
JOURNAL OF COMPUTER AND SYSTEM SCIENCES: 3, 361-386 (1969)

Regular Expressions and the Equivalence of Programs

DONALD M. KAPLAN*

Department of Computer Science, t Stanford University, Stanford, California

Received October 14, 1968

If we assume that the study and detection of equivalence for ALGOL- l ike programs
holds certain pragmatic interest, then it seems reasonable to pursue these matters
despite the well-known undecidability of this property.

Various efforts have been made to isolate decidable sub-cases of this equivalence
problem (e.g., by Paterson [12] and this author [6]). Other efforts have been made to
define weaker, and therefore decidable, sorts of equivalence (e.g., by Ianov [4] and
Rutledge [14]). Our interest here is to develop equivalence detecting procedures
applicable to programs for which equivalence is undecidable. These procedures
always produce an answer when questioned as to the equivalence of two programs:
either YES or MAYBE. We consider a sequence of these procedures, each more powerful
than the preceding ones. Thus, if one procedure returns MAYBE, then perhaps a
subsequent more powerful one will return YEs.

ELEMENTAL PROGRAMS

We consider here the class of elementalprograrns. Each of these is simply a flowchart
comprised of ALGOL- l ike assignment statements and two-way branches on the truth-
value of quantifier-free formulas of the first order predicate calculus (abbreviated
as qffs). T o simplify the discussion here, we assume that elemental programs have
but one entrance and one exit. An example of an elemental program is illustrated
in Fig. 1.

Now for the syntactic details. An elemental program, 9.[say, is a special sort of
directed labelled graph (i.e., a flowchart), which we define by a triple (X , F, s
Here, X = Y U {r is a finite set of nodes, such that r 6 Y and $ ~ Y, where $ and r
are special nodes called the entrance and exit of 9J, respectively. T h e n , / ' : Y--~ X U X ~
gives the flow of control for 9J, and .W : Y --~ d u .~ gives a labelling for the nodes
of ~ with assignment statements from d and qffs from .~. This labelling is restricted

* Present address: Department of Computer Science, University of Toronto, Toronto 5, Canada.
* The research reported here was supported by the Advanced Research Projects Agency of

the Office of the Secretary of Defense (SD-183) and is part of the National Research Council of
Canada.

361

362 KAPLAN

so that for all y E Y, ~ (y) e ~ ~ Fy e X and s e .~ <:~ Fy ~ X2; thus qffs label
only two-way branches, and assignment statements label only one-way branches. In
the sequel, we denote the label of a node x by [x].

?
S

p(x) = r(g(y), k) F~-- ~

T F

FIG. 1. The elemental program E. Here, x and y are variables ; f and g are function letters ;
p and r are relation letters; and k is a constant letter.

Before defining the sets d and .~ of assignment statements and qffs respectively,
let us define terms. A term is either one of a set {vi}i< ~ of variables; one of a set {ki}i<o,
of constant letters; or an expression of the formf(cr,.. . , ~), w h e r e f i s one of a countable
set of function letters and or,..., ~- are terms.

Then an assignment statement is an expression of the form (u : = ~-), where ~- is a
term, and u is a variable, in the sequel called the assigned variable.

A qff is either an expression of the form r(a ~), where r is one of a countable set
of relation letters, and cr ~" are terms; or an expression of the form (p D q) or (~ p) ,
where p and q are qffs.

Now for the semantic details. Meaning is given to an elemental program through
a mathematical system, called a computing structure, of the sort usually used to give
interpretat ion to qffs of the f irst-order predicate calculus. A computing structure is a
domain and a mapping of the function letters, relation letters and constant letters into
functions, relations and constants on that domain. We use D o to denote the domain
of a comput ing structure D and D(1) to denote the interpretat ion in D of the letter 1.

The semantics of terms, assignment statements, qffs and elemental programs is
defined with respect to a computing structure, D say, and some sequence ~: : to -~ D O

REGULAR EXPRESSIONS AND THE, EQUIVALENCE OF PROGRAMS 363

called a state. The state provides a mapping from the variables into values in the
domain; thus, the variable v i has ~:(i) as its value.

In general, the value ~[D, ~] of a term ~ with respect to the computing structure D
and state ~: is computed using 1

else i f ~ : k i then D(kl)

else i f ~ -~ f (g , . . . , r) then D(f) (o [D , ~:] z[D, ~]).

The new state (v i : :~-)[D, ~:], which results from the execution of the assignment
statement (v i : ~ z) on the state ~, is computed simply by replacing the ith element of
~: with r[D, ~]. That is, the sequence (v i : ~ r)[D, ~] : oJ ~ D O is given by

(v i : = r)[D, ~](j) = i f i = j then r[D, ~] else ~(j),

for a l l j < w.
The truth-value s[D, ~:] ~ {T, F} of a qff s with respect to the computing structure D

and state ~: is computed using

s[O, ~] = i f s = r(cr T) then

i f D (r) (o [D , ~:] ~[D, ~])then 7" e l seF

else i f s = (p D q) then

i f p[D, ~] = F or q[D, ~] = 7" then T else e

else i f s = (~ p) then

i f p[D, ~] = F then T else F.

The output state 9.I[D, ~] of an elemental program ~ = (X , F, .LP) executed in the
computing structure D with input state ~ is computed by the (partial) execution
function E. That is, 9.lID, ~] = E(9.1, D, ~:, $), where for any x ~ X

E(9.I, D, ~, x) = i f [x] ~ d and F x = y then E(gJ, D, [x][D, so], y)

else i f [x] ~ ~ and F x -~ (y , z) then

i f [x][D, ~] = T then E(9.I, D, ~, y) else E(9~, D, ~, z)

else i f x = r then ~.

So we see that elemental programs are executed precisely as our intuition would
indicate. I f the exit is reached, then ~I[D, s e] is determinate; otherwise ~I[D, ~:] is
indeterminate. Models of computation similar to the one presented here have been
studied by many authors, e.g., Ershov [2], Luckham and Park [8], Narasimhan [11],
Engeler [1], Paterson [12], Manna [10] and this author [6].

1 We use here and in the sequel the recta-formalism of McCarthy [9] for reeursively defined
functions. Implicit use is also made throughout of his axioms for manipulating the conditional
expressions appearing in these definitions.

364 KAPLAN

STRONG EQUIVALENCE

We say that the elemental programs 9~ and ~3 are strongly equivalent, and write
~ ~3, if and only if for all computing structures D and input states ~ : ~ --* D o we

have ~I[D, ~] ~ ~3[D, ~], i.e., either both ~[D, ~:] and ~3[D, ~] are indeterminate or
both are determinate and ~[D, ~:] = ~[D, ~].

There is no effective procedure for determining whether or not two elemental
programs are strongly equivalent. Luckham and Park [8], Paterson [12] and this
author [6] have all shown this. Our aim here is to develop techniques of analysis that
will to some extent alleviate this lack of an overall effective procedure for detecting
strong equivalence.

REGULAR EXPRESSION REPRESENTATION

To aid in the development of these techniques we introduce a regular expression
representation for elemental programs. Such a representation is obtained in a very
simple fashion. For example, consider the following regular expression representation
of the elemental program in Fig. 1:

f (~-~(p ~ r) g(~-/pg)* ,~ ~ p) * (p ~ r) g,

where x :----f(x,g(y)) has been abbreviated to simply f, p(x) to p, r(g(y), k) to r, and
y := g(y) to g. This representation not only captures the graph theoretic properties
of elemental programs, but, in addition, faithfully characterizes the T and F branching
at nodes labelled with qffs.

Before proceeding, we will repeat here the basic definitions associated with regular
expressions. This material is also given by Harrison [3], Salomaa [15] and many
others; we include it here only to avoid notational misunderstandings.

Let Z = {a, b,..., z} be a finite alphabet; here, each letter in the alphabet is some
formal expression, i.e., perhaps a sequence of symbols over some lower level alphabet.
This possibility does not concern us just now, however. Then, a regular expression
over Z is either one of the symbols 0 or 1 ; a letter in 27; or an expression of the form
(~ v/3), ~* or (~ �9 iS), where ~ and/3 are regular expressions. In practice we usually
omit the " . " and certain parentheses, with the understanding that the operations are
performed in the order "*", " ." , " v " . Thus, ~ v/3y* will be written instead of
(~, v @ �9 y *)) .

The semantics of a regular expression over Z is called a regular event and is a
sub-set of Z*, the set of all finite words (including the empty word A) over the alphabet
27. The.regular event] y I associated with the regular expression y is computed using

l y l = ify = 0 then ~ (i.e., the empty set)

else i f y = 1 then {A}

else i f y ~ Z then {y}

REGULAR EXPRESSIONS AND THE EQUIVALENCE OF PROGRAMS 365

else i f ~, = ~ v 3 t h ~ l ~ l u IP l
else f f y = ~* then I 1 I u I ~ I u I ~ I u I ~ I u . "

else i f ~, ---- • then {ab : a e f ~ I & b E I 3 I}-

With an elemental program ~ = (X , / ' , .LP), where R(oLP) denotes the range of
s : X--+ d u -@, we associate the finite alphabet

Z'~ ---- R (~) U {,~p :p E R(-~ ~ n .~}.

In the sequel, we often write fi instead of ,~p for qffs p.
We will define c~ s , a regular expression over 27 s that serves to represent the elemental

program 9.I, by utilizing a nondeterministic finite automaton M s (as introduced by
Rabin and Scott [13]) whose behavior is just I ~s [. That is, given a word x ~ 27s* as
input, M ~ accepts x, i.e., stops in t h e f i n a l state, if and only if x ~ [~s]. Let us define
these ideas in more detail.

From the elemental program ~ = (X , / ' , s we effectively construct the non-
deterministic finite automaton M s ---- (X, T, Z's). In this context, X is a finite set of
automaton states (or simply states if no confusion with states as sequences over a
domain results). As well, $ and r in X are now called the start state and f inal state

respectively. The (partial) transition function T : X x Z s --+ X is defined by

T(x, ~) ---- i f Ix] e d and Fx ~ y and cr = [x] then y

else i f [x] ~ .~ and l"x = (y , z) then

i f ~ = [x] then y else i f ~ = ~ [x] then z.

The state-transltion diagram for the nondeterministic finite automaton corresponding
to the elemental program ~ in Fig. 1 is shown in Fig. 2. We see that, in fact, the
formation of M s from 9.I is really a trivial operation.

The behavior of the automaton M s is simply the subset of Z's* that M s accepts,
i.e., those words that cause M s to go from the start state of the final state via the

f

(p ~ r) ~ (p ~ r)]

)
g g

Fro. 2. The state-transition diagram for the nondeterministic finite automaton corresponding
to the elemental program ~ in Fig. 1. Here, the abbreviations mentioned earlier in the text are used.

366 KAPLAN

transition function. The (partial) acceptor function T* : X • Z~* --+ X is defined by

T*(x, w) = i f w -~ A then x

else i f w ~- au and ~ E Z~I then T*(T(x , ~), u).

Then the behavior of M~ is B~ = {w ~ Z~* : T*($, w) = r

THEOREM 1. There exists an effective procedure, which for any elemental program
constructs a regular expression e~ such that] ~1 [~ B ~ .

Proof. We have shown how to effectively construct the nondeterministic finite
automaton M,a from 9.1. Rabin and Scott [13, Theorem 11] show that B ~ , the behavior
of M ~ , is also the behavior of a certain effectively constructed deterministic finite
automaton M~' . Then, using Kleene's result [7], we can effectively construct from
M~' a regular expression ~ such that I c~ I is the behavior of M~' , i.e., such that

A regular expression a~[such that I ~ i is the behavior of M, a is called a regular
expression representation of the elemental program ~[.

DETECTION OF STRONG EQUIVALENCE: PROCEDURE R

We say that the expression a = /3 , where ~ and/3 are regular expressions over the
same alphabet, is a well-formed R-formula (abbreirated as R-wf f) . Just in case
] ~ I =]fl t, we say that a is R-equivalent to fl and write ~ R ~ - - /3 to indicate that the
R-wff a = / 3 is then R-valid.

The first procedure for detecting strong equivalence is based on the fact that if
the regular expression representations of two elemental programs are R-equivalent,
then the programs are strongly equivalent. To arrive at this results, we need a defini-
tion, four lemmas and a theorem.

With each execution of an elemental program 9i = <X, -/1, ~o) we can associate a
(possibly infinite) word over Z ~ . We build up this word by starting with the empty
word and adding, on the right, letters from Z'~ as execution proceeds. If an assignment
statement f ~ Z~ is encountered, then we add f ; at a qff p, if the T branch is taken then
we add p 6 Z~ ; if the F branch is taken, then we add fi E Z ~ . More specifically,
we associate with the output state ~ [D , ~:] a word 9~*[D, ~] = W(~ , D, ~, $), where
for any x ~ X,

W(9~, D, ~, x) ~ if Ix] ~ d and Px = y then [x] W(~(, D, [x][D, ~:],y)

else i f [x] ~ ~ and Fx = (y , z) then

i f [x] [D, ~] = T then [x] W(9~, D, ~, y) else

~-~[x] W(9~, D, f, z)

else i f x = r then A.

REGULAR EXPRESSIONS AND THE EQUIVALENCE OF PROGRAMS 367

Appropriately enough, the definition of W is much akin to the definition of the
execution function E given earlier.' Two results stem immediately from this fact.

LEMMA 1. For any elemental program 9s ~ - (X , F, s with regular expression
representation oLg~ , computing structure D and state ~ : w ~ Do, i f 9s ~] is determinate
then 9~*[D, ~:] e l ~ t]"

LEMMA 2. For any two elemental programs 9s and f3, computing structure D and
state ~ : w -+ Do, 9s ~:] = ~3*[h, s r => 9s ~:] ~_ ~3[D, ~:].

The first result is obvious once we note that the function W, when building up
the word 9s ~:], adds just those letters that will keep the automaton M a "in the
track"; that is, given 9s ~:] as input, M a never enters a state x :76 r from which
a transition cannot be made, Thus, if execution of 9s by E, and so word building by
IC reaches the exit r then M a reaches the final state r and 9s ~:] e] eta 1. In
[6, Theorem 19] a detailed proof by induction is given for this result.

The second result is equally straightforward. For, a comparison of definitions for
the functions W and E shows that ~I[*[D, ~:] = ~*[D, ~:] implies 9s ~:] and ~ [D, ~:]
arise from the application of identical sequences of assignment statements to the
initial state s e. Thus, the final states 9s ~:] and ~ [D , ~:], if determinate, are identical.
In [6, Theorem 20] a detailed proof by induction is given for this result.

We want now to obtain a necessary and sufficient condition for w e I ~ I to be the
word associated with a given execution of the elemental program 95[. To do this, we
first generalize the notion of regular expression representation and then introduce
initial conditions.

For any elemental program 9s = (X , F, ~) , Theorem 1 guarantees the existence
of a regular expression ~ such that

I ~ I = {w e ~ * : T*($, w) = r

A simple generalization of this result assures, for each x e X, the existence of a
regular expression cz~t(x) such that] c~(x)p = {w e Z'9~* : T*(x, w) -~ r Notice that
we can take cx~t($) as cz~ and c~91(r as 1.

A word w e] ~ (x) l can be regarded as an alternating sequence of letters from d
and words from -~*, the set of all finite words over .~.

tP, Q,. . . ,R~. ,~*
w = PfQg ... hR ~f, g h e .~r

For a word S e ~*, let us write S ' for the logical conjunction s of the letters in S;
if S is the empty word, then S ' can be any tautology. Also, for any (u :---- ~-) e d
and p e ~ , let us write (u : = r) ----p for the qff obtained from p by a syntactic

For example, the logical conjunction of the qffs p and q can be expressed as ,-,(p D ,~q).

57x/3]4-3

368 KAPLAN

substitution a of the term r for each occurrence in the qff p of the variable u. A useful
property of this substitution operation is given by

LEMMA 3. For any assignment statement f 6 ~r qff p ~ .~, computing structure D
andstate ~ : oJ--~ D 0 , f - -~p[D, ~] = Tc ~ .p [D , f [D , ~]] = T.

A straightforward proof by induction on the structure of the qff p is given in
[6, Theorem 6] for this result. Then, for any word w ~ I aga(x)] of the form PfQg . . . hR,
we define the initial condition of w to be

I(w) = (P ' f - - ~ 9 ' "'" f - + g "'" h ~ R') ' .

That l (w) is the sought after necessary and sufficient condition on w is expressed in

LEMMA 4. For any elemental program ~ - = (X , F, ~ > with regular expression
representation a~ , computing structure D, state ~ : o~ -~ D o and word w ~] a~ I,
w is the word associated with the execution of ~ in D with initial state ~ if and only
i f the initial condition on w has truth value T with respect to D and ~, or in symbols,
9/*[D, ~] = w.ce.I(w)[D, ~] = T.

Proof. We prove by induction the more general result that for any x ~ X and

w ~ I ~ (x) r,
W(9.1, D, ~, x) = w ~ I(w)[D, ~] = T.

Case (i): x = r Here, a9~(r 1 so that [a~(r = {A}. Now, I (A) is some
tautology, so that I(A)[D, ~] -~ T independently of D and r As well, W(9~, D, ~:, r = A
independently of D and r Hence, W(~ , D, ~:, r = w .r I(w)[D, ~] = T, for any
w ~ I a~t(r i.e., for w = A.

Case (ii): [x] ~ d . Here, ~ t (x) = Ix] a~t(Fx), since any other initial letters for
words in I a~(x)[would not permit a transition of Mga to another state, and so the final
state r would not be reached. Thus, w r I am(x)l is of the form [x]u, where u z I aga(Fx)[�9
The induction hypothesis here is that

W(9,I, D, [x][D, (], I x) = u ~ I (u) [D , [xl[D, f]] = T.

Let us write w ~ I aa(x)l in the form P f Q g . . . hR, where P = A , f = [x], Q R E .~*
and g,..., h r ~r Then, using the fact that P' is a tautology so that P'[D, ~] = T, we
have

I(w)[D, ~] = T

".r I (P f Q g . . . hR)[D, ~] = T def n w

"r "'" f---~g "'" h -+ R')'[D, ~1 = T def~I

a Notice that f --* g" . h --~ p, where f, g h e J and p e .~, is the denotation for (f ~ (g --~
(. . . . (h -~ p) ...))).

REGULAR EXPRESSIONS AND THE EQUIVALENCE OF PROGRAMS 369

<~ P'[D, ~] = f - ~ Q ' [D , ~] f - - ~ g ... h--* R'[D, ~] = T d e f " '

.**. f--~Q'[O,~] - - = f - - ~ g . . . h - - ~ R ' [h , ~] -~ T P ' [D,~] = T

.**.Q'[D,f[D, ~]] - - - - g ... h--~ R ' [D , f [h , ~]] = T L e m m a 3

<*. (Q' ... g ... h --* R ') ' [D , f [D , ~]] ---- T def n '

~.> I (u) [D , f [D , ~]] --~ r d e f n I

-~ W(9.1, D, [x][D, r I x) = u ind. hyp.

W(9~, D, r x) = [x] W (~ , D, [x][D, r I x) and

W(~, D, [x][D, ~], I x) = u def n W

. ~ W (~ , D, ~, x) = [x]u def '~ ----

W(9.1, D, ~:, x) = w. def '~ w

Case (iii): [x] E .~. Here, if T'x = (y , z) , then

~(x) = [x] ~ (y) v ,~[x] ~(~),

since any other initial letters for words in I a~(x) l would not permit a transition of M~
to another state and so the final state r would not be reached. Thus, w e l ~x~(x)[is
either of the form Ix]u, where u E [a~(y)[, or ~ [x] v , where v E [aa(z)[. The induction
hypothesis here is that

i f w = [x]u then W(92, D, ~, y) = u ,:~ I(u)[D, ~] = T

else i f w = ~-~[x]v then W(9.I, D, ~, z) = v ~:> l (v)[D, ~] = T.

Let us write w E I a~(x)l in the form PCQg .." hR, where P = p S , p ~ {[x], ~-~[x]},
S E . ~ * , f i g h ~ d a n d Q R ~.~*. Then,

I(w)[D, ~ = T

,r I (P f Q g .." hR)[n , ~ = T def n w

(P' f - * Q " ... f - - , . g ... h - ~ R') '[D, (] = T def '~I

.r = f - - + Q ' [D , ~] - - - - f - - ~ g . . . h - , R ' [D , ~] = T d e f " '

.r p[D, ~] = S '[D, ~] = f ---* Q'[D, ~]

= f --~ g ... h - * R'[D, ~] = T d e f ' P

r = T a n d (S ' f - + Q ' "" f - ~ g . . . h - + R ') ' [O , ~] -~ T def n '

<:> i f w = [x]u then [x][h, ~] -~ T and I(u)[D, ~] = T

else i f w = ~-~[x]v then ,--Ix][D, ~] = T and I (v) [h , ~] = T defnw

r i f w = [x]u then W(9~, D, ~:, x) = [x] W(~ , D, ~, y)

and I(u)[D, ~] = T

else i f w = -~[x]v then W(~I, D, $, x) = ~-~[x] W(9.I, D, $, z)

and I(v)[D, ~] = T def" W

370 KAPLAN

r i f w = [x]u then w(gi, D, s e, x) = [x] W(9~, D, ~, y)

and W (~ , D, ~, y) = u

else i f w = ~-,[x]v then W(9i , D, ~, x) -= ,-~[x] w(gx, D, ~:, z)

and W(gi , D, ~, z) = v ind. hyp.

i f w = [x]u then W(9i , D, ~, x) = [x]u

else i f w =- ,~[x]v then W(9i , D, ~, x) = ~,[x]v def n =

W(OA, D, ~:, x) = w. def n =

This completes the induction.
If we take x = $, then we have that for w ~ [~($)1,

w (~ , D, ~, $) -= w ~ ~(w)[~, ~1 = T.

Since a~($) = a~ and 9~*[D, ~] = W(9~, D, ~, $), we have therefore that for w 6 [c,~ [,

9~*[D, ~] = w <:> I(w)[D, ~] = T. |

The first strong equivalence-detecting procedure is then based on the following

THEOREM 2. For any two elemental programs 9.I and ~B with regular expression
representations ~ga and ~3 formed over the alphabet Z ~ u Z ~ , i f ~ga is R-equivalent to
ez~3 , then 9.1 is strongly equivalent to ~ , or in symbols, [~] ~ I c~3 [=~ 9.1 ~ ~3.

Proof. Let us execute 9 / a n d ~3 in an arbitrary computing structure D with an
arbitrary initial state ~::~o--+ D o . To show 9 / ~ 3 , it suffices to show that
~[D, ~] ~ ~3[D, ~].

Suppose ~[D, (] is determinate so that 9i*[D, ~] ~ l ~ t [by Lemma 1. Then,
by Lemma 4, I (~*[D, ~])[D, ~] = T. By hypothesis, [a ~ [-~ [a~ [, so that
~*[D, ~] 6 [a~ [as well. Then, again by Lemma 4, ~* [D, ~] = ~*[D, ~]. Finally,
Lemma 2 gives 9~[D, ~] ~ ~[D, ~:].

A similar argument in case ~ [D, ~] is determinate yields ~[D, ~:] ~ ~3[D, ~] as
well. Of course, if neither ~[[D, ~] nor ~3[D, ~] is determinate, then 9~[D, ~] ~ ~[D, ~]
here too. This covers all cases. |

It is well-known that R-equivalence of regular expressions is a decidable property;
in fact, Salomaa [15] has given a complete formal theory for R-equivalence. We will
denote this theory as ~ ; the axiom schemata and rules of inference are as follows:

S l : ~v(/3vy) =(~v/3) vy 8 7 : ~1 =

s2: ~03y) = (~/3)r s8: so = o

$3: ~ v / 3 = / 3 v ~ $9: ~ v 0 = ~

S 4 : ~ (/ 3 v y) = ~/3 v ~ y SlO: ~* = 1 v ~,~*

$5: (~ v/3)7' = ~Y v/3y S l l : ~* = (1 v ~)*

REGULAR EXPRESSIONS AND THE EQUIVALENCE OF PROGRAMS 371

R I : ~ = [3 ~ [3 = ~

R2: o~ = / 3 => y(c~)----y([3), where ~,([3) arises from y(a) by a syntactic
substitution of [3 for one or more occurrences of c~ in ~(~).

R3: c~ = y v [3~ ~ ~ = fly*, provided A ~ [[3 I; this is a decidable side
condition.

Just in case an R-wff c~ = / 3 is finitely derivable in 5 R , we write ~---R ~ = [3. For
any theory and associated notion of validity, we say that the theory is sound if and
only if all' derivable wffs are valid, and adequate if and only if all valid wffs are derivable.

THEOREM 3. The theory ~ is both sound and adequate, or in symbols,

~---R o~ = [3 ~> > R ~ = [3for any R - w f f a = [3.

This is the result obtained by Solomaa [15]. His method is to show how to construct
a derivation in J R of any R-valid R-wff. Thus, the theory ~ itself can serve as the
basis for an R-equivalence decision procedure.

The first strong equivalence-detecting procedure can now be specified:

Procedure R : given elemental programs 9.1 and ~3,

(i) construct ~ t and c~ (effective)
(ii) test for] cr [-~ [~3 [using J'R (effective)

(iii) i f] c~9~ [---- [cr 1, return YES, otherwise MAYBE.

F~. 3.

?
r (g(y) ,

F

An elemental p rog ram s t rongly equivalent to tha t in Fig. 1.

372 KAPLAN

To consider an example, notice that Procedure R detects that the elemental program
in Fig. 3 is strongly equivalent to that in Fig. 1. To see the limitations of Procedure R,
notice that the elemental program in Fig. 4 is also strongly equivalent to that in Fig. 1,
but that Procedure R fails to detect this fact. We now turn our attention to developing
a second and somewhat more powerful procedure, which will be successful in this
latter case as well.

FIG. 4.

?
I

l 7-(-,i=,

T~ - F j]

T ~'~ J F

Another elemental program strongly equivalent to that in Fig. 1.

K-EXPRESSION REPRESENTATION

The K-expressions are like regular expressions except that some letters have explicit
propositional structure. Let us first give the basic definitions associated with K-expres-
sions apart f rom their use in the detection of strong equivalence.

Let ~" = {f, g,..., h} andgt = {p, q,..., r} be finite alphabets of operators andpropo-
sitional atoms respectively. Then, aproposition o v e r ~ is either one of the symbols 0 or 1 ;
a letter in ~ ; or an expression of the form (p D q) or (~,p), where p and q are propo-
sitions. W e write ~ for the set of all such propositions. Then, a K-expression over
~ - u ~ is either an operator in o~-; a proposition in ~ ; or an expression of the form
(c~ A fl), ~* or (c~" fl), where c~ and /3 are K-expressions. We omit parentheses and
order the operations "*" , " " ' , " v " as in regular expressions.

The semantics of a K-expression over ~ u 9~ is called a K-event and is a subset of

REGULAR EXPRESSIONS AND THE EQUIVALENCE OF PROGRAMS 373

(~- U ~)* , the set of all finite words over ~ - u ~ . Playing a central role in the defini-
tion of K-event is the set ~ - called truth:

~" = { ~ ." ~ : ~ ~ {p, fi}, ~6{q, q} ~ a{r , ~}},

where, recall, ~ = {p, q r}. Thus, t ruth is just the set of all disjuncts in the full
disjunctive normal form (abbreviated a s f d n f) of a tautology in ~ . Notice that for any
computing structure D and state ~: �9 co --~ D o , there is one and only one C ~ ~ - such
that C'[D, ~:] = T; we will denote this particular word of truth as ~-[D, ~:]. The
K-event [[y I1 associated with a K-expression y is computed using

I1~11 = i f r

else i f y

else i f y

else i f y

else i f y

else i f y

else i f y

else i f y

else i f y

= 0 then ;g

---- 1 then 3-

~ then { ~ ... ~ . . . ~ ~ 3 - : ~ = y}

= (p D q) then [](~-~p)[[u 1[q [[

= (~ p) then J " - - H P II

~ then {AyB : A, B ~ ~-}

= ~ v ~ then 1[all w I1flll

= ~* then]11 [I t3 II ~ I! u II ~ II w II ~ II u .--

= ~ then (aCb : a C ~ [I ~ [l& Cb~[l f l l l& C ~ S r }

Notice that all words in II y II are of the form A f B g ... hC, where A, B,..., C ~ Y
and f , g h ~ ~ ' . As well, for any proposition p ~ ~ , [1 p 1[is evidently just the set of
all disjuncts in the fdnf ofp. Notice too that the K-expression 1, in addition to standing
for truth, acts as an identity operator, since [[1~][= [] y l [[---- [] y H for any y.

Clearly, the regular expression representation ~ t of an elemental program 9.i can
equally well be regarded as a K-expression. Tha t is, the regular expression c~ formed
over 27~ is also a K-expression over ~-a u ~ t , where #-~ = Z'gx n d , and where ~
is the set of all qffs of the form r(cr ~') occurring in the letters of 27a n .~. In this
context, we will write 3"~ for the set truth, ~ t for the set of propositions, and say that
~ is a K-expression representation of ~ .

For example, consider the elemental program ~ in Fig. I. As mentioned earlier,
usingabbreviations, we can take

~r = f (, ~ (p D r) g (~ p g) * ,~ ,~p)*(p D r)g.

Here, ~xr is a K-expression over ~ u ~ r where ~'r = {f, g) and .~r ----- {p, r). The
set truth is then J ' r = {pr, pf , ffr,~f}. An example of a word in the K-event [1 ar II is
p~fpfgprgpe.

374 KAPLAN

Engeler [1] has independently used a representation for programs similar in spirit
to K-expressions in his study of program termination. Ito also has adopted this notation
and his suggested [5] semantics for revealing propositional structure, though primitive
in form, was a forerunner of the K-event semantics developed here and in [6].

DETECTION OF STRONG EQUIVALENCE: PROCEDURE K

We say that an expression of the form ~ = /3 , where a and/3 are K-expressions over
the same alphabet, is a K-wff. Just in case II ~ II - - II/3 II, we say that ~ is K-equivalent
to/3 and write ~ r ~ = / 3 to indicate that the K-wff ~ = / 3 is therefore K-valid.

The second procedure for detecting strong equivalence is based on the fact that if
the K-expression representations of two elemental programs are K-equivalent, then
the programs are strongly equivalent. T o arrive at this result, we proceed as we did
for the first procedure.

With each execution of an elemental program 9.I = (X , -P, ~a), we can associate a
(possibly infinite) word over ~-~t td ~ t - Specifically, we associate with the output
state ~I[[D, s e] a word 9.1**[D, s r = V(9.I, D, ~:, $), where for any x ~ X,

V(9.I, D, ~, x) = if Ix] ~ ~r and Fx = y then ZZ'~[D, ~][x] V(9.I, D, [x][D, ~],y)

else if [x] ~ .~ and Fx = (y , z) then

if [x][D, ~] = T then V(9.I, D, ~, y) else V(9.I, D, ~, z)

else i f x = r then ~J'~[D, ~].

As with the function W, the definition of V is much akin to the definition of the
execution function E given earlier. Two results stem immediately from this fact.

LEMMA 5. For any elemental program 96 = (X, I', ~) with K-expression repre-
sentation ag~ , computing structure D and state ~ : w ~ Do, i f 9.I[D, ~] is determinate
then 9.I**[D, ~] ~ II ~ II.

[,EMMA 6. For any elemental programs 9g(and ~3, computing structure D and state
: to ~ Do, ~I**[D, s ~] = ~3**[O, s ~] ~ 9.I[O, s e] ~ ~ [D , $].

The first result follows from L e m m a 1 by a straightforward argument (although a
detailed proof by induction from first principles is also possible). Suppose that the
word 9~*[D, ~:] ~ F ~ t I is PfQg " . hR, where P, Q R ~ .~* and f, g,..., h ~ d .
A comparison of definitions for the functions W and V then shows that the word
9R**[D, ~] must be of the form AfBg ... hC, where A ~ II P ' H, B ~ II Q ' II c e II R ' tl.
On the other hand, since regular expressions and K-expressions are both structured

REGULAR EXPRESSIONS AND THE EQUIVALENCE OF PROGRAMS 375

with " v " , " * " and " ' " at the outer level, and since " ' " distributes over " v " in the
definition of K-event, we have, therefore, that P f ~ g . . . hR �9 [ae] implies

{offlg -.. hy : ~x �9 II P ' [1, B �9 [I Q']],..., ~ �9 II R' [I} _C l] c~ga I[.

But A f B g "" hC belongs to this subset, so that ~[**[D, ~:] ~ l[e~ [1, as required.
The second result follows precisely as did Lemma 2, although, again, a detailed

proof by induction is possible.
Then, with initial condition defined as it was earlier, we have

LEMMA 7. For any elemental program 9.I z (X , F, r with K-expression repre-

sentation ae , computing structure D, state ~ : o) --~ D o and word w �9 II o~ It, w is the word

associated with the execution of 9.1 in D with initial state ~ i f and only i f the initial condition

on w has truth value T with respect to D and ~, or in symbols,

9.[**[3, ~] ~- w.r I(w)[D, ~] = T.

Proof. We prove by induction the more general result that for any x e X and

w e tl ~ (x) t t ,
V(9~, n , t:, x) = w ~ I (w) [D , ~] = T.

Case (i): x = r Here, aga(r) ~- 1 so that I1 ~(r = 3-~. Now, for w �9 Yg~,
I(w)[D, ~] ~- T.c:> w = ~-91[D, ~] by the definition of ~ I [D , ~]. As well,

V(9~, D, s r r = ~-e[D, ~:]

by the definition of V. Hence, V(9.I, D, ~:, r = w <:~I(w)[D, ~] -= T, for w �9 11 a~(r

Case (ii): Ix] �9 ~r Here, a~(x) = [x] a~(Fx), so that w e H a~(x)]l is of the form
A[x]u, where A �9 J'~l and u �9 I[~(/'x)ll. The induction hypothesis here is that

V(~I, D, [x][D, ~], I x) = uez . I (u)[D, [x][D, ~]] = T.

Let us write w �9 H a~(x)[I in the form A f B g . " hC, w h e r e f = [x], A, B,..., C e ~7" and
g h �9 o~-a. Then,

i (w) [o , ~] = T

~:~- I (A f B g ... hC)[D, ~] = T

. ~ A ' [D , ~1 = B'[D,f[D, ~]1

= g ... h --~ C ' [D , I [D , ~]] = T

<=> A -= o~-g[D, ~] and I (u) [D , f [D , ~]] = T

def n w

def n w,

def n ', Lemma 3

def" ~ [D , ~],

def n I

376 KAPLAN

~> A --- J-~[D, ~] and V(93, D, [x] [D , ~:1, I'x) = u

-~> V(93, D, s e, x) = o#-~[D, se][x] V(93, D, ~, I x) and

A = , ~ t [n , ~:1 and V(93, D, [x][D, sr Fx) = u

<=> V(93, D, ~, x) = w

ind. hyp.

def" V

def" w, def ~ :=

Case (iii): [x] �9 .~. Here , if Fx ~= (y , z) , then ~ (x) = [x] ~gJ(Y) v ,~[x] nga(z),

so that w �9 II ~,~(x)ll is ei ther of the form Au, where A e II[x]li and A u ~ l: ~'~(y) I, or of
the form By , where B E !I ~[x][I and B y ~ II ~x(z)ll. T h e induc t ion hypothesis here is
that

i f w = Au then V(93, D, ~, y) =. Au ~ I (Au)[D, ~] = T

else i f w = B v then V(93, D, ~, z) = B v <~ I (Bv)[D, ~] = T.

Then , us ing the fact that the defini t ions of A and B give A'[D, ~] = T ~ [x][D, ~] == T
and B'[D, ~] = T ~ [x][D, ~] == F , we have

l (w)[D, ~1 = T

<:> i f w ~- A u then I (Au)[D, ~] = T

else i f w = B y then I (Bv)[D, ~] = T

<~ i f w = A u then A ' [D, ~] = T and I(Au)[D, s e] = T

else i f w = B y then B'[D, ~] = T and I(Bv)[D, ~:] :-= T

i f w = A u then [x][D, ~] = T and V(gJ, D, ~, y) = A u

else i f w = B y then Ix] [D, ~:] = F and V(93, D, ~, z) - B y

.*~ i f w = A u then

and

else i f w = B v then

and

<*- i f w = A u then

else i f w = B y then

. ~ (9I,

def n w

def ~ I

def" A , B,

ind. hyp.

V(9.I, D, ~:, x) = V(93, D, ~, y)

V(gJ, D, ~, y) = A u

v(gJ, D, ~, x) = V(93, D, ~, z)

V(93, D, ~, z) := By def ~ V

(93, D, ~, x) = A u

(93, D, ~, x) = By def ~ =

D, ~:, x) = w def ~ =

Th i s comple tes the induct ion.
I f we take x = $, then we have for w ~ [1 a~($)]',, V(9.I, D, ~, $) = w .*> I(w)[D, ~] = T.

Since o~a($) = ~ and 93"*[D, ~ = V(93, D, r $), we have therefore that for

w e [I ~ II,
93"*[D, ~:] = w.cz.I(w)[D, ~1 = T. II

REGULAR EXPRESSIONS AND THE EQUIVALENCE OF PROGRAMS 377

The second strong equivalence-detecting procedure is then based on the following

THEOm~M 4. For any two elemental programs ~ and ~ with K-expression repre-
sentations a~ and a~formed over the alphabet ~ u ~ u "~3 td ~ , i f as~ is K-equiva-
lent to a~3 , then ~ is strongly equivalent to f13, or in symbols,]l ~9I [l = [[a~3 I] => ~ ~ ~ .

Lemmas 5, 6, and 7 can be used to prove this result in precisely the same manner
as Lemmas 1, 2 and 4 were used to prove Theorem 2.

As a preliminary to obtaining the decidability of K-equivalence, let us first extend
the theory oq" R by adding seven new axiom schemata to form the theory ~ ' x . Here p
and q are any propositions.

CI: pp = p C5: (p D q) = f v q

C2: p f = 0 C6: ,.~(p D q) = pq

C3: pq = qp C7: ~ , ~ p = p

C4: p v f i = l

Of course, axiom schemata S1 S l l and rules R1, R2 and R3 now refer to K-wffs.
Furthermore the side condition on R3 is changed from A r J/3] to J " ~ [[/3 II; this
latter side condition is also decidable. Just in case a K-wff o~ : / 3 is finitely derivable
in J ' x , we write v-- x a : 3"

When later (Theorem 6) we prove the adequacy of ~ ' x , we depend heavily upon
the notion of normal forms for K-expressions. A K-expression/3 is a normal form of
the K-expression a if and only if

(i) II a II = II/3 II

(ii)/3 is a regular expression over ~" t.) J "

(iii) II/3 II = I /3 1, where the regular event 1131 is evaluated considering/3 as a
regular expression over ~ - L9 J ' .

We will write N(a) for a normal form of a.
For example, referring to the elemental program ~ in Fig. 1, we can give a normal

form for its K-expression representation

ar = f (, ~ (p D r) g(,..~pg)* ,~ ,../p)*(p D r)g

as

N(ar = (p r v p f v fir v f ~) f (p r v f r v f f v (pfgCfrg v f~g)*)*pr)

g(pr v pg v fir v f f) .

Illustrated in Fig. 5 is the state transition diagram for a nondeterministic finite
automaton whose behavior is] N(ar where N(a~) is considered to be a regular
expression over {f, g} • {pr, pf, pr, f f } .

378 KAPLAN

Fro. 5.
is I X(c~) I.

p~

pr

p r ~ g

T h e state-transition diagram for a nondeterministic finite automaton whose behaviour

Before proceeding, let us consider one or two notational matters. If A is a set of
K-expressions, then vA will denote the disjunction formed with " v " of the elements
in A; if A is the empty set, then vA is just 0. If A is a set of K-expressions each of the
formp orpzq for somep, q s J ' , then the K-expression vA is said to be standard. If vA
and vB are standard, then by vA @ vB we mean v {xpy : xp ~ A & py ~ B & p ~ J '} .
Evidently, we have

LEMMA 8. For any standard K-expressions ~ and [3, ~--x ~[3 = o~ @ [3.

Let us now give the main result concerning normal forms for K-expressions.

THEOREM 5. For any K-expression o~, there exists a normal form N(~) such that
~ K ~ - N (~) .

Proof. We give a proof by induction on the structure of n. First we show
~'K ~ = N(~), where ~ is non-iterative, i.e., contains no "*". Then, with the induction
hypothesis that w--/~ [3 = N([3), we show ~-'-K[3* = N([3*).

REGULAR EXPRESSIONS AND THE EQUIVALENCE OF PROGRAMS 379

For ~ non- i tera t ive , evident ly we can take N(c~) to be v 11 c~ 1!; this is s t ra ight forward
to verify. Not ice that v I! ~ I! is a s t anda rd K-express ion .

Cons ider now finding a normal fo rm of {3", where w--K{ 3 = N({3) by induct ion
hypothesis . As an addi t ional induc t ion hypothesis , we assume N({3) to be s tandard ,
say of the fo rm (a 0 v a I v ... v am-0 , where m < co. Thus , it sufficies to find a

normal form for (a o v a I v " " v a r a _ l) * , i.e., for N({3)*, since now ~--xfl* = N({3)*.
Since W--x(a v{3)* = ~*({31*) *, we therefore have w--KN({3)* = 0001 ""0m--l,

where 0 o is ao* and 0n is (a, flo01 ..- 0n_l)* , for 0 < n -< m. F o r example ,

(a v b v c v d)* = a*(ba*)* (ca*(ba*)*)* (da*(ba*)* (ca*(ba*)*)*)*.

Here, m :-= 4, 0 o is a*, 01 is (ba*)*, 02 is (ca*(ba*)*)*, and 0a is

(da*(ba*)*(ca*(ba*)*)*)*.

Thus , it suffices to find a normal form for 0001... 0,,-1, since now ~---x{3* = 0001"'" 0,,-1 �9
Our a im now is to show ~---x Oi - N(Oi), for all i < m. Th i s we do by induct ion.

Since 0 o is a0* , where a 0 is of the fo rm p or pzq for some p, q c 3 - , the appropr ia te
instance of

(s v sxs v syt)* = v Y v sx(sx)*s v s (y v x(sx)* sy)t, (**)

where s, t ~ ~ - and are distinct, gives tha t ~--x Oo -= N(Oo)" Moreover , the normal fo rm
N(Oo) ob ta ined f rom (**) is s tandard . N o w assume ~---K 0~ = N(Oi) , for all i < n < m,
and that the N(8i) are all s tandard . Recall that 0, is (anOoO 1 ".. 0n_l)*. T h e induct ion
hypothes is then gives w--x0,, = (anN(Oo) N(O 0 "" g (O n _ x)) * , and L e m m a 8 gives
I-----KO n = : (a n @ N (0 o) @ N(01) (~) . . . @ N (O n _ l)) * , since an and 0~, i < n, are all
s tandard . Since an is of the form pzq for some p, q ~ J - , all of the dis juncts in
a, Q N(Oo) @ N(01) @ "" (~) N(O~_I) have p ~ 3 - as thei r lef tmost word of t ruth.
Therefore , a s t ra ight forward genera l iza t ion of (**) can be appl ied to give
e--- x 0 n = N(On). Notice that this N(O,~) will be s tandard . Th i s completes the induct ion
and so ~--x 0i ~ N(Oi), for all i < m. Thus , it suffices to find a normal form for

N(Oo) N(O1) "'" N(0m_l), since now w-- x {3* := N(Oo) N(Oz). ." N(Om_l).
But, of course, e - x N(Oo) N(0x) "'" N(0, ,_I) = N(Oo) (~ N(O~) (~) ... (~ N(O,n_a) by

L e m m a 8, and this lat ter K-express ion will evident ly serve as the requi red s tandard
normal form N(fl*). Thus , ~---x{3* ---- N({3*), and this comple tes the induct ion. II

Now for the main result concerning the theory 3 - x .

THEOREM 6. The theory oq'~c is both sound and adequate, or in symbols,

~--x~ = {3 <-> ~ K ~ = {3for any K - w f f ~ = {3.

Proof. Soundness , i.e., w- x ~ = {3 :> ~-x ~ -~ {3 is easily verif ied by showing that
each axiom schema in J-x- gives rise to K-va l id K-wffs, and tha t each rule preserves

K-va l id i ty .

380 KAPLAN

To obtain adequacy, note that

~ = / 3 ~ I1~11 = 11/311

I1N(~)II = II N(/3)II

=> [N(~)I = I N(/3)[

de fn

def n N()

def ~ N()

Theorem 3

Theorem 5,

where the normal forms N(~) and N(fl) are those generated by the construction used
to prove Theorem 5. Note that N(~) and N(/3) are considered to be regular expressions
over ~ ' u 9 - when evaluating [N(~)I and IN(/3)[. Therefore, the derivation
~-K N(eQ = N(/3) will only use those instances of the axiom schemata and rules of J 'K
that are likewise constituted.

In the proofs of Theorems 5 and 6, we have shown how to construct a derivation
in J'K of any K-valid K-wff. Thus, the theory 3r'K itself can serve as the basis for a
K-equivalence decision procedure.

The second strong equivalence-detecting procedure can now be specified:

Procedure K : given elemental programs 9.I and ~B

(i) construct ~ and ~ (effective)
(ii) test for I[~a H = II a~ II using o~" x (effective)

(iii) i f II ~ II = II ~ tL, return YES, otherwise MAYBE.

?
1

T T F

(-

] Y :~g<Y) I

FIG. 6. Yet another elemental p rogram strongly equivalent to that in Fig. 1.

REGULAR EXPRESSIONS AND THE EQUIVALENCE OF PROGRAMS 381

To consider an example, notice that Procedure K detects that the elemental program
in Fig. 4 is strongly equivalent to that in Fig. 1. To see the limitations of Procedure K, .
notice that the elemental program in Fig. 6 is also equivalent to that in Fig. l, but
that Procedure K fails to detect this fact. We now turn our attention to developing a
third and somewhat more powerful procedure, which will be successful in this latter
case as well.

SHIFT K-EVENTS

As we have seen, Procedure K depends upon a test for equality of K-events.
Justification for making this test is Theorem 4, and the proof of this Theorem (which
has precisely the same form as the proof of Theorem 2) depends essentially on the
fact that if ~ [D , r is determinate, then 92"*[D, {:] ~ II ~ i II (which is just the statement
of Lemma 5). For two elemental programs ~[and ~ , if t[~ t[~ [[~3 II then Proce-
dure K returns MAYBE. But suppose we could throw away certain words and so define
the subsets A _C][~ t [[and B _C]l c~ [1 such that Lemma 5 still held, i.e., such that if
9.I[D, ~:] were determinate, then 9.I**[D, ~r ~ A, and similarly for ~ and B. Then, if
A ~ B, we would have ~[~ ~3 by Theorem 4 once again. Thus, we can strengthen
the ability of Procedure K to detect strong equivalence if we can find a way to cast
out of the K-events associated with elemental programs words that can never be
associated with halting executions of those programs.

We will call such whittled down K-events shift K-events. The word shift serves to
emphasize the connection between shift K-events and the work of Ianov [4] and
Rutledge [14].

Suppose we are considering K-expressions defined over the alphabets ~" = {f ,g, . . , h}
of operators and ~ = {p, q r} of propositional atoms. Then, a shift distribution
is defined to be any mapping 6 a : ~" --~ II v.~-[[, such that for any x ~ ~ ' , S~(x) C II x II.
(Intuitively speaking, ~9~ delimits the possibilities for the truth-values of the
propositional atoms before and after execution of the operator x.) The shift K-event
[[y [[y associated with the K-expression y is computed using

[I ~" J[~ = i f ~ ~ ~ then I[Y []

else i f y ~ ~ then Se(y)

else i f y = ~ v fl then [[o~ lisp tA [1 fl IIs~

else i f v = ~* then II 111~ u II ~' IIs~ u II ~ I1~ u II ~ Ils~ w . . .

else i f ~, = ~ then {aCb : a C ~ II ~ II~ & Cb ~ II # II~ & C ~ 3"}

Notice that [I Y [rse is just [[y [[with all those words cast out that are not permitted by
the shift distribution ~9 ~

382 KAPLAN

For example, consider the elemental program ~ in Fig. 1. As mentioned earlier,
using abbreviations, we can take

~e = f (r . . (p D r)g(~-.~pg)* .-~ ,~p)*(p D r)g.

Notice that since the assigned variable in the assignment statement f does not occur
in the qff r, execution o f f cannot change the truth-value of r. Thus, no execution of
can give rise to the word ~rfpfgprgpf EII ~ I ' which shows r going from T to F on
executing f. If, however, we exclude firfpr from S~(f), then the unwanted word
~rfpfgprgpr will not appear in the shift K-event II ~ i l~ ,

Any shift distribution that preserves Lemma 5 is said to be consistent. That is, with
respect to an elemental program ~ = (X, F, .o~) with K-expression representation
a~t, a shift distribution 6~ is consistent if and only if for any computing structure D
and state s r : r --~ Do, if ~[D, s e] is determinate then ~[**[D, s r ~ II ~,~ :1,~. We return
later to the problem of specifying consistent shift distributions for elemental programs.

DETECTION OF STRONG EQUIVALENCE: PROCEDURE S

For any K-wff a = fl and shift distribution 6 a, just in case II ~ II~ = [I fl I1~, we
say that a is ,~-K-equivalent to fl and write !=K.y' a = fl to indicate that the K-wff

= / 3 is therefore 5a-K-valid.
The third procedure for detecting strong equivalence is based on the fact that if

the K-expression representations of two elemental programs are 5P-K-equivalent for
some consistent shift distribution SP, then the programs are strongly equivalent. In
fact, because ,~ being consistent preserves Lemma 5, we can state without proof the
following

THEOREM 7. For any two elemental programs 9.I and ~ with K-expression representa-
tions a~ and a~ formed over the alphabet ~'~t u ~ u o ~ u ~ , i f ,9 ~ is a shift distribu-
tion consistent with respect to both ~[and ~ , and if ~ is SP-K-equivalent to a~ , then 9.1
is strongly equivalent to ~ , or in symbols, 1: a~t I1~ = II ~ Ilu" :> ~I _~ ~ .

As a preliminary to obtaining the decidability of 5a-K-equivalence, let us first
extend the theory 3 - r by adding a new axiom schema C8 to form the theory 3-r, se

C8: x -- v,9~(x), where x ~ ~ ' .

Just incase a K-wff a ---- fl is finitely derivable in ~'~c.s~, we write ~--K.~' o~ ~= ft.

THEOREM 8. For any shift distribution cj, the theory ~'x..~ is both sound and adequate,

or in symbols, ~-K,~ e~ ~- fl .:~ ~ K,~ ~ = fl for any K-wf f ~ = ft.

REGULAR EXPRESSIONS AND THE EQUIVALENCE OF PROGRAMS 383

Proof. We only sketch a proof here. Soundness, i.e., w--K. ~ ~ ----- fl :> ~K.s: ~ = fl,
is easily verified by showing that each axiom schema in oq'g.so gives rise to D~
K-wffs, and that each rule preserves 5,~

To obtain adequacy, we proceed precisely as in Lemma 8 and Theorem 5, except
that now the normal form N(x) of an operator x ~ ~ is taken to be vS:(x) (instead of
v [[x [[as in the proof of Theorem 5). Notice that C8 gives ~ - r . ~ x = N(x) as required.

We may then proceed as in Theorem 6 to ultimately show

~ K . : ~ = fi ~ ~ , s ~ ~ = ft. I

In the proof of Theorem 8, we have indicated how to construct a derivation in 3"K.s~
of any s K-wff. Thus, the theory J-K.s~ itself can serve as the basis for a
5:-K-equivalence decision procedure.

The third strong equivalence-detecting procedure can now be specified:

Procedure S: given elemental programs 9.I and

(i) construct ~9~ and ~ (effective)
(ii) define a consistent shift distribution ~,~

(iii) test for l] ~]Is: = [1 c~3]Is: using YlC.S~ (effective)
(iv) i f l] c~st IIs~ = II ~ llso, return YES, otherwise MAYBE.

To consider an example, let us return to the problem of detecting that the elemental
programs in Figs. 1 and 6 are strongly equivalent; recall that Procedure K fails to
detect this fact. Using the abbreviations mentioned earlier, we have o~- = {f, g} and

= {p, r} so that 3 r =- {pr, pf, pr, fig}. The, let us define 5 : : ~" -* H vo~ II so that

6:(f) = {prfpr, prfffr, pgfpf, pgfffg,
ffrf~r, ffrfpr, ~fffff, 1fiffpf }

~"(g) = {prgpr, prgp?, pfgpf, pfgpr,

prgpr, ffrg~?, pfg~?, fffg~r}

Since 6 : is defined simply to reflect the fact that execut ingf can affect the truth-value
ofp but not r, and that executingg can effect the truth-value o f r but notp, therefore
is certainly consistent. Furthermore, with this shift distribution, Procedure S success-
fully detects that the elemental programs in Figs. 1 and 6 are strongly equivalent.

CONSISTENT SHIFT DISTRIBUTIONS

In the example considered above, we constructed a consistent shift distribution by
considering whether or not execution of the assignment statements involved could
affect the truth-value of certain qffs. There are at least two other effects that can be

57~/3/4-4

384 KAPLAN

looked for. First, we can reflect in a consistent shift distribution the fact that, for
example, the qffs p(f (v)) and p(u) have the same truth-value after execution of the
assignment statement u : = f (v) . Second, we can reflect the fact that the truth-values
of all qffs remain unchanged upon execution of, for example, the assignment statement

Let us now combine all of these into a single procedure for defining a consistent
shift distribution for one or more elemental programs. Suppose we have defined a set
~ - of operators (i.e., assignment statements) and a set ~ of propositional atoms
(i.e., qffs of the form r(a r)). The set J - , or truth, is built up from ~ in the usual
way.

We may then define a shift distribution S ,~ as follows: for each x e.~-,
~ (x) = {sxt : s, t ~ ~ - & (s'(x --, t'))' is not a logical contradiction}. That ~ defined
this way is consistent is obvious once we notice that (s '(x--~ t ')) ' is just the initial
condition, I(sxt) , for the word sxt. Referring to the statement of Lemma 7, we see
that if the initial condition of sxt is a logical contradiction, i.e., if l (sxt)[D, ~] --~ F,
for all computing structures D and states ~ : oJ ~ D O , then there exists no elemental
program with an execution of which we can associate the word sxt. Thus, all such
words may safely be omitted when constructing the shift distribution, i.e., 6 p as
defined above is consistent.

Furthermore, we see that this 6 a is the maximal consistent shift distribution,
i.e., there are no more words of the form sxt that can be cast out and still leave 6P
consistent. This is clear since if l (sx t) is not a logical contradiction, then for some D
and ~,we can in fact associate the word sxt with the execution of an elemental program;
this again by Lemma 7.

The mechanism of consistent shift distributions was devised to permit a casting
out from a K-event II ~ II those words that cannot be associated with executions of
the elemental program 9~. Other devices, tricks and heuristics may, of course, be
employed in this endeavor. In fact, the more powerful our ability to cast out such
words, the more powerful is our ability to detect strong equivalence.

I t may be mere whimsy to point out that a maximal consistent shift distribution,
defined as above, but of the form

~ : U ~'~-~ U II v~ll",

where ~-" = ~- X ~- , -1 and II v~-II" = II v ~ - II | II v~'l] "-1, is in fact, adequate to
the task of casting out all the unwanted words from a K-event. Here, of course, if
x = (f , g h), where f , g,... h 6 ~ ' , then

~ (x) _c Ilfll | lie II | "'" | II h If,

and since 6 a is maximal consistent, S~(x) will contain only those words pfqg ... hr,
wherep, q,..., r ~ J ' , that can be associated with the execution of an elemental program.

RE.GULAR EXPRESSIONS AND THE EQUIVALENCE OF PROGRAMS 385

Just how such a shift distribution would be used to perform the casting out of
unwanted words is not yet understood.

A DECIDABLE SUBCASE

To point up the relation between the approach developed here and the work of
Ianov [4] and Rutledge [14], let us consider a special subclass of elemental programs.
An elemental program 9./is said to be abstract if and only if

(i) there are no constants occurring in 9~ and only one variable, v say,

(ii) no function letters occur in any qff of 9.1,

(iii) assignment statements of ~ are restricted to be of the form v : = f(v,.. . , v),
where f is any function letter.

An example of an abstract elemental program is illustrated in Fig. 7.

0

i ~ (v) ~ r(v, v)

v :=h(.....) I [v :=g(v) I

FIc,. 7. An example of an abstract elemental program.

THEOREM 9. For any two abstract elemental programs ~ and ~ with K-expression
representations ~ and c~ formed over the alphabet d,~ ~9 # ~ w ~ u 9~3 , just in
case %1 is K-equivalent to eta, then ~]I is strongly equivalent to ~3, or in symbols,

Thus, strong equivalence is decidable for abstract elemental programs, since in
this case strong equivalence is identical to K-equivalence, which we already know to

386 KAPLAN

be decidable. Essentially, what we have done is to restrict the structure of abstract
elemental programs so that all words in the K-event associated with such a program

can be associated with some execution thereof. A detailed proof of this result is given
in [6, Theorem 35].

Evidently, the class of abstract elemental programs contains the logical schemata
of Ianov. We have, as required, the conditions that only syntactically identical

sequences of operators are equivalent, and that each operator may affect the truth-

value of each propositional atom. We say "contains," because here we have lifted the
rather arbitrary restriction placed by Ianov that no operator may appear more than
once in a logical scheme.

ACICNOWLEDGMENT

I am grateful to Z. Manna for his critical reading of the manuscript and subsequent helpful
suggestions.

REFERENCES

1. E. ENGELER. Algorithmic properties of structures. Math. Systems Theory 1,183-195 (1967).
2. A. P. Easnov. Operator algorithms I. Problems of Cybernetics 3, 697-763 (1962).
3. M. S. HARmSON. "Introduction to Switching and Automata Theory." McGraw-Hill, New

York, 1965.
4. I. I~ov . The logical schemes of algorithms. Problems of Cybernetics 1, 82-140 (1960).
5. T. ITO. Notes on theory of computation. Memo No. 61, Stanford Artificial Intelligence

Project, Stanford University, May 1968.
6. D. M. KAPLAN. The formal theoretic analysis of strong equivalence for elemental programs.

Thesis (Technical Report No. CS101), Stanford University, June 1968.
7. S. C. KLEENE. Representation of events in nerve nets and finite automata. In (Shannon,

C. E., and McCarthy, J., eds.), "Automata Studies." Princeton University Press, Princeton,
1956.

8. D. LUCKHAM AND D. PAaK. The undecidability of the equivalence problem for program
schemata. Report No. 1141, Bolt, Beranek, and Newman, Inc., 1964.

9. J. McCARTHY. A basis for a mathematical theory of computation. In (Braffort, P., and
Hirschberg, D., eds.), "Computer Programming and Formal Systems." North-Holland
Publ. Co, Amsterdam, 1963.

10. Z. MANNA. Termination of algorithms. Thesis, Carnegie-Mellon University, 1968.
11. R. NARASIMHAN. Programming languages and computers: a unified recta-theory.

Advances in Computers 8, 189-224 (1967).
12. M. S. PATERSON. Equivalence problems in a model of computation. Thesis, University of

Cambridge, 1967.
13. M. O. RARIl~r AND D. SCOTT. Finite automata and their decision problems. 1BM J. Res.

Develop. 3 (1959),
14. J. D. RUTLEDGE. On Ianov's program schemata. J. A C M 11, 1-9 (1964).
15. A. SALOMAA. Two complete axiom systems for the algebra of regular events. J. A C M

13, 158-169 (1966).

