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Controlling heat stress (HS) is a global challenge for the dairy industry.
In this work, an integrated metabolomics and lipidomics approach
using 1H nuclear magnetic resonance (NMR) and ultra-fast LC–MS in
combination with multivariate analyses was employed to investigate
the discrimination of plasma metabolic profiles between HS-free and
HS lactating dairy cows. Here we provide the information about the
acquiring and processing of raw data obtained by 1H NMR and LC–MS
techniques. The data of present study are related to the research article
“Identification of diagnostic biomarkers and metabolic pathway shifts
of heat-stressed lactating dairy cows” in the Journal of Proteomics
(Tian et al., J. Proteomics, (2015), doi:10.1016/j.jprot.2015.04.014).
& 2015 The Authors. Published by Elsevier Inc. This is an open access

article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Type of data
 Table, figure, excel file

How data was
acquired
1H NMR and UFLC–MS (Bruker Biospin Billerica)
Ultra-fast LC(Shimadzu)
5600 Triple TOF mass spectrometer(Applied Biosystems/MDS Sciex)
QTRAP 5500 (Applied Biosystems/MDS Sciex)
TopSpin software (version 3.0; Bruker Biospin)
AMIX software package (version 3.8.3, Bruker Biospin)
MATLAB R2012a software (MathWorks, Natick, MA, USA)
SIMCA-P 12.0 software package (Umetrics AB, Umeå, Sweden)
Analysts TF 1.6 Software (Applied Biosystems/MDS Sciex)
open-source XCMS package (version 1.20.1)
Human Metabolome database and METLIN database
Data format
 Analyzed

Experimental factors
 Plasma samples from Chinese Holstein cows with and without heat stress were collected to

characterize the metabolic changes induced by heat stress (HS)

Experimental
features
Integrated metabolomics and lipidomics using 1H nuclear magnetic resonance (NMR) and UFLC–MS
techniques
Data source location
 Beijing, China

Data accessibility
 Programs of data transformation are directly provided with this article
Value of the data
The data of multivariate analysis highlight the significant differences of plasma metabolic profiling

between HS and HS-free dairy cows.
The data point out the potential biomarkers of HS dairy cows.

The data provide insights into shifted pathways of dairy cows induced by HS.
1. Data, experimental design, materials and methods

1.1. Sample collection and experimental design

All experiments involving animals were conducted according to the principles of the Chinese
Academy of Agricultural Sciences Animal Care and Use Committee (Beijing, China). Fasting blood
samples were collected before morning feeding from the caudal veins of Holstein dairy cows, put into
K2 EDTA anti-coagulation vacuum tubes, and centrifuged at 1600g for 10 min at 4 1C. The
supernatants were transferred to tubes, frozen quickly, and stored at �80 1C until use. An overview
of the experimental design to acquire the data in present article is shown Fig. 1.

1.2. Sample preparation

For LC–MS metabolomics analysis, 150 μL aliquots of each thawed plasma sample were mixed with
600 μL ice-cold acetonitrile, vortexed, and centrifuged for 10 min at 10,000 rpm and 4 1C. The 650 μL
supernatant of each sample was transferred to another tube, and concentrated to dryness with a
SpeedVac Concentrator (SPD121P, Thermo Savant, Waltham, MA, USA). Each dried sample was
reconstituted in 100 μL ACN/H2O (1:99 v/v), and filtered through a Captiva 96-well filter plate (Agilent,
Santa Clara, CA, USA) for analysis.

For analyses of the plasma lipidome, a modified preparation method was used [2]. Briefly, a 30 mL
aliquot of each plasma sample was mixed with 200 mL methanol, followed by the addition of 660 mL
methyl tert-butyl ether, and vortexing of the sample. Subsequently, 150 mL water were added to each
tube, the samples were vortexed for 5 min, incubated for 5 min, and centrifuged for 5 min at
10,000 rpm and 4 1C. The upper layers (500 mL) were collected, evaporated to dryness using a
SpeedVac SPD121P concentrator, and re-dissolved in 500 mL of ACN/isopropanol/H2O (65:30:5 v/v/v).
The corresponding solvents were filtered through a Captiva 96-well filter plate for LC–MS analysis.

For NMR analysis, the plasma samples were centrifuged for 10 min at 1600g and 4 1C.
The supernatants (20 μL) were collected, mixed with 40 μL of deuterium oxide containing 1 mM
3-(trimethylsilyl) propionic-2,2,3,3,d4 acid sodium salt, and transferred to 1.7 mm NMR tubes for
analysis.



Fig. 1. Overview of the strategy used to identify diagnostic biomarkers of HS in lactating dairy cows. HS—heat stress; NMR
—nuclear magnetic resonance; MVDA—multivariate statistical data analysis.
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1.3. NMR spectroscopic analysis

1H NMR spectra were acquired using an automated NMR Case sample changer on a Bruker
AvanceIII 500 spectrometer (Bruker Biospin Billerica, MA, USA) operating at 500.13 MHz and equipped
with a 1.7-mm triple resonance inverse probe at 298 K. A Carr–Purcell–Meiboom–Gill pulse sequence
was used to enhance the contribution of low-molecular weight metabolites, and a diffusion-edited
experiment with bipolar pulse pair-longitudinal eddy current delay pulse sequence was used to
measure the lipid content of plasma lipoproteins [3]. The Carr–Purcell–Meiboom–Gill method utilized
a spin–spin relaxation delay (2nτ) of 320 ms for each sample, with water signal irradiation applied
during the recycle delay. For bipolar pulse pair-longitudinal eddy current delay, a sine shaped gradient
with a strength of 32 G/cm and a duration of 2.5 ms was followed by a delay of 200 μs to allow for the
decay of eddy currents. The diffusion delay was 120 ms and the time delay (Te) was 5 ms. A line-
broadening factor of 1 Hz was applied to free induction decays before Fourier transformation. Spectra
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were acquired with 128 scans and then zero-filled and Fourier-transformed to 128k data points.
Representative NMR spectra plasma samples are shown in Supplementary Fig. 1A.

Metabolites were identified by inserting the experimental spectra into the Chenomx spectral
database (Edmonton, AB, Canada), and comparing them with the spectra of standard compounds.

The significance of variation in the metabolic profiling data between the HS-free group and
corresponding HS group was determined using SIMCA-P to generate metabolite correlations between
groups (see correlation results in Supplementary Excel); then, MATLAB R2012a software was applied
for the color map visualization (see Supplementary running program 1).

1.4. LC–MS/MS analyses

LC–MS/MS analyses were performed using Shimadzu ultra-fast LC (UFLC) 20ADXR system and a
5600 Triple TOF mass spectrometer (Applied Biosystems/MDS Sciex, Concord, ON, Canada).

Metabolome analyses utilized ACQUITY UPLC HSS T3 1.8 mm, 2.1�100 mm columns (Waters,
Dublin, Ireland). The temperatures of the column and auto-sampler were maintained at 40 1C and
4 1C, respectively. The injection volume was 5 mL per run, and the flow-rate was 0.3 mL/min. Mobile
phases A and B were 0.1% formic acid in de-ionized water and ACN, respectively. The linear gradients
were: 1% B at 1 min, 40% B at 5 min, 50% B at 8 min, 65% B at 10 min, 76% B at 16 min, 100% B at
25 min, 1% B at 25.1 min, and 1% B at 30 min.

The ESI source was set up in positive and negative ionization modes. The MS parameters for
detection were: ESI source voltage 5.5 kV or �4.5 kV; vaporizer temperature, 550 1C; drying gas (N2)
pressure, 60 psi; nebulizer gas (N2) pressure, 60 psi; curtain gas (N2) pressure, 30 psi; and
declustering potential, 50 V. The scan range was m/z 60–1000. Data acquisition and processing were
performed using Analysts TF 1.6 Software (Applied Biosystems/MDS Sciex).

Lipidome analysis used ACQUITY CSHTM C18 1.7 mm, 2.1�100 mm columns (Waters, USA). The
mobile phase consisted of 0.1% formic acid and 10 mM ammonium formate in de-ionized water (mobile
phase A) or ACN: isopropanol (1:1; mobile phase B). The auto-sampler temperature was maintained at
10 1C. The linear gradients were: 70% B at 1 min, 99% B at 15 min, 99% B at 20 min, 1% B at 20.1 min, and
1% B at 25 min. The MS was set up in positive ionization mode. The scan range was m/z 200–1000.
Representative total ion chromatograms of plasma samples are shown in Supplementary Fig. 1B–D.

Information-dependent acquisition mode was used for MS/MS analyses of the metabolome and
lipidome. The collision energy was 35 eV.

High-resolution MS, isotope abundance ratios, MS/MS, the Human Metabolome database, the METLIN
database, a literature search, and standard comparisons were employed to identify ion structures.

Quality control (QC) samples were detected once every 10 LC–MS runs to monitor the reproducibility of
the instrument. Plasma samples from different groups were randomly alternated during the analysis. Auto-
calibration was performed using the Calibrant Delivery System in both positive and negative ion modes.

1.5. Data handling

Raw LC–MS data files (.wiff) were converted into mzXML format using ProteoWizard (http://metlin.
scripps.edu/xcms/download/pwiz/pwiz.zip). The files were processed using an open-source XCMS
package (version 1.20.1) in R statistical software (version 2.10.0) for peak discrimination, filtering and
alignment [4], see the Supplementary running program 2. During XCMS implementation, the R-package
CAMERA (Collection of Algorithms for Metabolite Profile Annotation) was used to annotate the isotope,
adduct, and product ion peaks. In combination with the corresponding extracted ion chromatograms,
these ions were manually excluded from the acquired peaks. The resulting two-dimensional matrices,
including the observations (sample names) in columns, the variables (m/z-retention time pairs) in rows,
and the peak areas, were imported into the SIMCA-P 12.0 software package (Umetrics AB, Umeå,
Sweden) for multivariate analysis.

The raw 1H NMR spectra were manually corrected for phase and baseline distortions using TopSpin
software (version 3.0; Bruker Biospin) and were referenced to the signal of 3-(trimethylsilyl)
propionic-2,2,3,3,d4 acid sodium salt (δ 0.0 ppm). The 1H NMR spectra of plasma specimens were

http://metlin.scripps.edu/xcms/download/pwiz/pwiz.zip
http://metlin.scripps.edu/xcms/download/pwiz/pwiz.zip
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binned into 0.01 ppm integral regions and integrated in the 0.5–6.0 ppm region using the AMIX
software package (version 3.8.3, Bruker Biospin). The regions containing the water resonance (δ 5.12–
4.7) were removed. The spectra were normalized to the total sum of the spectral integrals to
compensate for differences in sample concentration. Multivariate analyses of the normalized NMR
data sets were performed using the SIMCA-P 12.0 software package.

Prior to multivariate analysis, pareto and center scaling were respectively applied to LC–MS and 1H NMR
data to reduce noise and artifacts in the models. Data from Quality Control samples were analyzed by
Principal component analysis (PCA) to monitor the reproducibility of the instrument (see Supplementary
Fig. 2), based on the judgment of whether peak areas deviation are less than two standard deviations [5,6].
The retention time deviation profiles of LC–MS data that were generated using an open-source XCMS
package were analyzed to evaluate the reproducibility of the chromatography (see Supplementary Fig. 3),
based on the judgment of whether deviations are less than 20 s for most analyses [6]. PCAwas performed to
visualize global clustering and separation trends, or outliers (see Supplementary Fig. 4). Partial least squares
dicriminant analysis (PLS-DA) models were applied to validate the model against overfitting through 999
random permutation tests (see Supplementary Fig. 5). The models of orthogonal partial least squares
discriminate analysis (OPLS-DA) on the metabolic profiles of HS-free and HS groups were constructed (see
Supplementary Fig. 6). Discriminating variables were selected according to the S-plots (see Supplementary
Fig. 7), jack-knifed-based confidence intervals (see Supplementary Fig. 8), variable importance in projection
values (VIP41), and raw data plots in the OPLS-DA models (examples of Supplementary Fig. 9) [6–8].
Furthermore, an independent t-tests (Po0.05) (SPSS version 13.0) were used to determine if the
differences between the concentrations of candidate biomarkers obtained from OPLS-DA of the
HS-free and HS groups were statistically significant.

1.6. Ultra-fast LC–MS/MS-based verification test

The conditions of chromatographic gradient elution were unchanged. The eluent was injected into a
triple quadrupole-trapmass spectrometer equipped with an ESI source (QTRAP 5500, Applied Biosystems/
MDS Sciex). All of the LC–MS-discovered potential candidates were detected by ultra-fast LC–MS/MS in
multiple reaction monitoring (MRM) mode. For each analyte of interest, the collision energies and
precursor/fragment ion pairs were pre-optimized to generate an optimal signal to noise ratio. The MRM
transitions were listed in Supplementary Tables 1 and 2. The internal standards levofloxacin (362-261)
and hesperidin (611-303) were used for detecting the metabolome and lipidome candidate ions in
positive ion mode; and the internal standards rhein (293-221) and hesperidin (609-301) were
included for detecting the metabolome candidate ions in negative ion mode.

1.7. Characterization of potential diagnostic biomarkers

The sensitivity and specificity of all candidates were evaluated by plotting ROC curves using SPSS
(version 13.0), and calculating the area under the curves (AUC) [6]. The discriminatory power
of biomarker candidates was ranked and visualized by heat maps (see Supplementary Fig. 10).
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