is less than that of apoptosis, tumor shrinks by the shrinkage constant [10–14].

Tumor tD intraday increases linearly with time for specific initial and final volumes according to
the exponential growth model as follows [10–17,27–30]:

Tumor tD intraday¼ ln2
lnVFinal � lnV Initial

� t sð Þ: ð3Þ

To apply Eq. (3) in the case of shrinking for tumor of volume (V), the apoptotic tumor portion of
half-life time ðt1=2Þ would be replaced by a virtual growth portion of doubling time (tD) equivalent to
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the growing portion before undergoing apoptosis as follows [10–14]:

V Initial � VFinal

V Initial

� �
Shrinkage

¼ V Initial

VFinal � V Initial

� �
Virtualgrowth

: ð4Þ

The clinical staging model presented by Moawad showed that the tumor energy that expresses the
tumor histologic grade ðHGÞ can be identified using the formula of DT–EC induced in tumor cells
during tumor formation or therapy as follows:

HG ¼ ln ln
ln2
tD

� �2

� C0 � h� 23234:59 MeV; ð5Þ

where C0 � his number of the hypoxic cells in the tumor or number of the inoculated cells in the
transplanted tumor in xenografted models [10–17,27–30].

3.3. Identifying effectiveness and optimal regimens of cell cycle specific antitumor drugs

Accordingly from Eq. (5), the alteration in the treated tumor HG compared to that of the control
tumor induced by the drug dose would be equivalent to the energy yield by the drug dose according
to the following model [10–20]:

EDose ¼ ln ln
ln2
tD

� �� �2

Treated
� ln ln

ln2
tD

� �� �2

Control

" #
� C0 � h� 23234:59 MeV: ð6Þ

Assessment of the efficient regimen for optimizing therapy would be based on achieving an
accumulated doubling time–energy conversion in the tumor cells by the doses of the regimen
[10–17].

For cell cycle specific antitumor drugs – as docetaxel –, the higher the energy yields by the same
drug dose the more effectiveness of the applied regimen and vice versa [12].

In addition, as much as the time period (t) from initiating therapy passes in the optimal cell cycle
specific treatments the induced tumor doubling time ðtDÞ intraday should be steadily increased.

Thus, the criterion of the efficient regimen of docetaxel treatment can be determined by com-
paring the tumor tD intraday on time of dose delivery to time periods from the start of therapy to the
time of dose delivery in the studied regimen.
4. Experimental design, materials and methods

Monitoring the growth constant in each of the treated and control groups for tumor models was
identified by applying the exponential growth model shown in Eq. (3) on the progress induced in
tumor volume illustrated in Table 1. In case of shrinking, the tumor's shrinkage portion was replaced
by the growing portion before undergoing apoptosis as determined from Eq. (4) in the exponential
growth model shown in Eq. (3) to identify the virtual growth constant.

HG of all treated and control groups has been identified by applying DT-EC formula on their
determined growth constants and knowing their numbers of the inoculated cells in the transplanted
tumor of those xenografted models from Table 1 as shown in Eq. (5).

Determining the energy yield by the docetaxel dose that equivalent to the alteration in the treated
tumor HG compared to that of the control tumor for each tumor model as shown in Eq. (6).

Data of the energy yield by docetaxel doses in the treated groups demonstrates puzzling response
to docetaxel therapy illustrated in Fig. 1 and 2.

In same tumor model, data shows the metronomic regimens of low doses could be more efficient
than the standard regimens of high doses.

Fig. 1 shows two regimens of docetaxel were applied on the same tumor model ((2.5�105) HeyA8
cells). The lower dose (147 mg/L) in metronomic regimen was more effective than the higher one
(840 mg/L) in standard regimen.



Table 1
Data presented in several studies of the docetaxel anticancer effect on different types of tumor models of different cell lines [1].

Treatment
Number

Authors Injected cell line Docetaxel
dose
μg=ml
� �

Regimen Control tumor volume ðcm3Þ Treated tumor volume ðcm3Þ

1 Kamat et al. [2] (2.5�105) HeyA8 cells 147 0.5 mg/kg thrice weekly for
3.5 weeks

From 0.1 to 1.2 in 3.5 weeks From 0.1 to 0.288 in 3.5 weeks

2 Williams et al. [3] (1�106) MAT-LyLu (MLL)
cells

392 Two doses of 7 mg/kg on days 4 and
11

From 0.5 to 4.8 in 10 days From 0.5 to 4.4 in 10 days

3 Liu et al. [4] (5�106) Hep-2 cells 420 Two doses of 7.5 mg/kg/week From 0.15 to 0.45 in 14 days Shrunk from 0.15 to 0.09 in
6 days and then grew from
0.09 to 0.17 in 8 days

4 Li et al. [5] (1�106) PC-3 cells 420 Three doses of 5 mg/kg on 6 days From 0.57 to 1.93 in 11 days From.54 to 1.28 in 11 days
5 Banerjee et al. [6] (1�106) C4-2b cells 560 5 mg/kg body weight given i.v.

every 3rd day (total of four doses)
From 0.1 to 0.99 in 31.5 days
(4.5 weeks)

From 0.1 to 0.371 in 31.5 days
(4.5 weeks)

6 Williams et al. [3] (1�106) MAT-LyLu (MLL)
cells

649.6 11.6 mg/kg on days 4 and 11 From 0.5 to 4.8 in 10 days From 0.5 to 1.63 in 10 days

7 Sweeney et al. [7] (1�106) MDA-MB-231 cells 840 5 mg/kg/week for 6 weeks From 0.06 to 0.24 in 14 days From 0.232 to 0.42 in 17 days
8 Ichite et al. [8] (1�106) A549 cells 840 10 mg/kg on days 14, 18 and 22 From 0.05 to 0.26 in 14 days From 0.05 to 0.09 in 14 days
9 Kamat et al. [2] (1�106) SKOV3ip1 cells 840 15 mg/kg/2 weeks for 4 weeks From 0.1 to 0.75 in 3.5 weeks From 0.1 to 0.2 in 3.5 weeks
10 Kamat et al. [2] (1�106) HeyA8 MDR cells 840 15 mg/kg/2 weeks for 4 weeks From 0.1 to 2.2 in 3.5 weeks From 0.1 to 2.0 in 3.5 weeks
11 Kamat et al. [2] (2.5�105) HeyA8 cells 840 15 mg/kg/2 weeks for 4 weeks From 0.1 to 1.2 in 3.5 weeks From 0.1 to 0.42 in 3.5 weeks
12 Yoo et al. [9] (15�106) of HNSCC line;

HN30
2100 7.5 mg/kg per injection twice a

week for 6 weeks
From 0.4 to 1.7 in 35 days From 0.4 to 0.192 in 35 days

13 Yoo et al. [9] (15�106) of HNSCC lines;
HN30

5040 15 mg/kg per injection twice a week
for 6 weeks

From 0.4 to 1.7 in 35 days From 0.4 to 0.02 in 85 days

14 Yoo et al. [9] (15�106) of HNSCC line;
and HN12

5040 15 mg/kg per injection twice a week
for 6 weeks

From 0.25 to 2.5 in 35 days From 0.25 to 0.05 in 40 days
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Energy yield by same dose of 840 mg/L docetaxel in different standard regimens in different types of tumor models
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Although data shows that the therapeutic effect of same dose of docetaxel in different tumor
models is unpredictable, data shows also that the therapeutic effect of same dose was identical in
some standard regimens applied on different tumor types. Consequently, the response to those
regimens of the identical therapeutic effect could be predicted.

In Fig. 2, the therapeutic effect of same dose of docetaxel (840 mg/L) in different standard regi-
mens applied on five different tumor types was identical in three of them and different in the others.

In addition, tumor doubling time intraday on time of dose delivery of the applied regimens on
tumor models shown in Table 1 has been identified using Eq. (3) to be compared by the time period
from the start of therapy to the time of next dose delivery in the studied regimens.

Data of the induced tumor doubling time on time of dose delivery compared by the period from
starting therapy to time of the next dose delivery would clarify when the therapeutic effect of same
docetaxel doses would be optimized, identical and consequently predictable for its consistency, or on
the contrary when it would be puzzling and randomized and consequently unpredictable in the
treated groups as illustrated in Figs. 3 and 4.

Fig. 3 shows the induced tumor doubling time intraday on time of dose delivery by different doses
of docetaxel (147 mg/L, 840 mg/L) applied in metronomic and standard regimens respectively on the
same tumor model ((2.5�105) HeyA8 cells) compared by the time period from the start of therapy to
the time of dose delivery in the studied regimen.
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Fig. 4 shows the induced tumor doubling time intraday on time of dose delivery by the same dose
of docetaxel (840 mg/L) applied in different standard regimens on five different tumor models
compared by the time period from the start of therapy to the time of the next dose delivery in the
studied regimen.

By completing analysis to the acquired data for all tumor models shown in Table 1, steps described
in Section 2 can be performed and then, one can establish the optimal standard regimen and pre-
dicting the response to docetaxel therapy.
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Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.
org/10.1016/j.dib.2015.09.033.
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