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Abstract

The self-affine measure �Mp,D corresponding to

Mp =
[

2 p

0 2

]
(p ∈ Z) and D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
is supported on the the generalized plane Sierpinski gasket T (Mp, D). In the present paper we show that
there exist at most 3 mutually orthogonal exponential functions in L2(�Mp,D), and the number 3 is the best.
This generalizes several known results on the non-spectral self-affine measure problem.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let M ∈ Mn(Z) be an expanding integer matrix, that is, all the eigenvalues of the integer matrix
M have moduli > 1. Associated with a finite subset D ⊂ Zn, there exists a unique non-empty
compact set T := T (M, D) such that MT = ⋃

d∈D(T + d). More precisely, T (M, D) is the
attractor (or invariant set) of the iterated function system (IFS) {�d(x) = M−1(x + d)}d∈D .
Let |D| be the cardinality of D. Relating to the IFS {�d}d∈D , there exists a unique probability
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measure � := �M,D satisfying the self-affine identity

� = 1

|D|
∑
d∈D

� ◦ �−1
d . (1.1)

Such a measure �M,D is supported on T (M, D) (cf. [6]), and is called a self-affine measure.
For a probability measure � of compact support on Rn, we call � a spectral measure if there

exists a discrete set � ⊂ Rn such that E� := {e2�i〈�,x〉 : � ∈ �} forms an orthogonal basis
for L2(�). The set � is then called a spectrum for �; we also say that (�, �) is a spectral pair.
Spectral measure is a natural generalization of spectral set introduced by Fuglede [4] whose famous
conjecture and its related problems have received much attention in recent years (see [16,17]).
The spectral self-affine measure problem at the present day consists in determining conditions
under which �M,D is a spectral measure, and has been studied in the papers [1,2,13,15,17,19–21]
(see also [22,23] for the main goal). The non-spectral self-affine measure problem originated from
the Lebesgue measure case (see papers [4,5,7–11,14,18] where the conjecture that the disk has no
more than three orthogonal exponentials is still unsolved) usually consists of the following two
classes:

(I) There are at most a finite number of orthogonal exponentials in L2(�M,D), that is,
�M,D-orthogonal exponentials contains at most finite elements. The main questions here are
to estimate the number of orthogonal exponentials in L2(�M,D) and to find them (see [3]).

(II) There are natural infinite families of orthogonal exponentials, but none of them forms an
orthogonal basis in L2(�M,D). The questions concerning this class can be found in [12].

In the present paper we will consider the questions of the class (I) for the generalized plane
Sierpinski gasket. We recall the following related conclusions.

(i) The familiar middle 3rd Cantor set T (M, D) corresponding to M = 3 and D = {0, 2},
Jorgensen and Pedersen [13, Theorem 6.1] proved that any set of �M,D-orthogonal expo-
nentials contains at most 2 elements.

(ii) The plane Sierpinski gasket T (M, D) corresponding to

M =
[

2 0
0 2

]
and D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
. (1.2)

Li [17, p. 65; 20, Example 1], Dutkay and Jorgensen [3, Theorem 5.1(ii)] proved that �M,D-
orthogonal exponentials contains at most 3 elements and found such 3 elements orthogonal
exponentials.

(iii) The generalized plane Sierpinski gasket T (M, D) corresponding to

M =
[

2 1
0 2

]
and D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
, (1.3)

see Figure 3 and Example 3.1 in [3], by applying [3, Theorem 3.1], Dutkay and Jorgensen
obtain that �M,D-orthogonal exponentials contains at most 7 elements.

The main result of the present paper is the following.

Theorem. For the self-affine measure �Mp,D corresponding to

Mp =
[

2 p

0 2

]
(p ∈ Z) and D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
, (1.4)
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there exist at most 3 mutually orthogonal exponential functions in L2(�Mp,D), and the number 3
is the best.

This generalizes the above mentioned results on the non-spectral self-affine measure problem.

2. Proof of Theorem

For the general expanding matrix M ∈ Mn(Z) and finite subset D ⊂ Zn, the Fourier transform
of the self-affine measure �M,D is

�̂M,D(�) =
∫

e2�i〈�,t〉d�M,D(t) (� ∈ Rn).

From (1.1), we have

�̂M,D(�) = mD(M∗−1�)�̂M,D(M∗−1�) (� ∈ Rn), (2.1)

which yields

�̂M,D(�) =
∞∏

j=1

mD(M∗−j�), (2.2)

by iteration, where

mD(t) := 1

|D|
∑
d∈D

e2�i〈d,t〉 (2.3)

and M∗ denotes the conjugate transpose of M , in fact M∗ = Mt .
For any �1, �2 ∈ Rn, �1 	= �2, the orthogonality condition

〈e2�i〈�1,x〉, e2�i〈�2,x〉〉L2(�M,D) =
∫

e2�i〈�1−�2,x〉 d�M,D = �̂M,D(�1 − �2) = 0 (2.4)

directly relates to the zero set Z(�̂M,D) of �̂M,D . From (2.2), we have

Z(�̂M,D) = {� ∈ Rn : ∃j ∈ N such that mD(M∗−j�) = 0}. (2.5)

This set has a simple property that �0 ∈ Z(�̂M,D) ⇔ −�0 ∈ Z(�̂M,D).
In the following, we will restrict our discussion on the special M and D given by (1.4),

and find out some characteristic properties on the set Z(�̂M,D) to finish the proof of Theorem.
For the given Mp and D in (1.4), we first have

mD(M
∗−j
p �) = 1

3

{
1 + e

2�i
�1
2j + e

2�i
2�2−jp�1

2j+1

}
, (2.6)

where � = (�1, �2)
t ∈ R2. Relating to the zero set of the function mD , it is known that if

1 +w1 +w2 = 0 and |w1| = |w2| = 1, then {w1, w2} = {e2�i/3, e4�i/3}. So it follows from (2.5)
and (2.6) that

Z(�̂Mp,D) =
∞⋃

j=1

(Zj ∪ Z̃j ), (2.7)
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where

Zj =
{(

2j /3
2j−1(1 + jp)/3

)
+

(
2j k1

2j−1(1 + 2k2 + jpk1)

)
: k1, k2 ∈ Z

}
⊂ R2 (2.8)

and

Z̃j =
{(

2j+1/3
2j (1 + jp)/3

)
+

(
2j k̃1

2j−1(2k̃2 + jpk̃1)

)
: k̃1, k̃2 ∈ Z

}
⊂ R2. (2.9)

Secondly, from (2.8) and (2.9), one can verify that

Zj+3 ⊆ Z̃j and Z̃j+3 ⊆ Zj (2.10)

hold for all j = 1, 2, . . . . Hence we further obtain from (2.7) that

Z(�̂Mp,D) = Z1 ∪ Z2 ∪ Z3 ∪ Z̃1 ∪ Z̃2 ∪ Z̃3. (2.11)

We divide our discussion into the following two subsections.

2.1. The case p = 3l(l ∈ Z)

In the case when p = 3l (l ∈ Z), we can verify that

Z2 ⊆ Z̃1, Z̃2 ⊆ Z1, Z3 ⊆ Z1, Z̃3 ⊆ Z̃1. (2.12)

Hence it follows from (2.11) that

Z(�̂Mp,D) = Z1 ∪ Z̃1 (2.13)

with the properties that

(a) (a, b)t ∈ Z1 ⇔ (−a, −b)t ∈ Z̃1, that is, Z1 = −Z̃1 or Z̃1 = −Z1;
(b) Z1 − Z1 ⊆ Z2 and Z̃1 − Z̃1 ⊆ Z2;
(c) Z1 ∩ Z̃1 = ∅ and (Z1 ∪ Z̃1) ∩ Z2 = ∅.

If �j (j = 1, 2, 3, 4) ∈ R2 are such that the exponential functions

e2�i〈�1,x〉, e2�i〈�2,x〉, e2�i〈�3,x〉, e2�i〈�4,x〉

are mutually orthogonal in L2(�Mp,D), then the differences �j − �k (1�j 	= k�4) are in
Z(�̂Mp,D). From (2.13), we have

�j − �k ∈ Z1 ∪ Z̃1 (1�j 	= k�4). (2.14)

In particular, the following three differences:

�1 − �2, �1 − �3, �1 − �4 (2.15)

are in Z1 ∪ Z̃1. The well-known pigeon hole principle, combined with the properties (a)–(c) and
(2.14), immediately deduces a contradiction, since any two of three differences in (2.15) cannot
belong to the same set Z1 or Z̃1. For example, if �1 − �2 ∈ Z1 and �1 − �4 ∈ Z1, then, by the
property (b),

�4 − �2 = (�1 − �2) − (�1 − �4) ∈ Z1 − Z1 ⊆ Z2
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which contradicts (2.14) and the property (c). Hence any set of �M,D-orthogonal exponentials
contains at most 3 elements. One can obtain many such orthogonal systems which contain 3
elements, for instance, ES with S given by

S =
{(

0
0

)
,

(
2/3

1/3 + l + 1

)
,

(
4/3

2/3 + 2l

)}
(2.16)

is a three elements orthogonal system in L2(�Mp,D). This shows that the number 3 is the best.

2.2. The case p = 3l + 1 or p = 3l + 2 (l ∈ Z)

In the case when p = 3l + 1 or p = 3l + 2 (l ∈ Z), we can further verify that the sets
Z1, Z2, Z3, Z̃1, Z̃2, Z̃3 in (2.11) have the following properties:

(a) Z1, Z2, Z3, Z̃1, Z̃2, Z̃3 are mutually disjoint;
(b)

⋃3
j=1(Zj

⋃
Z̃j )

⋂
Z2 = ∅;

(c) Zj − Zj ⊆ Z2 and Z̃j − Z̃j ⊆ Z2 (j = 1, 2, 3);
(d) Zj + Zj ⊆ Z̃j and Z̃j + Z̃j ⊆ Zj (j = 1, 2, 3);
(e) Zj = −Z̃j and Z̃j = −Zj (j = 1, 2, 3).

If �j (j = 1, 2, 3, 4) ∈ R2 are such that the exponential functions

e2�i〈�1,x〉, e2�i〈�2,x〉, e2�i〈�3,x〉, e2�i〈�4,x〉

are mutually orthogonal in L2(�Mp,D), then the differences �j − �k (1�j 	= k�4) are in
Z(�̂Mp,D). From (2.11), we have

�j − �k ∈ Z1 ∪ Z2 ∪ Z3 ∪ Z̃1 ∪ Z̃2 ∪ Z̃3 (1�j 	= k�4). (2.17)

We will use the above properties (a)–(e) to deduce a contradiction.
Observe that the following six differences:

�1 − �2, �1 − �3, �1 − �4,

�2 − �3, �2 − �4,

�3 − �4

(2.18)

belong to the six sets Z1, Z2, Z3, Z̃1, Z̃2, Z̃3. By the properties (a)–(c) and (2.17), the elements
(or differences) in each row of (2.18) (except the final row where there is only one element �3−�4)
and the elements (or differences) in each column of (2.18) (except the first column where there
is only one element �1 − �2) cannot belong to the same set. In particular, the following three
elements:

�1 − �2, �1 − �3, �1 − �4

in the first row will be in the three different sets of the six sets Z1, Z2, Z3, Z̃1, Z̃2, Z̃3. There are
120 distribution methods. We only consider the following three typical cases:

Case 1: �1 − �2 ∈ Z1, �1 − �3 ∈ Z2, �1 − �4 ∈ Z3.
Case 2: �1 − �2 ∈ Z2, �1 − �3 ∈ Z3, �1 − �4 ∈ Z̃1.
Case 3: �1 − �2 ∈ Z2, �1 − �3 ∈ Z3, �1 − �4 ∈ Z̃3.
The other cases (by applying the property (e)) can be proved in the same manner.
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Case 1: By the property (e), we see that in this case, each set contains elements (or differences)
in the following box.

Z1 Z2 Z3 Z̃1 Z̃2 Z̃3
�1 − �2 �1 − �3 �1 − �4

�2 − �1 �3 − �1 �4 − �1

The other elements in (2.18) are also in certain boxes. Firstly, we have the following fact that

�2 − �3 cannot belong to the sets (or boxes) Z1, Z2, Z̃1, Z̃2. (2.19)

The reason is as follows. (i) If �2 − �3 ∈ Z1, then, by the property (d),

�1 − �3 = (�1 − �2) + (�2 − �3) ∈ Z1 + Z1 ⊆ Z̃1, (2.20)

which contradicts the property (a) and �1 − �3 ∈ Z2. The same reason shows that �2 − �3 	∈ Z̃2.
(ii) If �2 − �3 ∈ Z2, then, by the property (c),

�1 − �2 = (�1 − �3) − (�2 − �3) ∈ Z2 − Z2 ⊆ Z2 (2.21)

which contradicts the property (b) and �1 − �2 ∈ Z1. The same reason shows that �2 − �3 	∈ Z̃1.
Similarly, we have the following facts that

�2 − �4 cannot belong to the sets (or boxes) Z1, Z3, Z̃1, Z̃3, (2.22)

�3 − �4 cannot belong to the sets (or boxes) Z2, Z3, Z̃2, Z̃3. (2.23)

Hence, from (2.19), (2.22) and (2.23), we have

�2 − �3 ∈ Z3 or Z̃3, �2 − �4 ∈ Z2 or Z̃2, �3 − �4 ∈ Z1 or Z̃1 (2.24)

which is impossible. To see this, we only consider the following two typical cases:
(i′) If

�2 − �3 ∈ Z3, �2 − �4 ∈ Z2, �3 − �4 ∈ Z1,

then, by the property (e), the above box becomes the following box.

Z1 Z2 Z3 Z̃1 Z̃2 Z̃3
�1 − �2 �1 − �3 �1 − �4

�2 − �1 �3 − �1 �4 − �1
�3 − �4 �2 − �4 �2 − �3

�4 − �3 �4 − �2 �3 − �2

By the property (d), the elements in Z2 and Z3 (or in Z̃2 and Z̃3) have the character that

(�1 − �3) + (�2 − �4) = (�1 − �4) + (�2 − �3) ∈ Z̃2 ∩ Z̃3,

which contradicts the property (a). Another way to deduce a contradiction is to apply the properties
(c) and (d) on the sets Z1 and Z3 (or Z̃1 and Z̃3), respectively. Since

(�1 − �2) + (�3 − �4) = (�1 − �4) − (�2 − �3),

the left-hand side is in Z1 + Z1 ⊆ Z̃1 and the right-hand side is in Z3 − Z3 ⊆ Z2, which also
leads to a contradiction by the property (b).



J.-L. Li / Journal of Approximation Theory 153 (2008) 161–169 167

(ii′) If

�2 − �3 ∈ Z̃3, �2 − �4 ∈ Z̃2, �3 − �4 ∈ Z1,

then, by the property (e), we have the following box.

Z1 Z2 Z3 Z̃1 Z̃2 Z̃3
�1 − �2 �1 − �3 �1 − �4

�2 − �1 �3 − �1 �4 − �1
�3 − �4 �2 − �4 �2 − �3

�4 − �2 �3 − �2 �4 − �3

By the property (d), the elements in Z1 and Z3 (or in Z̃1 and Z̃3) have the character that

(�1 − �2) + (�3 − �4) = (�1 − �4) + (�3 − �2) ∈ Z̃1 ∩ Z̃3,

which contradicts the property (a). Another way to deduce a contradiction is to apply the properties
(c) and (d) on the sets Z1 and Z2 (or Z̃1 and Z̃2), respectively. Since

(�1 − �2) − (�3 − �4) = (�1 − �3) + (�4 − �2),

the left-hand side is in Z1 − Z1 ⊆ Z2 and the right-hand side is in Z2 + Z2 ⊆ Z̃2, which also
leads to a contradiction by the property (b). This completes the proof of Case 1.

Case 2: By the property (e), we see that in this case, each set contains elements (or differences)
in the following box.

Z1 Z2 Z3 Z̃1 Z̃2 Z̃3
�1 − �2 �1 − �3 �1 − �4

�4 − �1 �2 − �1 �3 − �1

The other elements in (2.18) are also in certain boxes. As in Case 1, we have the following
facts that

�2 − �3 cannot belong to the sets (or boxes) Z2, Z3, Z̃2, Z̃3, (2.25)

�2 − �4 cannot belong to the sets (or boxes) Z1, Z2, Z̃1, Z̃2, (2.26)

�3 − �4 cannot belong to the sets (or boxes) Z1, Z3, Z̃1, Z̃3. (2.27)

Hence, from (2.25), (2.26) and (2.27), we have

�2 − �3 ∈ Z1 or Z̃1, �2 − �4 ∈ Z3 or Z̃3, �3 − �4 ∈ Z2 or Z̃2 (2.28)

which is impossible. The reason is the same as Case 1. This completes the proof of Case 2.
Case 3: By the properties (d) and (e), we see that in this case, each set contains elements

(or differences) in the following box.

Z1 Z2 Z3 Z̃1 Z̃2 Z̃3
�1 − �2 �1 − �3 �1 − �4

�4 − �1 �2 − �1 �3 − �1
�3 − �4 �4 − �3
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The other elements in (2.18) are also in certain boxes. As in Case 1, we have the following facts
that

�2 − �3 cannot belong to the sets(or boxes) Z2, Z3, Z̃2, Z̃3; (2.29)

�2 − �4 cannot belong to the sets (or boxes) Z2, Z3, Z̃2, Z̃3. (2.30)

Hence, from (2.29) and (2.30), we have

�2 − �3 ∈ Z1 or Z̃1, �2 − �4 ∈ Z1 or Z̃1 (2.31)

which is also impossible. The reason is the same as Case 1. This completes the proof of Case 3.
Hence any set of �Mp,D-orthogonal exponentials contains at most three elements. One can

obtain many such orthogonal systems which contain three elements, for instance, E
S̃

with S̃

given by

S̃ =
{(

0
0

)
,

(
2/3

2/3 + l + 1

)
,

(
4/3

1/3 + 2l + 1

)}
(2.32)

is a three elements orthogonal system in L2(�Mp,D) for p = 3l + 1, and E
S̃

with S̃ given by

S̃ =
{(

0
0

)
,

(
4/3
4/3

)
,

(
8/3
8/3

)}
(2.33)

is a three elements orthogonal system in L2(�Mp,D) for p = 3l + 2. This shows that the number
3 is the best. The proof of theorem is complete.

3. A concluding remark

The proof above is based on the description of the zero set Z(�̂Mp,D) of the Fourier transform
�̂Mp,D . This is based in turn on the zero set of the function mD . Generally speaking, the non-
spectral self-affine measure problems of the case (I) mentioned in the Introduction depend largely
on the characterization of the zero set Z(�̂M,D). For the finite set D ⊂ Zn (usually called the digit
set) of cardinality |D| = 3 or 4, one can obtain certain expression for the set Z(�̂M,D) similar
to (2.7). But it is not easy to obtain certain properties on this set. For example, the self-affine
measure �M,D corresponding to

M =
⎡⎣ p 0 0

0 p 0
0 0 p

⎤⎦ (p is odd) and D =
⎧⎨⎩

⎛⎝ 0
0
0

⎞⎠ ,

⎛⎝ 1
0
0

⎞⎠ ,

⎛⎝ 0
1
0

⎞⎠ ,

⎛⎝ 0
0
1

⎞⎠⎫⎬⎭
in R3 is not a spectral measure, Dutkay and Jorgensen [3, Theorem 5.1(iii)] proved that there are
at most 256 mutually orthogonal exponential functions in L2(�M,D). The number 256 is certainly
not the best one. The questions of the case (I) on this non-spectral measure �M,D are still open.
The method here may be provide a way to deal with such questions.
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