
Journal of Combinatorial Theory, Series A 117 (2010) 1095–1106

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Combinatorial Theory,
Series A

www.elsevier.com/locate/jcta

Shadows and intersections in vector spaces

Ameera Chowdhury a, Balázs Patkós b,1

a Department of Mathematics, University of California San Diego, La Jolla, CA, 92093, USA
b Department of Computer Science, The University of Memphis, Memphis, TN, 38152, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 February 2009
Available online 4 November 2009

Keywords:
Kruskal–Katona
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1. Introduction

Let X be an n-element set and, for 0 � k � n, let
(X

k

)
denote the family of all subsets of X of

cardinality k. For a family F ⊂ (X
k

)
, we define the shadow of F , denoted ∂F , to consist of those

(k − 1)-subsets of X contained in at least one member of F ,

∂F :=
{

E ∈
(

X

k − 1

)
: E ⊂ F ∈ F

}
.

Kruskal [15] and Katona [13] determined the minimum size of the shadow of F as a function of k
and the size of F . Recall that the binomial coefficient(

n

k

)
:= n(n − 1) · · · (n − k + 1)

k!
can be defined for all n ∈ R and k ∈ Z

+ . Lovász [16, Ex. 13.31(b)] proved the following weaker but
more convenient version of the Kruskal–Katona theorem.
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Theorem 1.1 (Lovász). Let F ⊂ (X
k

)
and let y � k be the real number defined by |F | = (y

k

)
. Then |∂F | � ( y

k−1

)
.

If equality holds, then y ∈ Z
+ and F = (Y

k

)
, where Y is a y-subset of X .

The Kruskal–Katona theorem can be used to prove many theorems about so-called intersect-
ing families of sets. A family F ⊂ (X

k

)
is called r-wise intersecting if for all F1, . . . , Fr ∈ F we have⋂r

i=1 Fi �= ∅. When r = 2, then r-wise is omitted. The maximum size of an intersecting family was
determined by Erdős, Ko, and Rado [6].

Theorem 1.2 (Erdős–Ko–Rado). Suppose F ⊂ (X
k

)
is intersecting and n � 2k. Then |F | �

(n−1
k−1

)
. Moreover,

excepting the case r = 2 and n = 2k, equality holds if and only if F = {F ∈ (X
k

)
: x ∈ F } for some x ∈ X.

Daykin [4] gave a proof of Theorem 1.2 that essentially only uses Theorem 1.1. Frankl [7] general-
ized Theorem 1.2 and found the maximum size of an r-wise intersecting family.

Theorem 1.3 (Frankl). Suppose that F ⊂ (X
k

)
is r-wise intersecting and (r − 1)n � rk. Then |F | �

(n−1
k−1

)
.

Moreover, excepting the case r = 2 and n = 2k, equality holds if and only if F = {F ∈ (X
k

)
: x ∈ F } for some

x ∈ X.

Theorems 1.1–1.3 have natural extensions to vector spaces. We let V always denote an n-
dimensional vector space over a finite field of order q. For k ∈ Z

+ , we write
[V

k

]
q to denote the family

of all k-dimensional subspaces of V . For a ∈ R and k ∈ Z
+ , define the Gaussian binomial coefficient by[

a

k

]
q
:=

∏
0�i<k

qa−i − 1

qk−i − 1
.

A simple counting argument shows that the size of
[V

k

]
q is

[n
k

]
q . If k and q are fixed, then

[a
k

]
q is a

continuous function of a which is positive and strictly increasing when a � k. From now on, we will
omit the subscript q.

The definition of the shadow of a family extends naturally to vector spaces. For a family F ⊂ [V
k

]
,

we define the shadow of F , denoted ∂F , to consist of those (k − 1)-dimensional subspaces of V
contained in at least one member of F ,

∂F :=
{

E ∈
[

V

k − 1

]
: E ⊂ F ∈ F

}
.

In this paper, we will prove the following analog of Theorem 1.1.

Theorem 1.4. Let F ⊂ [V
k

]
and let y � k be the real number defined by |F | = [y

k

]
. Then

|∂F | �
[

y

k − 1

]
.

If equality holds, then y ∈ Z
+ and F = [Y

k

]
, where Y is a y-dimensional subspace of V .

Not much is known about shadows in vector spaces. In [2], a partial analog of the Kruskal–Katona
theorem is given when V is a vector space over the field F2. The only other result on shadows in
vector spaces, which is known to the authors, appears in [8].

We will use Theorem 1.4 to extend Theorem 1.3 to vector spaces. A family F ⊂ [V
k

]
is called r-wise

intersecting if for all F1, . . . , Fr ∈ F we have
⋂r

i=1 Fi �= {0}.

Theorem 1.5. Suppose F ⊂ [V
k

]
is r-wise intersecting and (r − 1)n � rk. Then

|F | �
[

n − 1

k − 1

]
.
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Moreover, equality holds if and only if F = {F ∈ [V
k

]
: v ⊂ F } for some one-dimensional subspace v ⊂ V ,

unless r = 2 and n = 2k.

The case r = 2 of Theorem 1.5 is the Erdős–Ko–Rado theorem for vector spaces, which has been
extensively studied. Hsieh [12] first proved the Erdős–Ko–Rado theorem for vector spaces, but not for
all relevant n and his proof involves many lengthy calculations. Later, Frankl and Wilson [9] proved the
Erdős–Ko–Rado theorem for vector spaces, essentially by computing the eigenvalues of the so-called
q-Kneser graph; the q-Kneser graph has the k-dimensional subspaces of V as its vertices, where two
subspaces α, β are adjacent if α ∩ β = {0}. While Frankl and Wilson’s method is less computational
than Hsieh’s, finding the eigenvalues of the q-Kneser graph still requires some calculations. One nice
feature of Theorem’s 1.5 proof is that it hardly involves any calculations.

It is unclear where the characterization of equality in the case n = 2k of the Erdős–Ko–Rado the-
orem for vector spaces first appeared in the literature. Recently, Godsil and Newman [10,17] gave a
characterization of equality in this case using techniques similar to those of Frankl and Wilson [9].
A second nice feature of Theorem’s 1.5 proof is that it gives a simple proof of the characterization of
equality when (r − 1)n > rk.

Greene and Kleitman [11] gave a very elegant proof to the Erdős–Ko–Rado theorem for vector
spaces when k|n. Deza and Frankl [5] sketched an inductive proof of the Erdős–Ko–Rado theorem
for vector spaces using Greene and Kleitman’s proof for the base case n = 2k and a generalization of
the shifting technique. Czabarka and Székely [3] assert that there are counterexamples to Deza and
Frankl’s proof and attempt a new inductive proof, again using a generalization of shifting. We believe,
however, that their definition of shifting is also flawed, and that their proof is not valid. We remark
that Theorem’s 1.5 proof proceeds by induction.

The rest of the paper is organized as follows. Section 2 gives a proof of Theorem 1.4. In Section 3
we prove the bound in Theorem 1.5 and characterize equality when (r −1)n > rk. Finally, in Section 4,
we characterize equality when (r − 1)n = rk for completeness.

2. Proof of Theorem 1.4

Keevash [14] recently gave a short new proof of Theorem 1.1. In this section, we adapt his argu-
ment to prove Theorem 1.4. We first collect some definitions and facts that will be used in the proof
of Theorem 1.4. If F ⊂ [V

k

]
, then

K k
k+1(F ) :=

{
T ∈

[
V

k + 1

]
:

[
T

k

]
⊂ F

}

is the family of (k + 1)-dimensional subspaces in V all of whose k-dimensional subspaces lie in F . If
v ∈ [V

1

]
, then

K k
k+1(v) := {

T ∈ K k
k+1(F ): v ⊂ T

}
is the family of (k + 1)-dimensional subspaces in K k

k+1(F ) that contain v . For v ∈ [V
1

]
, define the

degree of v , which is denoted by d(v), to be the number of elements of F that contain v . If v ∈ [V
1

]
and U ⊂ V is an (n − 1)-dimensional subspace not containing v then

LU (v) :=
{

A ∈
[

U

k − 1

]
: A ∨ v ∈ F

}

is the family of (k−1)-dimensional spaces in U whose linear span with v is an element of F . Observe
that d(v) = |LU (v)|.

Finally, we collect some notation and facts regarding the Gaussian binomial coefficients. When
k = 1, we will write the Gaussian binomial coefficient

[a
1

]
as [a]. For a ∈ Z

+ , we define [a]! = ∏a
j=1[ j].

A familiar relation involving binomial coefficients is Pascal’s identity. We note two similar relations
involving Gaussian binomial coefficients.
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Lemma 2.1. If a ∈ R and k ∈ Z
+ , then[

a

k

]
= qa−k

[
a − 1

k − 1

]
+

[
a − 1

k

]
=

[
a − 1

k − 1

]
+ qk

[
a − 1

k

]
.

Keevash observed that the analog of Theorem 2.2 for sets implies Theorem 1.1.

Theorem 2.2. Let F ⊂ [V
k

]
and let y � k be the real number defined by |F | = [y

k

]
. Then

∣∣K k
k+1(F )

∣∣ �
[

y

k + 1

]
.

Equality holds if and only if y ∈ Z
+ and F = [Y

k

]
for some y-dimensional subspace Y ⊂ V .

We observe that Theorem 2.2 implies Theorem 1.4. Let F be as in Theorem 1.4, and let x � k − 1
be the real number defined by |∂F | = [ x

k−1

]
. By Theorem 2.2,[

y

k

]
= |F | � ∣∣K k−1

k (∂F )
∣∣ �

[
x

k

]

because F ⊂ K k−1
k (∂F ). Hence x � y so |∂F | = [ x

k−1

]
�

[ y
k−1

]
. If |∂F | = [ y

k−1

]
then x = y. Hence,

|K k−1
k (∂F )| = [y

k

]
and F = K k−1

k (∂F ). By Theorem 2.2, this implies y ∈ Z
+ and ∂F = [ Y

k−1

]
for some

y-dimensional subspace Y ⊂ V . Clearly,
[Y

k

] = K k−1
k (∂F ) = F .

Proof of Theorem 2.2. We argue by induction on k. The base case k = 1 is easy: Suppose F ⊂ [V
1

]
and |F | = [y]. Since there are q + 1 one-dimensional spaces in a two-dimensional space, |K 1

2 (v)| �
(1/q)([y] − 1) if v ∈ F and |K 1

2 (v)| = 0 otherwise. Now

(q + 1)
∣∣K 1

2 (F )
∣∣ =

∑
v∈[V

1]

∣∣K 1
2(v)

∣∣ � [y]([y] − 1)

q
, (2.1)

which implies that |K 1
2 (F )| � [y

2

]
.

Suppose T ∈ K k
k+1(v). Observe that the qk k-dimensional subspaces in T that do not contain v

are elements of F that do not contain v . Moreover, if U ⊂ V is an (n − 1)-dimensional subspace that
does not contain v , then T ∩U is a k-dimensional subspace in K k−1

k (LU (v)). The first condition implies
that

qk
∣∣K k

k+1(v)
∣∣ =

∣∣∣∣
{

S ∈
[

V

k

]
: v �⊂ S ⊂ T ∈ K k

k+1(v)

}∣∣∣∣ � |F | − d(v),

and hence that |K k
k+1(v)| � (1/qk)(|F | − d(v)). The second condition implies that |K k

k+1(v)| �
|K k−1

k (LU (v))| because if T1, T2 are distinct elements of K k
k+1(v) then T1 ∩ U and T2 ∩ U are dis-

tinct elements of K k−1
k (LU (v)).

We claim that |K k
k+1(v)| � ([y −k]/[k])d(v) for all v ∈ [V

1

]
, which is trivial if d(v) = 0. Furthermore,

if d(v) �= 0, then equality is possible only when d(v) = [y−1
k−1

]
. To see this, suppose first that d(v) �[y−1

k−1

]
. Then by the first condition and Lemma 2.1, it suffices to observe that (1/qk)(

[y
k

]−d(v)) � ([y −
k]/[k])d(v). On the other hand, if d(v) �

[y−1
k−1

]
, then define the real number yv � k by d(v) = [yv −1

k−1

]
.

Since d(v) = |LU (v)|, the second condition and the induction hypothesis imply that

∣∣K k
k+1(v)

∣∣ �
∣∣K k−1

k

(
LU (v)

)∣∣ �
[

yv − 1

k

]
= [yv − k]

[k] d(v) � [y − k]
[k] d(v).

The equality conditions are clear so the claim holds in either case. Now
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[k + 1]∣∣K k
k+1(F )

∣∣ =
∑

v∈[V
1]

∣∣K k
k+1(v)

∣∣ � [y − k]
[k]

∑
v∈[V

1]

d(v) = [y − k]
[k] [k]|F |

= [y − k]
[

y

k

]
= [k + 1]

[
y

k + 1

]
.

Therefore, |K k
k+1(F )| �

[ y
k+1

]
, and equality holds only when all one-dimensional subspaces v with

non-zero degree satisfy d(v) = [y−1
k−1

]
.

We now characterize the case of equality. Again the proof proceeds by induction on k. The base
case k = 1 is easy: Suppose F ⊂ [V

1

]
, |F | = [y], and |K 1

2 (F )| = [y
2

]
. Then (2.1) implies that |K 1

2 (v)| =
(1/q)([y] − 1) for all v ∈ F . Hence, if v , w are distinct elements of F , then every one-dimensional
space in the two-dimensional space spanned by v and w lies in F . It is easy to see by induction
that if A is a subspace of dimension 1 � d < �y	 such that

[A
1

] ⊂ F , then there exists a subspace B

of dimension d + 1 that contains A and for which
[B

1

] ⊂ F . In particular, this proves that y ∈ Z
+ and

F = [Y
1

]
for some y-dimensional subspace Y .

Now suppose F ⊂ [V
k

]
, |F | = [y

k

]
, and |K k

k+1(F )| = [ y
k+1

]
. Choose v ∈ [V

1

]
for which d(v) �= 0. Since

|K k
k+1(F )| = [ y

k+1

]
, we have d(v) = [y−1

k−1

]
and |K k

k+1(v)| = [y−1
k

]
. Let U be an (n − 1)-dimensional

subspace not containing v . We have |LU (v)| = d(v) = [y−1
k−1

]
so[

y − 1

k

]
= ∣∣K k

k+1(v)
∣∣ �

∣∣K k−1
k

(
LU (v)

)∣∣ �
[

y − 1

k

]
,

which implies that |K k−1
k (LU (v))| = [y−1

k

]
. By the induction hypothesis, LU (v) = [ W

k−1

]
for some

(y − 1)-dimensional space W , which implies y ∈ Z
+ . Moreover, for every k-dimensional subspace A

in K k−1
k (LU (v)) = [W

k

]
, we have A ∨ v ∈ K k

k+1(v). Hence all k-dimensional subspaces in Y := W ∨ v

lie in F . Since |F | = [y
k

]
and dim(Y ) = y, we must have F = [Y

k

]
. �

3. Proof of Theorem 1.5

We will prove the bound in Theorem 1.5 and characterize equality when (r − 1)n > rk. The proof
proceeds by induction on (r − 1)n − rk ∈ N. For the base case (r − 1)n − rk = 0, we generalize Greene
and Kleitman’s argument in [11]. A family S of t-dimensional subspaces of V is called a t-spread
if every one-dimensional subspace of V is contained in exactly one t-dimensional subspace in S .
If the elements in S that lie in a subspace U form a t-spread of U then we say that S induces
a t-spread on U . A t-spread S is called geometric if S induces a t-spread on each 2t-dimensional
subspace generated by a pair of elements in S . It is well known [1] that V possesses a geomet-
ric t-spread if and only if t|n. In the base case (r − 1)n − rk = 0, we have n = r(n − k) so V has
a geometric (n − k)-spread. The following facts concerning geometric t-spreads are easy to estab-
lish.

Lemma 3.1. If S is a geometric t-spread of V , then S induces a geometric t-spread on any subspace of V that
is generated by elements of S .

Lemma 3.2. If S is a geometric t-spread of V , then for any isomorphism π ∈ GL(V ), the family π(S) :=
{π(S): S ∈ S} is also a geometric t-spread of V .

Suppose r,n,k ∈ Z
+ satisfy (r − 1)n − rk = 0 and let F ⊂ [V

k

]
be an r-wise intersecting family.

Endow V with the usual inner product, and consider the family

F ⊥ := {
F ⊥: F ∈ F

} ⊂
[

V

n − k

]
.
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Let B be a geometric (n − k)-spread of V . We want to determine the maximum number of elements
of B that lie in F ⊥ . Since F is r-wise intersecting, we have that F ⊥ is r-wise co-intersecting; that
is, any r elements of F ⊥ are contained in a common (n − 1)-dimensional space. If r = 2 and n = 2k,
the family F ⊥ is both intersecting and co-intersecting; hence only one element of the spread B can
lie in F ⊥ in this case. Lemma 3.3 determines the maximum number of elements of B that lie in F ⊥
whenever r,n,k ∈ Z

+ satisfy (r − 1)n − rk = 0.

Lemma 3.3. Let r,n,k ∈ Z
+ satisfy (r − 1)n − rk = 0. Let B be a geometric (n − k)-spread of V . If B′ ⊂ B is

an r-wise co-intersecting subfamily, then

∣∣B′∣∣ � q(r−1)(n−k) − 1

qn−k − 1
.

If equality holds, B′ is an (n − k)-spread of an (r − 1)(n − k)-dimensional space.

Proof. Let B1, . . . , Bm be a maximum subfamily of B′ such that dim(
∨m

i=1 Bi) = m(n − k). Hence, if
B ∈ B′ then B ∩∨m

i=1 Bi �= {0}. Since B is geometric, B induces a spread on
∨m

i=1 Bi by Lemma 3.1. As
B ∩∨m

i=1 Bi �= {0} for every B in B′ , all elements in B′ lie in
∨m

i=1 Bi . Since B′ is r-wise co-intersecting,
we must have m � r − 1. Therefore,

∣∣B′∣∣ � q(r−1)(n−k) − 1

qn−k − 1
,

which is the number of elements in an (n − k)-spread of an (r − 1)(n − k)-dimensional space. Also, if
equality holds, B′ is an (n − k)-spread of an (r − 1)(n − k)-dimensional space. �

Now we prove the base case of Theorem 1.5; the case r = 2 of Lemma 3.4 is a result of Greene
and Kleitman [11].

Lemma 3.4. Suppose r,n,k ∈ Z
+ satisfy (r −1)n−rk = 0. If F ⊂ [V

k

]
is r-wise intersecting, then |F | � [n−1

k−1

]
.

Proof. Let B be a geometric (n−k)-spread of V and let π ∈ GL(V ) be an isomorphism. By Lemma 3.2,
the spread π(B) is also geometric. Consider the family F ⊥ ⊂ [ V

n−k

]
. Since F is r-wise intersecting,

F ⊥ is r-wise co-intersecting. By Lemma 3.3,

∣∣F ⊥ ∩ π(B)
∣∣ � q(r−1)(n−k) − 1

qn−k − 1
= qk − 1

qn−k − 1
(3.2)

because F ⊥ ∩ π(B) is an r-wise co-intersecting subfamily of π(B) and because we have k = (r −
1)(n − k) when r, n, k satisfy (r − 1)n − rk = 0.

As |GL(V )| = qn(n−1)/2(q − 1)n[n]!, we have

∑
π∈GL(V )

∣∣F ⊥ ∩ π(B)
∣∣ � qk − 1

qn−k − 1
· qn(n−1)/2(q − 1)n[n]!.

Now, given F ⊥ ∈ F ⊥ and B ∈ B there are qn(n−1)/2(q − 1)n[n − k]![k]! isomorphisms π ∈ GL(V ) such
that π(B) = F ⊥ . Consequently,(

qn − 1

qn−k − 1

)∣∣F ⊥∣∣qn(n−1)/2(q − 1)n[n − k]![k]! = |B|∣∣F ⊥∣∣∣∣{π ∈ GL(V ): π(B) = F ⊥}∣∣
=

∑
π∈GL(V )

∣∣F ⊥ ∩ π(B)
∣∣

� qk − 1
n−k

· qn(n−1)/2(q − 1)n[n]!.

q − 1
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Since |F | = |F ⊥|, we have

|F | �
(

qn(n−1)/2(q − 1)n[n]!
qn(n−1)/2(q − 1)n[n − k]![k]!

)(
qn−k − 1

qn − 1

)(
qk − 1

qn−k − 1

)

=
[

n − 1

k − 1

]
. �

Proof of Theorem 1.5. The proof proceeds by induction on (r − 1)n − rk ∈ N. The base case (r − 1)n −
rk = 0 was proved in Lemma 3.4. Suppose Theorem 1.5 holds when r, n, k satisfy (r − 1)n − rk = p
for p � 0. We will prove Theorem 1.5 holds when r, n, k satisfy (r − 1)n − rk = p + 1. Let F ⊂ [V

k

]
be a maximum size r-wise intersecting family. Now the family P := {P ∈ [V

k

]
: v ⊂ P }, where v ⊂ V

is some one-dimensional subspace, is r-wise intersecting so |F | � |P | = [n−1
k−1

]
. Let W be an (n + 1)-

dimensional space over Fq that contains V . Define the family

A :=
{

A ∈
[

W

k + 1

]
: ∃F ∈ F with F ⊂ A

}

to be the family of all (k + 1)-dimensional spaces in W that contain some F ∈ F . We will partition A
into the following subfamilies:

A1 := {A ∈ A: A �⊂ V }, A2 := A \ A1.

First let us compute the size of A1. Observe that if A ∈ [ W
k+1

]
and A does not lie in V , then A

intersects V in exactly a k-dimensional space. Therefore, A cannot contain two distinct k-dimensional
spaces in F . Any F ∈ F can be extended to a (k+1)-dimensional space in A1 in qn−k ways. Therefore,
|A1| = qn−k|F | � qn−k

[n−1
k−1

]
.

Now we will compute the size of A2. Observe that, by duality, we have F ⊂ A ∈ A2 for some
F ∈ F if and only if F ⊥ ⊃ A⊥ ∈ [ V

n−k−1

]
. Therefore, |A2| = |∂F ⊥|. Since

∣∣F ⊥∣∣ = |F | �
[

n − 1

k − 1

]
=

[
n − 1

n − k

]
, (3.3)

by applying Theorem 1.4 we obtain

|A2| =
∣∣∂F ⊥∣∣ �

[
n − 1

n − k − 1

]
=

[
n − 1

k

]
. (3.4)

As A = A1 ∪̇ A2, we have by Lemma 2.1 that

|A| = |A1| + |A2| � qn−k
[

n − 1

k − 1

]
+

[
n − 1

k

]
=

[
n

k

]
. (3.5)

Now F is r-wise intersecting so A is an r-wise intersecting family of (k + 1)-dimensional spaces
in W . Observe that r, n + 1, k + 1 satisfy

(r − 1)(n + 1) − r(k + 1) = (r − 1)n − rk − 1 = (p + 1) − 1 = p.

By the induction hypothesis |A| �
[n

k

]
, which implies equality everywhere in (3.3)–(3.5). As a result,

qn−k|F | = |A1| = qn−k
[n−1

k−1

]
, which implies |F | = [n−1

k−1

]
. Moreover, |F ⊥| = [n−1

n−k

]
and |∂F ⊥| = |A2| =[ n−1

n−k−1

]
. Therefore F ⊥ satisfies equality in Theorem 1.4, which implies that F ⊥ = [ Y

n−k

]
for some

(n − 1)-dimensional subspace Y ⊂ V . By duality, F = {F ∈ [V
k

]
: v ⊂ F } for some one-dimensional

subspace v ⊂ V . �
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4. Characterizing equality in the base case

We characterize equality in Theorem 1.5 when (r − 1)n − rk = 0. Godsil and Newman [10,17]
recently characterized equality in the Erdős–Ko–Rado theorem for vector spaces using the methods
of [9]. Recall that the Erdős–Ko–Rado theorem for vector spaces is the case r = 2 of Theorem 1.5. In
particular, they showed

Theorem 4.1 (Godsil and Newman). If n = 2k and F ⊂ [V
k

]
is a maximum size intersecting family, then F =

{F ∈ [V
k

]
: v ⊂ F } for some one-dimensional subspace v ⊂ V or F = [U

k

]
for some (2k − 1)-dimensional

subspace U ⊂ V .

We use their result to characterize equality in Theorem 1.5 when (r − 1)n − rk = 0 and r � 3. The
proof proceeds by induction on r; the base case r = 2 and n = 2k is Theorem 4.1. Let F ⊂ [V

k

]
be a

maximum size r-wise intersecting family. In this section, it will be more natural to state results in
terms of F ⊥ ⊂ [ V

n−k

]
so we make the following simple observation.

Lemma 4.2. We have F ⊂ [V
k

]
is a maximum size r-wise intersecting family if and only if F ⊥ ⊂ [ V

n−k

]
is a

maximum size r-wise co-intersecting family.

Lemma 4.5 allows us to use induction. We first state two simple corollaries of Lemma 3.4 that
will be used in the proof of Lemma 4.5. Recall that V is r(n − k)-dimensional since r, n, k satisfy
(r − 1)n − rk = 0.

Corollary 4.3. Suppose r, n, k satisfy (r − 1)n − rk = 0. Let F ⊂ [V
k

]
be r-wise intersecting. If there is a

geometric (n − k)-spread B of V such that equality holds in (3.2) for all π ∈ GL(V ), then F has maximum
size.

Corollary 4.4. Suppose r, n, k satisfy (r − 1)n − rk = 0. If F ⊂ [V
k

]
is a maximum size r-wise intersecting

family, then equality holds in (3.2) for every geometric (n − k)-spread B of V and for every π ∈ GL(V ).

Lemma 4.5. Let F ⊂ [V
k

]
be a maximum size r-wise intersecting family. Fix F ⊥ in F ⊥ and let U ⊂ V be an

(r − 1)(n − k)-dimensional space that intersects F ⊥ trivially; that is F ⊥ ∩ U = {0}. Then

F ⊥∣∣
U := {

E ∈ F ⊥: E ⊂ U
}

is a maximum size (r − 1)-wise co-intersecting family in
[ U

n−k

]
.

Proof. Let S be a geometric (n −k)-spread of V . Choose S1, . . . , Sr in S such that
∨r

i=1 Si = V . Since
F ⊥ ∩ U = {0}, there exists an isomorphism ρ ∈ GL(V ) such that ρ(S1) = F ⊥ and ρ(

∨r
i=2 Si) = U . The

(n − k)-spread B := ρ(S) is geometric by Lemma 3.2, and F ⊥ ∈ B; moreover U = ∨r
i=2 ρ(Si) so B

induces a geometric (n − k)-spread B′ on U by Lemma 3.1.
Observe that F ⊥|U is (r − 1)-wise co-intersecting since F ⊥ ∩ U = {0}. To prove that F ⊥|U ⊂ [ U

n−k

]
is a maximum size (r − 1)-wise co-intersecting family, we will apply Lemma 4.2 and Corollary 4.3.
That is, we will show that if α ∈ GL(U ) then equality holds in (3.2):

∣∣F ⊥∣∣
U ∩ α

(
B′)∣∣ = q(r−2)(n−k) − 1

qn−k − 1
.

Let π ∈ GL(V ) be an isomorphism such that π(F ⊥) = F ⊥ , π(U ) = U , and π |U = α. Since F ⊥ is
a maximum size r-wise co-intersecting family, F ⊥ ∩ π(B) is an (n − k)-spread of an (r − 1)(n − k)-
dimensional space Wπ by Lemma 3.3 and Corollary 4.4. Consider the subspace Wπ ∩ U and observe
that dim(Wπ ∩ U ) = (r − 2)(n − k) since F ⊥ is contained in Wπ and intersects U trivially.
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The spread π(B) induces the spread F ⊥ ∩ π(B) on Wπ and induces the spread α(B′) on U .
Consider the elements of α(B′) that intersect Wπ ∩ U non-trivially; as these elements are in π(B)

and intersect Wπ , they must lie in Wπ and hence in Wπ ∩ U . Hence, the elements of α(B′) that
intersect Wπ ∩U non-trivially form a spread of Wπ ∩U . Moreover, these elements lie in F ⊥ ∩π(B) so

F ⊥∣∣
U ∩ α

(
B′) = (

F ⊥ ∩ π(B)
) ∩ α

(
B′)

is the spread π(B) induces on Wπ ∩ U . Since Wπ ∩ U is (r − 2)(n − k)-dimensional, |F ⊥|U ∩ α(B′)|
satisfies (3.2) with equality. By Lemma 4.2 and Corollary 4.3, F ⊥|U is a maximum size (r − 1)-wise
co-intersecting family in

[ U
n−k

]
. �

Characterizing equality in Theorem 1.5 when (r − 1)n − rk = 0 and r ��� 3: We characterize equality
in Theorem 1.5 when (r − 1)n − rk = 0 and r � 3. The proof proceeds by induction on r; the base case
r = 2 and n = 2k is Theorem 4.1.

Let r � 3 and suppose the statement is proved for any 2 � r′ < r. Let F ⊂ [V
k

]
be a maximum

size r-wise intersecting family and observe that F ⊥ ⊂ [ V
n−k

]
is a maximum size r-wise co-intersecting

family. We will show that F ⊥ = [ H
n−k

]
where H is an (n − 1)-dimensional space of V . By duality, this

implies that F = {F ∈ [V
k

]
: v ⊂ F } for some one-dimensional subspace v ⊂ V , which is the desired

conclusion.
Fix some F ⊥ ∈ F ⊥ . By Lemma 4.5, if U is an (r − 1)(n − k)-dimensional subspace that intersects

F ⊥ trivially, then F ⊥|U is a maximum size (r − 1)-wise co-intersecting family in
[ U

n−k

]
. When r = 3,

then dim U = 2(n − k) and F ⊥|U is a maximum size intersecting and co-intersecting family in
[ U

n−k

]
;

hence by Theorem 4.1

1. F ⊥|U = {E ∈ [ U
n−k

]
: u ⊂ E} for some one-dimensional subspace u ⊂ U or

2. F ⊥|U = [ U ′
n−k

]
for some (2(n − k) − 1)-dimensional subspace U ′ ⊂ U .

If r > 3 then, by the induction hypothesis and duality, F ⊥|U = [ U ′
n−k

]
, where U ′ ⊂ U is some ((r −

1)(n − k) − 1)-dimensional subspace.
Our first task is to eliminate the possibility that F ⊥|U = {E ∈ [ U

n−k

]
: u ⊂ E} for some one-

dimensional subspace u ⊂ U in the case r = 3. We now show that if F ⊥|U = {E ∈ [ U
n−k

]
: u ⊂ E} for

some one-dimensional subspace u ⊂ U , then every element of F ⊥ must intersect F ⊥ ∨u non-trivially.

Claim 4.6. If F ⊥|U = {E ∈ [ U
n−k

]
: u ⊂ E} for some one-dimensional subspace u ⊂ U , then for all G ∈ F ⊥ we

have G ∩ (F ⊥ ∨ u) �= {0}.

Proof. Suppose, for a contradiction, that there exists G ∈ F ⊥ such that G intersects F ⊥ ∨ u trivially.
We have dim((F ⊥ ∨ G) ∩ U ) = n − k because F ⊥ intersects both G and U trivially. Since u does not
lie in F ⊥ ∨ G and F ⊥|U = {E ∈ [ U

n−k

]
: u ⊂ E}, we can find E ′ ∈ F ⊥|U that intersects F ⊥ ∨ G trivially.

Hence F ⊥ ∨ G ∨ E ′ = V , which contradicts the fact that F ⊥ is 3-wise co-intersecting. �
We now show that if F ⊥|U = {E ∈ [ U

n−k

]
: u ⊂ E} for some one-dimensional subspace u ⊂ U , then

any (n − k)-dimensional space that meets F ⊥ trivially but meets F ⊥ ∨ u non-trivially must lie in F ⊥ .

Claim 4.7. Suppose F ⊥|U = {E ∈ [ U
n−k

]
: u ⊂ E} for some one-dimensional subspace u ⊂ U . If G ∈ [ V

n−k

]
,

G ∩ F ⊥ = {0}, and G ∩ (F ⊥ ∨ u) �= {0}, then G ∈ F ⊥ .

Proof. There exists a geometric (n −k)-spread B of V that contains both G and F ⊥ because G ∩ F ⊥ =
{0}. Since B is a spread, all subspaces in (F ⊥ ∩ B) \ {F ⊥} meet F ⊥ ∨ u in a one-dimensional subspace
that does not lie in F ⊥ by Claim 4.6. Lemma 3.3 and Corollary 4.4 imply that F ⊥ ∩ B is a spread of a
2(n − k)-dimensional space so |(F ⊥ ∩ B) \ {F ⊥}| = qn−k . There are qn−k one-dimensional subspaces in
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F ⊥ ∨ u that do not lie in F ⊥ . Hence, each one-dimensional subspace in (F ⊥ ∨ u) \ F ⊥ meets a unique
subspace in (F ⊥ ∩ B) \ {F ⊥}. Since G meets F ⊥ ∨ u in a one-dimensional subspace that does not lie
in F ⊥ and G ∈ B, we must have G ∈ F ⊥ ∩ B ⊂ F ⊥ . �

We now eliminate the possibility that F ⊥|U = {E ∈ [ U
n−k

]
: u ⊂ E} for some one-dimensional sub-

space u ⊂ U . We will construct three (n − k)-dimensional subspaces that together span V , and
intersect F ⊥ ∨ u in a one-dimensional subspace not lying in F ⊥ . By Claim 4.7, these three spaces
lie in F ⊥ , which contradicts F ⊥ being 3-wise co-intersecting. To build these three subspaces, we
first choose three one-dimensional subspaces v1

1, v1
2, v1

3 in (F ⊥ ∨ u) \ F ⊥ such that v1
3 �⊂ v1

1 ∨ v1
2.

These one-dimensional subspaces exist because dim(F ⊥ ∨ u) = (n − k) + 1 � 3 so, after picking v1
1

and v1
2, any one-dimensional subspace of F ⊥ ∨ u not in F ⊥ ∪ (v1

1 ∨ v1
2) will do. Since the number of

one-dimensional subspaces in (F ⊥ ∨ u) \ (F ⊥ ∪ (v1
1 ∨ v1

2)) is qn−k − q > 0, we can indeed choose v1
3.

We construct a family of one-dimensional subspaces{
v j

i : i ∈ {1,2,3}, j ∈ {1, . . . ,n − k}}
such that, for each i ∈ {1,2,3}, the subspace V i = ∨n−k

j=1 v j
i intersects F ⊥ ∨ u in the one-dimensional

subspace v1
i �⊂ F ⊥ and

∨3
i=1 V i = V . The subspaces V 1, V 2, V 3 are the desired three (n − k)-

dimensional subspaces. We pick the one-dimensional subspaces one after the other; we have to
show that at each step there is a possible one-dimensional subspace to pick. When picking the last
one-dimensional subspace vn−k

3 we must choose a one-dimensional subspace from V that is not in

V 1 ∨V 2 ∨∨n−k−1
j=1 v j

3 nor in F ⊥∨∨n−k−1
j=1 v j

3. By inclusion–exclusion, there are q3(n−k)−1 −q2(n−k)−2 > 0

one-dimensional subspaces in V that do not lie in V 1 ∨ V 2 ∨ ∨n−k−1
j=1 v j

3 nor in F ⊥ ∨ ∨n−k−1
j=1 v j

3; thus
it is indeed possible to construct the desired three (n − k)-dimensional subspaces. Therefore, we have
eliminated the possibility that F ⊥|U = {E ∈ [ U

n−k

]
: u ⊂ E} for some one-dimensional subspace u ⊂ U

in the case r = 3.
We may now assume that r � 3 and that if U is an (r − 1)(n − k)-dimensional space that in-

tersects F ⊥ trivially then F ⊥|U = [ U ′
n−k

]
for some ((r − 1)(n − k) − 1)-dimensional subspace U ′ ⊂ U .

Our ultimate goal is to prove that F ⊥ = [F ⊥∨U ′
n−k

]
. Naturally, we first show that if U1, U2 are two

(r − 1)(n − k)-dimensional subspaces that intersect F ⊥ trivially, then F ⊥ ∨ U ′
1 = F ⊥ ∨ U ′

2.

Claim 4.8. Let U1 , U2 be two (r − 1)(n −k)-dimensional subspaces of V that intersect F ⊥ trivially. Let U ′
1 , U ′

2

be the ((r −1)(n−k)−1)-dimensional subspaces of U1 and U2 such that F ⊥|U1 = [ U ′
1

n−k

]
and F ⊥|U2 = [ U ′

2
n−k

]
.

Then F ⊥ ∨ U ′
1 = F ⊥ ∨ U ′

2 .

Proof. Suppose, for a contradiction, that F ⊥ ∨U ′
1 �= F ⊥ ∨U ′

2. Choose subspaces W1, . . . , Wr−2 in
[ U ′

1
n−k

]
such that W1 is not contained in F ⊥ ∨ U ′

2 and dim(
∨r−2

i=1 W i) = (r − 2)(n − k).

The subspace F ⊥ ∨ ∨r−2
i=1 W i is (r − 1)(n − k)-dimensional because U1 intersects F ⊥ trivially. The

subspace U ′
2 is ((r − 1)(n − k) − 1)-dimensional and intersects F ⊥ trivially so

(r − 2)(n − k) − 1 � dim

(
U ′

2 ∩
(

F ⊥ ∨
r−2∨
i=1

W i

))
� (r − 2)(n − k).

Suppose that dim(U ′
2 ∩ (F ⊥ ∨ ∨r−2

i=1 W i)) = (r − 2)(n − k) for a contradiction. By definition of W1,
we can choose a one-dimensional subspace w ⊂ W1 that does not lie in F ⊥ ∨ U ′

2. The subspace

F ⊥ ∨ w is (n − k + 1)-dimensional. The subspace F ⊥ ∨ ∨r−2
i=1 W i is (r − 1)(n − k)-dimensional and

contains F ⊥ ∨ w . If dim(U ′
2 ∩ (F ⊥ ∨ ∨r−2

i=1 W i)) = (r − 2)(n − k), then F ⊥ ∨ w must intersect U ′
2

non-trivially. This is a contradiction because w does not lie in F ⊥ ∨ U ′
2 by construction. Therefore,

dim(U ′
2 ∩ (F ⊥ ∨ ∨r−2

i=1 W i)) = (r − 2)(n − k) − 1.
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Since U ′
2 is ((r − 1)(n − k) − 1)-dimensional, this implies that there exists a subspace Z in

[ U ′
2

n−k

]
that intersects F ⊥ ∨ ∨r−2

i=1 W i trivially. Now F ⊥, W1, . . . , Wr−2, Z lie in F ⊥ since F ⊥|U1 = [ U ′
1

n−k

]
and

F ⊥|U2 = [ U ′
2

n−k

]
. By construction, F ⊥ ∨ ∨r−2

i=1 W i ∨ Z = V , which contradicts F ⊥ being r-wise co-

intersecting. This proves F ⊥ ∨ U ′
1 = F ⊥ ∨ U ′

2. �
Now we show that any (n − k)-dimensional subspace in F ⊥ ∨ U ′ that intersects F ⊥ trivially must

lie in F ⊥ .

Claim 4.9. If G ∈ [F ⊥∨U ′
n−k

]
and G ∩ F ⊥ = {0}, then G ∈ F ⊥ .

Proof. Since G ∩ F ⊥ = {0}, there exists an (r − 1)(n − k)-dimensional subspace U (G) that contains G
and intersects F ⊥ trivially. Let U (G)′ be the ((r − 1)(n − k) − 1)-dimensional subspace of U (G) such
that F ⊥|U (G) = [U (G)′

n−k

]
. By Claim 4.8,

G ⊂ (
F ⊥ ∨ U ′) ∩ U (G) = (

F ⊥ ∨ U (G)′
) ∩ U (G) = U (G)′.

Hence G ∈ [U (G)′
n−k

] ⊂ F ⊥ . �
Now we are ready to prove F ⊥ = [F ⊥∨U ′

n−k

]
. Suppose, for a contradiction, that there exists a subspace

H ∈ F ⊥ that is not in
[F ⊥∨U ′

n−k

]
. We will construct r − 1 subspaces in

[F ⊥∨U ′
n−k

]
that each intersect F ⊥

trivially and that together with H span V . By Claim 4.9, these r − 1 subspaces lie in F ⊥ which
contradicts F ⊥ being r-wise co-intersecting.

To build these r − 1 subspaces, we construct a family of one-dimensional subspaces{
v j

i : i ∈ {1, . . . , r − 1}, j ∈ {1, . . . ,n − k}}
such that for each i ∈ {1, . . . , r − 1}, the subspace Gi = ∨n−k

j=1 v j
i lies in F ⊥ ∨ U ′ , intersects F ⊥ trivially,

and
∨r−1

i=1 Gi ∨ H = V . The subspaces G1, . . . , Gr−1 are the desired r − 1 subspaces. We pick the one-
dimensional subspaces one after the other; we have to show that at each step there is a possible
one-dimensional subspace to pick. When picking the last one-dimensional subspace vn−k

r−1 we must

pick a one-dimensional subspace from F ⊥ ∨ U ′ that is not in H ∨ ∨r−2
i=1 Gi ∨ ∨n−k−1

j=1 v j
r−1 nor in

F ⊥ ∨ ∨n−k−1
j=1 v j

r−1. Since H is not contained in F ⊥ ∨ U ′ , we have

dim

((
F ⊥ ∨ U ′) ∩

(
H ∨

r−2∨
i=1

Gi ∨
n−k−1∨

j=1

v j
r−1

))
= r(n − k) − 2.

Hence, there are at least

qr(n−k)−2 − (
q2(n−k)−2 + q2(n−k)−3 + · · · + 1

)
> 0

one-dimensional subspaces of F ⊥ ∨ U ′ that do not lie in H ∨ ∨r−2
i=1 Gi ∨ ∨n−k−1

j=1 v j
r−1 nor in F ⊥ ∨∨n−k−1

j=1 v j
r−1; thus it is indeed possible to construct the desired r − 1 subspaces. This proves that

F ⊥ ⊆ [F ⊥∨U ′
n−k

]
, and since |F ⊥| = [n−1

k−1

]
we have F ⊥ = [F ⊥∨U ′

n−k

]
. The subspace F ⊥ ∨ U ′ is (n − 1)-

dimensional; by duality, F = {F ∈ [V
k

]
: v ⊂ F } for some one-dimensional subspace v ⊂ V , which is

the desired conclusion.

Acknowledgments

The first author thanks the NSF for supporting her and the Rényi Institute for hosting her while she
was an NSF-CESRI fellow during the summer of 2008. We also thank Jacques Verstraëte for carefully
reading this manuscript.



1106 A. Chowdhury, B. Patkós / Journal of Combinatorial Theory, Series A 117 (2010) 1095–1106
References

[1] R. Baer, Partitionen abelscher Gruppen, Arch. Math. (Basel) 14 (1963) 73–83.
[2] S. Bezrukov, A. Blokhuis, A Kruskal–Katona type theorem for the linear lattice, European J. Combin. 20 (2) (1999) 123–130.
[3] E. Czabarka, L. Székely, An alternative shifting proof to Hsieh’s theorem, in: Proceedings of the Twenty-Ninth Southeastern

International Conference on Combinatorics, Graph Theory and Computing, vol. 134, Boca Raton, FL, 1998, 1998, pp. 117–
122.

[4] D.E. Daykin, Erdös–Ko–Rado from Kruskal–Katona, J. Combin. Theory Ser. A 17 (1974) 254–255.
[5] M. Deza, P. Frankl, The Erdős–Ko–Rado theorem—22 years later, SIAM J. Algebraic Discrete Methods 4 (4) (1983) 419–431.
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