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Abstract

Following the Witten–Nester formalism, we present a useful prescription using Weyl spinors towards 
the positivity of mass. As a generalization of arXiv:1310.1663, we show that some “positivity conditions” 
must be imposed upon the gauge connections appearing in the supercovariant derivative acting on spinors. 
A complete classification of the connection fulfilling the positivity conditions is given. It turns out that 
these positivity conditions are indeed satisfied for a number of extended supergravity theories. It is shown 
that the positivity property holds for the Einstein-complex scalar system, provided that the target space is 
Hodge–Kähler and the potential is expressed in terms of the superpotential. In the Einstein–Maxwell-dilaton 
theory with a dilaton potential, the dilaton coupling function and the superpotential are fixed by the positive 
mass property. We also explore the N = 8 gauged supergravity and demonstrate that the positivity of the 
mass holds independently of the gaugings and the deformation parameters.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The positive mass theorem [1,2] is one of the major achievements in mathematical the-
ory of general relativity. If the positivity property of the mass fails to be valid, the vacuum 
Minkowski spacetime which obviously has a vanishing mass possibly decays into configura-
tions with lower energy, and a dynamical “chasing instability” is unavoidable due to the weak 
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equivalence principle [3]. The positive mass theorem therefore forbids these undesirable phe-
nomena and accounts for the stability of the lowest energy states.

Since the first proof given by Schoen and Yau [1,2], various attempts have been done towards 
the generalization. This subject is stimulated not only by a purely mathematical interest. First of 
all, the proof of Schoen and Yau cannot be applied to D ≥ 9 dimensions, since the smoothness 
of the deformation of the n-dimensional minimal surface Sn is guaranteed for n ≤ 6. The proof 
based on the inverse mean curvature flow [4,5] provides a physically clear interpretation. How-
ever, it has been successful only in D = 4 since the Gauss–Bonnet theorem over the two-surface 
was explicitly used therein. Furthermore, both of these methods work only in the spacetimes that 
tend asymptotically to the Minkowski spacetime. Compared to these proofs, a remarkably simple 
and elegant proof was given by Witten [6], later refined by Nester [7]. A distinguished feature of 
their proof is the use of a spinor field. The bilinear vector built out of the spinor field used in their 
proof plays the role of the infinitesimal generator of the asymptotic symmetry. Although the use 
of spinor imposes a mild restriction upon the spacetime topology,1 this proof is sometimes more 
powerful since it is able to give a strictly positive bound on the mass, rather than a simple posi-
tivity thereof. Moreover, the Witten–Nester approach has additional advantages that it works in 
arbitrary dimensions, it is applicable also for asymptotically anti-de Sitter (AdS) spacetimes and 
it does not necessarily require the dominant energy condition. Another utility of using spinors is 
that it possess an intimate relationship to supergravity theories [11–14].

Recently, a number of widespread revival interests in extended supergravities have been 
growing from the viewpoint of string theory and AdS/CFT correspondence. Among others, 
the supersymmetric solutions in supergravity have played a central role in their theoretical de-
velopment. Since supersymmetric solutions belong to the short multiplets, they are essentially 
nonperturbative objects, hence they usually evade instabilities. They are characterized by the 
existence of Killing spinors obeying the first-order differential equations [15]. Similar to the 
Bogomol’nyi–Prasad–Sommerfield (BPS) states in solitons, they are often identified as states 
saturating a certain kind of inequality between conserved quantities implied by the positive mass 
theorem. Note that this is not obvious since the quantities in the superalgebra are associated 
with the invariance of the background spacetime, i.e., they do not correspond to the conserved 
quantities in the general curved spacetime which approaches asymptotically to that background.

Thus far, various supergravity theories have been shown to admit the BPS bound [16–24], 
in terms of globally conserved quantities. It should be worth commenting that the converse 
statement is not always true, namely, the theory admitting the BPS-type inequality does not 
necessarily have a supergravity origin. For example, the Einstein–Maxwell-dilaton theory ad-
mits the BPS-type inequality [10]. It was realized, however, that the first-order BPS equation for 
the saturation of inequality is incompatible with the equations of motion except for the particular 
values of the coupling constant [25]. This implies that it is not always possible to embed the 
theory admitting BPS-type inequality into supergravity.

At the current moment, it is also less obvious which theories admit the BPS-type inequal-
ity, when the supergravity embedding is unknown. In our previous paper [26], we tackled this 
problem pursuant to the Witten–Nester argument, and found that a certain condition should be 

1 The condition that the spacetime admits the spin structure amounts to requiring that the second Stiefel–Whitney class 
should vanish. Some five-dimensional asymptotically flat soliton solutions found in Refs. [8,9] violate the mass bound 
proven by the spinorial method in [10], since they fail to possess the spin structure. It is an interesting but a challenging 
task to derive the lower bound of five-dimensional Arnowitt–Deser–Misner (ADM) mass in Einstein–Maxwell–Chern–
Simons gravity without assuming the spin structure.
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imposed toward the positivity bound upon the connection in the supercovariant derivative acting 
on a Dirac spinor. By virtue of this condition, we were able to construct the first instance of 
noncanonical scalar-field system admitting the BPS-type inequality [26] (see also [27]). In the 
current article, we generalize the argument in [26] and reformulate the “positivity conditions” in 
terms of Weyl spinors. We also provide a proof for the classification of connections satisfying the 
positivity conditions. This would make it clear the relationship to the four-dimensional extended 
supergravity theories. In N = 1 supergravity, it has been widely known that the theory admits 
the positive mass [11]. The N > 1 case is less clear since extended supergravities do not always 
have an N = 1 description except for the consistent truncation. The purpose of the present paper 
is to examine the positivity property of various theories inspired by extended supergravities. Us-
ing the positivity conditions, we resolve some issues about the BPS-type inequality in extended 
supergravities, and demonstrate that the positivity property is indeed true for wider theories than 
formerly considered.

The plan of the present paper is as follows. In the next section, we formulate the Witten–Nester 
method in terms of Weyl spinors and address the positivity of the Witten–Nester energy. We 
find that the gauge connections appearing in the supercovariant derivatives should satisfy the 
“positivity conditions.” This is a generalization of our previous work [26]. A classification of 
the connections satisfying the positivity conditions is given in Appendix A, where it is shown 
that the possible connections take the same form as those appearing in extended supergravity, 
provided we impose an additional condition that the bilinear vector is a Killing field for the BPS 
geometry. In Section 3, we apply this formalism to various theories inspired by supergravity. 
We resolve some problems in the literature and find that the positivity of energy holds in much 
broader class of theories than previously studied. In particular the maximal gauged supergravity 
turns out to admit the mass positivity, independent of the gaugings and symplectic frames. The 
final conclusion with some future prospective works is described in Section 4.

Our conventions for the metric is taken to be mostly plus sign. μ, ν, . . . refer to the spacetime 
indices, whereas a, b, . . . to the frame indices. We adopt the units c = 8πG = 1 throughout the 
paper.

2. Positive mass theorem à la Witten–Nester

In our previous paper [26], we derived a minimal condition toward the positive mass for 
the gauge connection in the supercovariant derivative acting on a Dirac spinor. This condition 
provides a universally simple formula and is able to easily recover all of the previous positive 
mass results. In the present paper we are interested in theories inspired by extended supergrav-
ities. Hence it turns out to be more advantageous to generalize the analysis [26] in terms of 
Weyl spinors. We shall restrict exclusively to four dimensions for simplicity, although the higher 
(even) dimensional extension is straightforward. We will work in mostly plus metric signature 
and the Clifford algebra reads {γa, γb} = 2ηab = 2 diag(−1, 1, 1, 1)ab . Taking the orientation 
as ε0123 = 1, the chiral matrix is defined by γ5 = −(i/4!)εabcdγ abcd = iγ0123 with γ 2

5 = 1. 
The imaginary (anti-)self dual part H± of the 2-form Hμν is H± = 1

2 (H ∓ i � H), satisfying 
�H± = ±iH±.

We denote the set of Weyl spinors in four dimensions by εi (i = 1, . . . , N ). We take these 
spinors to have a negative chirality γ5εi = −εi . If we define the Dirac conjugate of εi by ε̄i ≡
i(εi)

†γ 0, the charge conjugation of εi is denoted as

εi ≡ (εi)
c = C

(
ε̄i

)T = −iγ 0C(εi)
∗, (1)
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where C is the charge conjugation matrix satisfying C−1γ μC = −γ T
μ . In this paper we adopt 

the representation such that the charge conjugation matrix is given by C = −iγ 0. This enables 
us to raise and lower the indices i, j, . . . simply by the complex conjugation and the gamma 
matrices are all real, hence γ T

μ = γ 0γμγ 0. It then follows that the spinors εi with upper index 
have a positive chirality γ5ε

i = εi and the Dirac conjugate of εi is given by ε̄i = −i(εi)†γ 0. 
Accordingly, the bilinears constructed out of the spinor satisfy

ε̄iεj = −ε̄j εi = (
ε̄iεj

)∗
, iε̄iγ μεj = −iε̄j γ

μεi, iε̄iγμνεj = iε̄j γμνεi . (2)

Following the argument given in [26], we define the supercovariant derivative operator as 
follows

∇̂μεi ≡ ∇μεi + Aμi
j εj + Bμij ε

j , (3)

where ∇μ is an ordinary Lorentz-covariant derivative acting on a spinor. The N × N numbers 
of 4 × 4 matrix-valued vector fields Aμi

j and Bμij represent the deviation from the Levi-Cività 
connection. These connections obey different commutation relations with the chirality matrix

[
Aμi

j , γ5
] = 0, {Bμij , γ5} = 0. (4)

The Dirac conjugate of the supercovariant derivative is given by

∇̂μεi = ∇μεi − ε̄j γ 0(Aμ
i
j

)T
γ 0 + ε̄j γ

0(Bμ
ij
)T

γ 0. (5)

Here the transpose operator T is understood as acting on the space spanned by 4 × 4 gamma 
matrices, whereas the raising and lowering the indices i, j, . . . are done by complex conjugation. 
We wish to put some constraints on the connections Aμi

j and Bμij by requiring the positivity 
of energy.

Using the supercovariant derivative defined above, let us introduce the anti-symmetric Nester 
tensor [7]

Nμν = −i
(
ε̄iγ μνρ∇̂ρεi − ∇̂ρεiγ μνρεi

)
, (6)

which reduces to the one in [7,26] for N = 2. The strategy employed by Witten and Nester for 
the mass positivity is two-folds. Let us suppose that the asymptotically flat/AdS spacetime is 
foliated by some spacelike slice Σ . If Σ is an orientable 3-surface, it turns out that the spacetime 
admits a spin structure. This allows us to specify the appropriate fall-off rate of the metric, fluxes 
and spinors on the spacelike surface Σ in such a way that the following energy function is finite 
and conserved

EWN = 1

2

∫
∂Σ

NμνdSμν, (7)

where ∂Σ is the two-dimensional boundary of Σ at infinity. In the asymptotically flat case, the 
Witten–Nester energy is related to the ADM momentum P μ [28] as EWN = −V

μ∞Pμ, where 
V

μ∞ = iε̄i∞γ με∞i corresponds to the generator of the asymptotic translational symmetry and 
ε∞i are the asymptotic value of the spinors. The next step is to convert the surface integral at 
infinity–using the Stokes theorem–to the volume integral over Σ ,

EWN =
∫

∇νN
μνdΣμ, (8)
∂Σ
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where dΣμ is a past-directed volume element of Σ . If we can show ∇aN
0a ≥ 0, where 0, a

means the frame component, the Witten–Nester energy turns out to be positive semi-definite 
EWN ≥ 0. This leads to an inequality involving globally conserved quantities such as mass, an-
gular momentum, electromagnetic charges and so on.

Since the explicit form of EWN is sensitive both to the asymptotic spacetime structures and 
to the field contents of the theory, we tentatively suppose that we can prescribe the boundary 
condition so that the Witten–Nester energy converges. Hence our primary concern at the moment 
is the positivity of ∇aN

0a , or a lack thereof. After some computations, the divergence of the 
Nester tensor can be brought into the following form,

∇νN
μν = 2i∇̂ρεiγ μνρ∇̂νεi − Gμ

ν

(
iε̄iγ νεi

)
− i

2
ε̄i

[
γ μνρFνρi

j + γ 0(Fνρ
j
i

)T
γ 0γ μνρ

]
εj

− i

2

[
ε̄iγ μνρHνρij ε

j − ε̄iγ
0(Hνρ

ji
)T

γ 0γ μνρεj

]
− iε̄i

[
γ μνρBνikBρ

kj + γ 0(Bν
jkBρki

)T
γ 0γ μνρ

]
εj

+ iε̄i
[
γ μνρAνi

j − γ 0(Aν
j
i

)T
γ 0γ μνρ

]∇̂ρεj

− i∇̂ρεi
[
γ μνρAνi

j − γ 0(Aν
j
i

)T
γ 0γ μνρ

]
εj

− iε̄i

[
γ μνρBν

ij − γ 0(Bν
ji

)T
γ 0γ μνρ

]∇̂ρεj

− i∇̂ρεi
[
γ μνρBνij − γ 0(Bνji)

T γ 0γ μνρ
]
εj , (9)

where we have defined the two kinds of curvatures

Fμνi
j = 2

(∇[μAν]i j + A[μi
kAν]kj

)
, (10a)

Hμνij = 2
(∇[μBν]ij + A[μi

kBν]kj + B[μikAν]kj

)
. (10b)

Readers should observe the following relation in deriving Eq. (9),

iε̄iγ μνρBνij ∇̂ρεj = (−iε̄iγ
μνρBν

ij ∇̂ρεj

)† = i∇̂ρεiγ 0(Bνji)
T γ 0γ μνρεj . (11)

We assume that the spinors εi satisfy the Dirac–Witten condition on Σ [6],

γ I ∇̂I εi = 0, I = 1,2,3. (12)

If there exist spinors satisfying this differential equation and giving a finite Witten–Nester energy, 
the first term of the right side of (9) gives the nonnegative contribution to the volume integral 

due to ∇̂ρεiγ 0νρ∇̂νεi = gIJ (∇̂I εi)
†(∇̂J εi) ≥ 0. According to our convention, the vector field 

V μ ≡ iε̄iγ μεi is future-directed and nonspacelike because of V 0 = ε
†
i εi > 0. It follows that the 

term −Gμ
νV

ν turns out to have a positive contribution to the Witten–Nester energy, provided 
Einstein’s equations hold and matter fields satisfy the suitable energy conditions. On the other 
hand, the last four terms proportional to ∇̂ρεi in Eq. (9) do not to have a definite sign. Hence we 
demand as a minimal requirement for the positivity of mass that the gauge connections should 
be subjected to the subsequent conditions,

γ 0(Aρ
j
i

)T
γ 0γ μνρ = γ μνρAρi

j , (13a)

γ 0(Bρji)
T γ 0γ μνρ = γ μνρBρij . (13b)
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We shall refer to these conditions as “positivity conditions.” Although we have not shown that 
these conditions are necessary, this requirement seems persuasive since all the theories which 
have been shown to admit the mass positivity in Refs. [10,16–24] indeed satisfy this property. 
Under the positivity conditions, the divergence of the Nester tensor takes a remarkably simple 
form

∇νN
μν = 2i∇̂ρεiγ μνρ∇̂νεi − Gμ

νV
ν + Sμ, (14)

where the current Sμ = S
μ

(1) + S
μ

(2) + S
μ

(3) is built out of three different contributions,

S
μ

(1) ≡ −iε̄iγ μνρFνρi
j εj , (15a)

S
μ

(2) ≡ − i

2

(
ε̄iγ μνρHνρij ε

j − ε̄iγ
μνρHνρ

ij εj

)
, (15b)

S
μ

(3) ≡ −2iε̄iγ μνρBνikBρ
kj εj . (15c)

Hence if we can show that the zero-th component of the current

Jμ ≡ −Gμ
νV

ν + Sμ (16)

is nonnegative J 0 ≥ 0 modulo the field equations, we can conclude the positivity of the Witten–
Nester energy. Due to the simplicity of the formula (14), our approach can circumvent complica-
tions encountered in the model-dependent analysis.

A possible way to find the gauge connections satisfying (13) is to expand them in terms of 
the Clifford basis. We give the classification of the connections in Appendix A. It turns out that 
the possible connections take the same form as those in extended supergravity if we impose an 
additional condition that V μ = iε̄iγ μεi is a Killing field when ∇̂μεi = 0 is satisfied. Note that 
this does not immediately imply that the Witten–Nester energy is positive and finite, since these 
conditions are not sufficient to prove J 0 ≥ 0, and the finiteness of the surface integral is sensitive 
to the boundary conditions for the metric, gauge fields and scalars.

3. Explicit examples

Exploiting the formulation developed in the previous section, we shall now demonstrate the 
positivity of the Witten–Nester energy for various theories. The models we shall discuss are 
all motivated by extended supergravities. The following analysis illustrates that Aμi

j and Bμij

correspond respectively to the connection of the spinor bundle and to the contribution coming 
from the flux torsion. It turns out that the positivity conditions (13) are indeed true for all models 
inspired by extended supergravities.

3.1. N = 2 minimal gauged supergravity

Let us begin with the positivity of Witten–Nester energy in N = 2 minimal gauged supergrav-
ity, i.e., the Einstein–Maxwell theory with a negative cosmological constant

L = R − FμνF
μν − 2Λ, (17)
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where F = dA and Λ = −3�−2 < 0. The field equations of this system are given by2

Gμν + Λgμν = T (em)
μν ≡ 2

(
Fμ

ρFνρ − 1

4
gμνFρσ Fρσ

)
, ∇ν

(
Fμν + i � Fμν

) = 0.

(18)

This subject was first discussed in [22] by using a single Dirac spinor. We demonstrate below 
that the argument in [22] concerning the surface integral should be refined.

The connections in the supercovariant derivative are given by

Aμi
j = i

�

(
σ 3)

i
jAμ, Bμij = 1

4
εijFνργ νργμ + i

2�

(
σ 3)

ij
γμ, (19)

where (σ I )i
j is a standard Pauli matrix, whose index is lowered by the alternate tensor εij with 

ε12 = −ε21 = 1 as (σ I )ij ≡ εki(σ
I )j

k , viz (σ 3)ij = (σ 1)i
j . Note that our convention leads to 

(σ I )ij = [(σ I )ij ]∗ which differs from the one in [29]. It is a simple exercise to verify that the 
connections (19) obey the positivity conditions (13) and (77). Hence we get

S
μ

(1) = −2

�
� Fμν

(
σ 3)

i
j
(
iε̄iγνεj

)
,

S
μ

(2) = (
T (em)μ

ν − Λδμ
ν

)
V ν − S

μ

(1), (20)

S
μ

(3) = εij

(∇νF
μν + i∇ν � Fμν

)
iε̄iεj + c.c.,

thereby the current Jμ = −Gμ
νV

ν + Sμ vanishes when the equations of motion (18) are satis-
fied. This probes that the Witten–Nester energy is indeed positive semi-definite. It is worth com-
menting that the negativity of the cosmological constant is essential. An attempt to give a positive 
cosmological constant does not work, since the positivity conditions (13) fail to hold.3 This 
would convince us that the positivity conditions (13) are indeed related to the mass positivity.

The surface integral can be expressed in terms of globally conserved quantities as follows. It 
is convenient here to exploit the Dirac spinor η = ε1 − iε2 to evaluate the surface integral. Let us 
assume that the spacetime asymptotes to the AdS at infinity following the notion of Refs. [31–34]. 
We require that the Dirac spinor η tends to the Killing spinor ζ of AdS at infinity and obeys

∇̂μη = O
(
1/r2), as r → ∞. (21)

The expression of Witten–Nester energy was derived in [22] and reads

EWN = ζ̄ JABσABζ − ζ̄ (Qe − iγ5Qm)ζ, (22)

where σAB is the generator of SO(3, 2) in the spinor representation and JAB is the SO(3, 2)

momentum (A, B, = 0, . . . , 4). Qe and Qm denote the electric and magnetic charges defined by

Qe =
∫

∂Σ

�F, Qm =
∫

∂Σ

F. (23)

2 We do not consider here the extra source terms T (mat)
μν and Jμ + iJ̃ μ to the right side of Einstein’s and Maxwell’s 

equations, respectively. The positive mass property continues to be valid provided that T (mat)
μν satisfies the dominant 

energy condition, and that Jμ and J̃ μ are future-pointing timelike vectors.
3 Unlike in the Dirac spinor formulation in [26], the “fake” Killing spinor equations for Λ = 3H 2 > 0 are not obtained 

by the simple Wick-rotation � → iH−1 of (19), since it is incompatible with raising and lowering the SU(2) indices via 
complex conjugation. In the Λ > 0 case, we have to choose Aμi

j = HAμδi
j and Bμij = εij ( 1

4 Fνργ νργμ + 1
2 Hγμ)

in order to produce the correct equations of motion [30]. The latter connection does not satisfy the positivity conditions, 

as expected. We thank D. Klemm for useful comments about this.
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Kostelecky and Perry [22] then concluded that the BPS bound should be given by M ≥
�−1|J | + √

Q2
e + Q2

m, where M = J04 and J = �J12 represent the mass and angular momen-
tum [31–34]. However, it has been pointed out in Refs. [35,36] that the magnetically charged 
Reissner–Norsdtröm-AdS solution cannot be supersymmetric.

This apparent contradiction can be resolved in the following manner. The Killing spinor ζ in 
AdS satisfies [∇μ + (1/2�)γμ]ζ = 0 and is given by [32],

ζ =
(

cosh
ρ

2
+ sinh

ρ

2
γ 1

)(
cos

t

2�
+ sin

t

2�
γ 0

)(
cos

θ

2
+ sin

θ

2
γ 12

)

×
(

cos
φ

2
+ sin

φ

2
γ 23

)
ζ0, (24)

where ζ0 is a constant Dirac spinor. Here we have employed the global coordinates,

ds2 = − coshρ2dt2 + �2[dρ2 + sinh2 ρ
(
dθ2 + sin2 θdφ2)]. (25)

The standard radial coordinate is given by r = � sinhρ. Given the explicit form of the Killing 
spinor (24), one can compute the spinor bilinears appearing in the electric and magnetic charges 
of (22) as

ζ̄ ζ = c0, (26a)

iζ̄ γ5ζ = [
c1 cos(t/�) + c2 sin(t/�)

]
coshρ

+ [
c3 cos θ + sin θ(c4 cosφ + c5 sinφ)

]
sinhρ, (26b)

where c0−5 are real constants built out of ζ0. For the choice c1−5 = 0, one can verify that 
Uμ ≡ iζ̄ γμγ5ζ = −�∇μ(iζ̄ γ5ζ ) vanishes, which in turn implies that Vμ = iζ̄ γμζ is null due 
to the Fierz identity. This boundary condition is not the case that we are interested in, so at least 
one of c1−5 is nonvanishing. It then follows that the bilinear iζ̄ γ5ζ appearing in the magnetic 
charge of (22) diverges at infinity (ρ → ∞), rendering the Witten–Nester energy (22) ill-defined. 
Moreover, the presence of magnetic charge implies that the gauge potential Aμ cannot be glob-
ally defined, otherwise the integral of Qm in (23) vanishes. It is typically singular on the axis, 
leading to the source of delta-function. Since the gauge potential Aμ appears explicitly in the 
supercovariant derivative (19), the Dirac–Witten operator γ i∇̂i therefore cannot be straightfor-
wardly invertible using Green’s function. If one attempts to remove this distributional singularity, 
the topological structure of spacetime must change, resulting in a different BPS bound [37,38]. 
In the case of asymptotically globally AdS case in the Einstein–Maxwell-Λ system, we therefore 
arrive at the inequality4

M ≥ 1

�
|J | + Qe. (27)

From the standpoint of Osp(4|2) superalgebra, the introduction of magnetic charge as central 
extension is forbidden since it fails to satisfy the Jacobi identity due to the breakdown of the 
SO(3, 2) covariance [40]. Our explanation seems more convincing in the present context since 
the positive mass theorem does not assume the underlying supergravity theories in advance.

4 The appearance of angular momentum into the Witten–Nester energy can also be understood from the fact that in 
the framework of N = 2 gauged supergravity, the bilinear vector field V μ = iζ̄ γ μζ in AdS is rotating by the constant 
angular velocity �−1 with respect to the static observer at infinity [39].
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3.2. Kähler target space

Let us next discuss the case in which the set of the complex scalar fields parameterizing the 
Kähler manifold is the source of Einstein’s equations. Namely we shall concentrate on the theory

L = R − 2Gαβ̄gμν∂μzα∂ν z̄
β̄ − V (z, z̄), Gαβ̄ = ∂2K

∂zα∂z̄β̄
, (28)

where K(z, ̄z) is a real Kähler potential and V (z, ̄z) is the potential to be determined by requir-
ing the positivity of the Witten–Nester energy. The indices α, β̄ run over any positive integers 
corresponding to the number of complex scalars. The Einstein equations following from this 
Lagrangian read

Gμν = Tμν, Tμν = 2Gαβ̄

(
∇(μzα∇ν)z̄

β̄ − 1

2
gμν∇ρzα∇ρz̄β̄

)
− 1

2
gμνV . (29)

We assume that Gαβ̄ is a positive matrix, or equivalently the null energy condition, in such a way 
that there appear no ghosts.

We take Aμi
j and Bμij satisfying the positivity condition (13) and (77) as

(Aμ)i
j = 1

4

(
Kα∂μzα − Kᾱ∂μz̄ᾱ

)
δi

j , Bμij = 1

2
eK/2Wγμδij , (30)

where Kα ≡ ∂K/∂zα . Here W = W(z) is a holomorphic function of zα and is referred to as 
a superpotential. The superpotential is assumed to transform as W → We−f under the Kähler 
gauge transformation K → K + f + f̄ . The connection Aμi

j represents the U(1)N connection.
We define the “variation of dilatini” as

δλα
i = δij γ

μ∂μzαεj − eK/2Gαβ̄Dβ̄W̄εi, (31)

which has negative chirality γ5δλ
α

i = −δλα
i . Dα denotes the Kähler U(1) covariant derivative, 

which acts on the superpotential as

DαW = ∂αW + KαW. (32)

In this case, the on-shell current Jμ takes the manifestly nonnegative form

Jμ = −(
Gμ

ν − T μ
ν

)
V ν + Gαβ̄iδλβiγ μδλα

i, (33)

provided the potential is given by

V = 2eK
(
Gαβ̄DαWDβ̄W̄ − 3|W |2), (34)

where Gαβ̄ is the inverse of Gαβ̄ and δλβi = i(δλβ
i)

†γ 0. The existence of the superpotential 
obeying the desired transformation under the Kähler gauge transformation implies that the first
Chern class of the line bundle coincides with the Kähler class, i.e., the manifold must be Hodge. 
The above discussion means that the volume integral is positive semi-definite as far as the Hodge–
Kähler target space is concerned, irrespective of the choice of superpotential.

The surface integral is finite if we impose Eq. (21) for the spinors and that the scalar fields 
fall off faster than r−3/2. This boundary condition for the scalar implies that the mass eigenval-
ues should be above the Breitenlohner–Freedman bound m2 = −9/(4�2) [41], where � is the 
BF



M. Nozawa, T. Shiromizu / Nuclear Physics B 887 (2014) 380–399 389
curvature radius of the AdS vacua.5 The finiteness of the Witten–Nester energy is not guaranteed 
for the boundary condition employed in [18], in which case the negative mass initial data can be 
constructed along the line of [42].

Despite the fact that the potential constructed from the Kähler potential and superpotential is 
in general unbounded from below and above, the AdS vacua above the Breitenlohner–Freedman 
bound are stabilized to allow the positive mass. For example, the positivity of mass for the 
bosonic sector of the gravity multiplet in N = 4 SO(4) gauged supergravity was discussed in 
Ref. [18]. In this case, the Kähler metric is given by the SU(1, 1)/U(1) coset and the superpo-
tential takes a constant value [18],

K = − ln
(
1 − |τ |2), W = √

2g, (35)

where τ is an axidilaton and g is an SO(4) gauge coupling constant. We can see that the potential 
is indeed unbounded from below and the origin is the unique vacuum with the mass spectrum 
m2 = −2�−2(×2). The analysis given in this section implies that the positivity of the mass holds 
in more general settings than the model considered in [18].

It is worthwhile to comment that the stress energy tensor for the complex scalar field does not 
respect the dominant energy condition in general. The essential requirement that has played a 
crucial role here is the null energy condition, viz., eig(Gαβ̄) ≥ 0 [26].

It should be also noticed that the number N of the Weyl spinors can be arbitrary. One may 
be suspicious that this cannot be done since N > 8 extended supersymmetric theory implies the 
necessity of introducing higher spin s > 2 fields, which is a main obstacle to construct a local 
theory. However, the spinors only play a subsidiary role in the Witten–Nester formulation as the 
bilinear vector of the asymptotic symmetry. It therefore follows that the above argument actually 
has nothing to do with the full supergravity theories incorporating the fermion interactions even 
if it implies the underlying bosonic sector of supergravity theories. Hence our analysis continues 
to be valid also in the case involving N > 8 spinors, and also in the (even) D > 11 case, although 
its relevance to the physically interesting theories is less obvious.

3.3. Einstein–Maxwell-dilaton theory

In this subsection, we consider the Einstein–Maxwell theory coupled to the dilaton field with 
a potential,

L = R − 2(∇φ)2 − h(φ)FμνF
μν − 2V (φ), (36)

where h(φ) is the dilaton coupling function and V (φ) is the potential of the dilation, both of 
which are to be determined by requiring the positive mass. The Einstein equations are given by

Gμν = Tμν,

Tμν = 2

(
∇μφ∇νφ − 1

2
gμν(∇φ)2

)
− Vgμν + 2h

(
FμρFν

ρ − 1

4
gμνFρσ Fρσ

)
. (37)

5 It is important to note that if the mass of the scalar field is in the range m2
BF ≤ m2 ≤ m2

BF + �−2, the slowly decaying 
solution is also normalizable, admitting any boundary conditions. In this case, it is unclear if the Witten–Nester energy 
coincides with other definitions of charges, e.g., the one introduced in [41]. See e.g., Refs. [42,43] for the recent work 
addressing this problem. We content ourselves here by imposing the Dirichlet boundary conditions.
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The dilaton and Maxwell equations read

∇2φ − 1

2
V ′(φ) − 1

4
h′(φ)FμνF

μν = 0, ∇ν

[
h(φ)Fμν

] = 0, dF = 0. (38)

Here the prime denotes the differentiation with respect to φ.
Setting N = 2, we choose the gauge connections satisfying (13) and (77) as follows

Aμi
j = −ig

(
σ 3)

i
jAμ, Bμij = εijK1(φ)Fνργ νργμ + iW(φ)

(
σ 3)

ij
γμ, (39)

where F = dA, g is the gauge coupling constant and K1(φ) and W(φ) are some real functions 
of φ. We further define the variation of the spin 1/2 fields as

δλi = iγ μ∇μφ
(
σ 3)

ij
εj + K2(φ)εi + (

σ 2)
i
jK3(φ)Fμνγ

μνεj , (40)

where K2,3(φ) are again real functions. A straightforward computation shows that the on-shell 
current Jμ takes the nonnegative form,

Jμ = −(
Gμ

ν − T μ
ν

)
V ν + iδλiγ μδλi, (41)

provided the Maxwell equations and the Bianchi identity dF = 0 hold, and if the following 
relations are satisfied

V = K2
2 − 12W 2, K2 = −2W ′, (42a)

h = 4
(
K2

3 + 4K2
1

)
, K2

1 ∝ h, K3 = 2K ′
1, (42b)

0 = g + 8WK1 + 2K2K3. (42c)

Eq. (42a) implies that the potential is expressed by the (real) superpotential as

V (φ) = 4
[
W ′(φ)2 − 3W(φ)2]. (43)

The differential equation (42b) can be integrated to give

h = e−2αφ, K1 = 1

4
√

1 + α2
e−αφ, K3 = − α

2
√

1 + α2
e−αφ, (44)

where α ∈R is the coupling constant of the dilaton. Finally, Eq. (42c) is solved as

W(φ) = W0e
−φ/α − g

2
√

1 + α2
eαφ, (45)

where W0 is the integration constant. Thus, in terms of the Dirac spinor η = ε1 − iε2, we have

∇̂μη =
[
∇μ + i

4
√

1 + α2
e−αφFνργ νργμ + W(φ)γμ + igAμ

]
η, (46)

δλ =
[
γ μ∇μφ − 2W ′(φ) − iα

2
√

1 + α2
e−αφFμνγ

μν

]
η. (47)

When the potential vanishes, this recovers the result in [10]. It is interesting that the superpoten-
tial and the dilaton coupling function h(φ) are completely determined by requiring the positivity 
within the class (39) and (40). If W0 is tuned suitably, the above system with α = ±√

3 is ob-
tained by the U(1)4 truncation of SO(8) maximal gauged supergravity [44].

The Einstein–Maxwell-dilaton theory admitting the positive mass allows a free parameter α, 
which characterizes how the four-dimensional theory is derived from the higher-dimensional 
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theory. One may hope from the positive mass theorem above that this theory can be embedded 
into supergravity for an arbitrary value of α. In order to see this, let us consider the BPS system 
described by [25]

∇̂μη = 0, δλ = 0. (48)

The first relation is first-order differential equation, while the second is purely algebraic. Then it 
is not obvious for this BPS system to have a solution, thereby we have to check the integrability. 
Acting γ ν∇ν to δλ = 0 and using ∇̂μη = 0, we obtain

0 =
[
∇2φ + 4W ′(3W − W ′′) + α

2
e−2αφFμνF

μν

+ ie−αφ

√
1 + α2

{
α
(
W − W ′′) + (

α2 − 1
)
W ′}

− iα√
1 + α2

{
e−αφ

(∇μ � Fμν
)
γνγ5 + eαφ∇μ

(
e−2αφFμν

)
γν

}

+ iγ5α(α2 − 3)

2(1 + α2)
e−2αφFμν � Fμν

]
η. (49)

Assuming the dilaton field equation, the Maxwell equation and the Bianchi identity, the first 
three lines of (49) drop out [note that the second line vanishes due to (45)]. However, the term 
at the last line remains nonvanishing unless α(α2 − 3)F ∧ F = 0. Hence it follows that the 
first-order system (48) does not allow solutions in general except for α = 0 or α = ±√

3. The 
latter is obtained by the Kaluza–Klein reduction of five-dimensional gravity if the potential is 
absent [44]. This means that the general coupling case cannot be embedded into supergravity. 
Since the F ∧F �= 0 case corresponds to the dyonic metric, the purely electric/magnetic solution 
may admit Killing spinors as in the massless case [25].

3.4. N = 8 supergravity

Finally, let us see the case of N = 8 gauged supergravity. In Ref. [18], the positivity of the 
Witten–Nester energy was explored for the electric SO(8) gauging models constructed by de Wit 
and Nicolai [45]. In recent years we have witnessed a lot of progress in N = 8 gauged super-
gravity. Of particular interest is the discovery of the one-parameter family of the deformation of 
SO(8) gaugings [46] (see [47] for the deformation of the SL(8)-type gaugings). The deformed 
theory displays considerably rich physics compared to the undeformed one, since it admits new 
kinds of vacua [48,49] and new supersymmetry breaking patterns [48,50]. The deformation pa-
rameter might give rise to a new interpretation to M-theory embeddings and their field theory 
duals. Although the higher-dimensional origin of the noncompact gaugings is not identified yet, 
it has been extensively studied recently from the viewpoint of generalized geometry (see e.g., 
[51] and references therein). Hence it is intriguing to see whether the positivity of Witten–Nester 
energy depends on the deformation and the underlying gauging group. In particular, the noncom-
pact gaugings might be associated to the ghost contribution, hence the positive mass property is 
quite nontrivial.

The recent development of N = 8 gauged supergravity is based on the embedding tensor 
formalism [52], by which we can discuss in a duality covariant manner how to gauge a group 
by introducing additional 28 magnetic vector fields. The embedding tensor ΘM

α specifies how 
to choose the gauge group G inside E7(7), and defined by the relation XM = ΘM

αtα , where 
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tα and XM are the generators of E7(7) and G, respectively. Here α, β, . . . = 1, . . . , 133 and 
M, N, . . . = 1, . . . , 56 are the adjoint and fundamental of E7(7). The consistent gaugings amount 
to requiring that the embedding tensor obeys linear and quadratic constraints [52]. The linear 
constraint implies that ΘM

α is sitting in the 912 representation of E7(7), whereas the quadratic 
constraint corresponds to the closure condition ΩMNΘM

αΘN
β = 0, where ΩMN = iσ2 ⊗ I28

is the Sp(56, R) invariant metric. Once the symplectic frame is chosen, the gauging can be done 
by the replacement ∂μ → Dμ = ∂μ − gAμ

MΘM
αtα , where g is the gauge coupling constant and 

Aμ
M consists of electric and magnetic vectors Aμ

M = (Aμ
Λ, AμΛ).

Einstein’s equations read [53]

Gμν = Tμν,

Tμν ≡ 1

6
P(μ

ijklPν)ijkl −
(

1

12
|Pρ |2 + V

)
gμν +H+

(μ
ρ

ijH−
ν)ρ

ij , (50)

where Pμijkl is the self-dual vector field which corresponds to the kinetic term for scalars param-
eterizing the E7(7)/SU(8) coset space, and given in terms of the mixed coset representative VM

N

as Pμijkl = iΩMNVMijDμVNkl , where Dμ is the SU(8) covariant derivative [52]. The potential 
V arises from the O(g2) corrections for the supersymmetry transformation and is constructed 
out of the T -tensor as [52]

V = g2
(

1

24

∣∣A2i
jkl

∣∣2 − 3

4

∣∣A1
ij
∣∣2

)
. (51)

Here A1 and A2 denote the 36 and 420 irrep of the SU(8).
The embedding tensor keeps the U-duality covariance at the price of introducing additional 

28 magnetic vector fields AμΛ, in addition to the usual electric vector fields Aμ
Λ. This renders 

the usual field strength Fμν
M = 2∂[μAν]M + gX[NP ]MAN

μ Aν
P defined by the Ricci identity 

[Dμ, Dν] = −gFμν
MXM no longer covariant. A proposed prescription to overcome this is to 

introduce a tensorial auxiliary field Bμνα [54], which can be used to construct a covariant field 
strength Hμν

M = Fμν
M + gZM,αBμνα , where ZM,α ≡ 1

2ΩMNΘN
α . Using the electric part of 

this field strength, it turns out that the following vector field strength transforms as a symplectic 
vector,

G+
μν

M =
(

H+
μν

Λ

NΛΣH+
μν

Σ + 2iO+
μνΛ

)
, (52)

where NΛΣ =N(ΛΣ) is the kinetic term for the vector fields defined by VΣijNΛΣ = −VΛ
ij , and 

O+
μνΛ describes the fermion contribution [52] which is taken to vanish in our computation, and 

“+” stands for the self-dual part, i.e., G+
μν

M = 1
2 (Gμν

M −i �Gμν
M). The quantity H+

μνij appear-
ing in Einstein’s equation is dressed by a mixed coset representative as H+

μνij ≡ VMijG+
μν

M . In 
terms of these ingredients, the equation for the vector fields is given by [53]

Eμ
ij ≡DνH+μν

ij +PνijklH−μνkl + g

3
A2[inklPμ

j ]nkl = 0. (53)

We now turn to the discussion for the positive mass. As a connection Aμi
j , we choose (half 

of) the SU(8) connection Aμi
j = 1

2Qμi
j with Qμ

i
j = −Qμj

i and Qμi
i = 0. This connection 

obviously satisfies the positivity condition. Hence the current Sμ

(1) can be written in terms of the 
SU(8) curvature Fμν(Q)i

j = 2∂[μQν]i j + Q[μi
kQν]kj . Note that a physical degree of freedom 

is not encoded in this field, since SU(8) is the maximal compact subgroup of E7(7). Using the 
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Maurer–Cartan equations [see Eq. (3.5) of [53]], the SU(8) curvature is expressed by other fields 
and the current Sμ

(1)
is given by

S
μ

(1) = −2

3
Pν

jklmPρiklm

(
iε̄iγ μνρεj

) + g
(
�FμνM

)
QMi

j ε̄iγνεj , (54)

where QMi
k = 2

3 iΩNPVNijXMP
QVQ

kj .
Let us take the connection Bμij satisfying the positivity condition as

Bμij =
√

2

8
H+ρσ

ij γρσ γμ + g√
2
A1ij γμ. (55)

The T -tensor variational identity [Eq. (D2) of [53]] leads to DμA1
ij = − 1

3Pμ
klm(iA2

j)
klm, 

which yields

S
μ

(2) = √
2
[
DνH+μν

ij

(
iε̄iεj

) −DνH−μνij (iε̄iεj )
]

+
√

2g

3

(
Pνklm(iA2j)

klmiε̄iγ μνεj −Pν
klm(iA2

j)
klmiε̄iγ

μνεj

)
. (56)

A simple computation shows that

S(3)μ = −2H+
(μ

ρ
ikH−

ν)ρ
kj

(
iε̄iγ νεj

) + 6g2A1ikA1
kj

(
iε̄iγμεj

)
+ 2g

[
A1ikH−

μν
kj

(
iε̄iγ νεj

) −H+
μνikA1

kj
(
iε̄iγ νεj

)]
. (57)

Finally we define the variation of dilatini as

δχijk = −2
√

2Pμijklγ
μεl + 3

2
γμνH+μν [ij εk] − 2gA2

l
ijkεl . (58)

The self-dual property of Pμijkl implies P(ν
ijklPρ)ijkm = 1

8PνijknPρ
ijknδm

l , hence after some 
calculations we find

iδχijkγ μδχijk = −18
(
H+μρ

ijH−
νρ

[ij +H+
νρ ijH−μρ[ij )iε̄k]γ νεk

− 12
√

2
[
H+μν

ijPν
ijkm(iε̄mεk) +H−μνijPνijkm

(
iε̄kεm

)]
− 12g

[
H+μ

νijA2m
ijk

(
iε̄mγ νεk

) +H−μ
ν
ijAm

ijk

(
iε̄kγ νεm

)]
+ 8iε̄lγ μνρεmPνijklPρ

ijkm + 4g2A2l
ijkA2

m
ijkiε̄

lγ μεm

− (
PμijklPνijkl +Pμ

ijklPν
ijkl − δμ

ν |P|2)iε̄mγ νεm

+ 4
√

2g
(
iε̄lεmPμ

ijkmA2l
ijk + iε̄lεmPμijklA2

m
ijk

)
+ 4

√
2g

(
iε̄lγ μνεmPν ijkmA2l

ijk − iε̄lγ
μνεmPν

ijklA2
m

ijk

)
. (59)

Focusing on terms proportional to iε̄iγ νεj in (57) and (59), the following relation holds

H+
μνkl

(
A2i

jkl + 2A1
j [kδl]

i

) +H−
μν

kl
(
A2

j
ikl + 2A1i[kδl]j

)
= −4

3

(
H+

μνklTi
jkl +H−

μν
klT j

ikl

)
= −iΩMNQMi

j
(
G+

μν
PVPklVN

kl + G−
μν

PVP
klVNkl

)
= −ΩMNΩPNQMi

j
(
G+

μν
P − G−

μν
P
) = iQMi

j � Gμν
M, (60)
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where we have used VM
ijVNij −VMijVN

ij = iΩMN , G+
μν

PVP
kl = − 1

2O+
μν

kl and ΩMNΩPN

= δP
M . Due to the property ZM,αXM = 0, we have �(FM − GM)μνQMi

j = �(HM − GM)μν ×
QMi

j = 0, where the second equality follows from the equations of motion of Bμνα . Combined 
with the fact that the T -tensor identity [Eq. (3.30) of [52]] implies

V δl
m = g2

(
1

3
A2l

ijkA2
m

ijk − 6A1liA1
mi

)
, (61)

it follows that the terms involving iε̄iγ νεj are canceled out except for the stress energy tensor. 
We therefore arrive at

Sμ = T μ
ν

(
iε̄iγ νεi

) + 1

12
iδχijkγ μδχijk + √

2
[(

iε̄iεj
)
Eij

μ − (iε̄iεj )E
ijμ

]
. (62)

This is the desired one which gives rise to the positive contribution to the Witten–Nester energy 
when the bosonic equations of motion (53) are satisfied, that is, the on-shell current Jμ becomes

Jμ = 1

12
iδχijkγ μδχijk. (63)

In deriving Eq. (62), we have used the Maurer–Cartan equations and the T -tensor iden-
tities. The Maurer–Cartan equation is derived based upon the closure relation [XM, XN ] =
−XMN

P XP , whereas the T -tensor identities are coming from the branching of 912 of E7(7)

into irrep of SU(8). This means that the positivity of Witten–Nester energy holds as long as the 
linear and quadratic constraints on the embedding tensor are satisfied (but the explicit solutions 
for these constraints are unnecessary). Namely, the positivity property continues to be valid for 
the consistent gaugings for any symplectic frames. This is a generalization of the result in [18], 
where the positivity has been shown for the SO(8) electric gaugings of de Wit and Nicolai [45].

4. Summary

Inspired by the recent sparkling development of our understanding the extended supergravi-
ties, this article studied the positivity of mass in these theories. We presented a formulation for 
the positivity of Witten–Nester energy in terms of Weyl spinors. We found that the positivity 
conditions (13) should be satisfied as a minimal requirement for the positivity. These conditions 
are the direct generalization of the one proposed in our previous paper [26].

We derived the universal formula (14) under the positivity conditions. Of particular use of this 
formula is its simplicity, allowing one to evaluate the mass positivity without lengthy computa-
tions as have been done in the literature. Although we have explored the “positivity conditions” 
for particular theories inspired by supergravity, we have verified that this is indeed true for all 
ungauged models in [55]. We gave a detailed proof for the classification of the connection in 
Appendix A. If we required that the bilinear vector field is a Killing vector for BPS states, it 
turned out that the possible connections take the same form as those appearing in extended su-
pergravities (except for the unusual type of “trombone gaugings”). There should presumably be 
a profound reason for this. We leave the deeper investigation for future study.

We revealed various new aspects that have been overlooked in the past studies and provided 
a generalization of the mass positivity proof considered in the literature. We first revisited the 
minimal N = 2 gauged supergravity, for which the contribution of the magnetic charge to the 
BPS-type inequality was reconsidered. We argued the absence of magnetic charge without re-
sorting the supersymmetry algebra. We expect that the similar argument can be carried out for the 
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matter-coupled N = 2 supergravity [29]. As a generalization of the result in [18], it was shown 
that the positivity holds as far as the target space of the complex scalar is the Hodge–Kähler. This 
is a gratifying result from the viewpoint of scalar-multiplet in supergravity. In Einstein–Maxwell-
dilaton theory, we showed that the dilaton coupling function and the superpotential are severely 
constrained due to the positive mass property. The supergravity embedding was explored by in-
vestigating the integrability condition for the dilation variation, allowing us to find that this is the 
case for the particular values of the coupling constant. We also extended the result of Ref. [18]
concerning the N = 8 gauged supergravity by making use of the modern formulation based upon 
the embedding tensor. Recent development of the maximal gauged supergravity revealed that the 
deformed theories display interesting physics quite different from those predicted in undeformed 
theory. Despite that the positive mass property is obscure for deformed theories and for noncom-
pact gaugings, we nevertheless demonstrated that the mass positivity is insensitive to the gauging 
and deformation parameter, as far as the linear and quadratic constraints on the embedding tensor 
are satisfied.

Recently, several gravitational theories have been considered motivated by dark energy. Most 
of these theories are phenomenological and suffer from various stability problems. These theories 
may be constrained by requiring the positive mass, as discussed in [26,27]. For these purposes, 
the results of Section 2 and Appendix A would be of great help, since the possible connections 
are highly restricted. Looking for modified gravitational theories admitting the positive mass and 
the (bosonic sector of) supergravity with noncanonical scalar fields are interesting future work. 
We hope to report the results in a separate paper.
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Appendix A. Classifying the positivity conditions

In the body of text, we imposed the conditions (13) on the connections in the supercovariant 
derivatives for the positivity of the Witten–Nester energy. Here we give a classification of the 
connection satisfying the positivity conditions (13).

Our strategy here is to expand the connections in terms of the Clifford basis {I, γ5, γμ,

γμγ5, γμν}. Taking into account the commutation relation (4), the connections Aμi
j and Bμij

can be expanded as6

6 Expressions (64) and (65) are actually redundant, since Aμi
j (Bμij ) acts on the spinors with negative (positive) 

chirality. Hence a(2) and b(2) can be absorbed respectively into a(1) and b(1) , and a(3) can be chosen to satisfy 
1
2 ενρ

στ a(3)μστ = ia(3)μνρ . If this is done, however, the positivity conditions (13a) and (13b) must be projected by 1 −γ5
and 1 + γ5, respectively. In this case, one must take great care of the dual of the form fields. In order to circumvent this, 
we leave the chiral matrix in (64) and (65), for which the basis {I, γ5, γμ, γμγ5, γμν } is independent. The redundancy 
can be removed by taking a(2) → −a(1) , b(2) → b(1) , 1 ενρ

στ ã(3)μστ = iã(3)μνρ and a(3)
ρ

ρμ = − i ενρσμa(3)
[νρσ ]
2 2



396 M. Nozawa, T. Shiromizu / Nuclear Physics B 887 (2014) 380–399
Aμi
j = a(1)μi

j
I+ a(2)μi

j γ5 + a(3)μνρi
j γ νρ, (64)

Bμij = b(1)μνij γ
ν + b(2)μνij γ

νγ5, (65)

where a(1−3) and b(1−2) are N × N matrix-valued tensorial fields with a(3)μνρ = a(3)μ[νρ].
Let us begin with the case of Bμij . Substituting (65) into (13), expanding again by the Clifford 

basis and comparing the coefficients of the both sides of equation, we can get two set of relations

b(1)[μν]ij = −b(1)[μν]ji , b(2)[μν]ij = −b(2)[μν]ji , (66)

b(1)ρ
[μ

ij δ
ν [τ δρ]

λ] + i

2
b(2)ρ

[μ
ij ε

νρ]
τλ = b(1)ρ

[μ
jiδ

ν [τ δρ]
λ] + i

2
b(2)ρ

[μ
jiε

νρ]
τλ. (67)

Contracting indices of (67) and using (66), we obtain

b(1)(μν)ij = b(1)(μν)ji , b(2)(μν)ij = b(2)(μν)ji , b(1)[μν]ij = − i

2
εμνρσ b(2)

ρσ
ij . (68)

b(1,2)(μν) can be further decomposed into trace and trace-free parts as

b(I)(μν)ij = 1

4
gμνb(I)ρ

ρ
ij + b̂(I )(μν)ij , b̂(I )ρ

ρ
ij = 0, I = 1,2. (69)

One can similarly obtain the relation for the coefficients a(1−3) as above. Suppressing the 
indices i, j, . . . , the 3-tensor a(3)μνρ has 24 components. Hence it is decomposable into the irre-
ducible parts 24 → 4 + 16 + 4 as

a(3)μνρ = a(3)[μνρ] + ã(3)μνρ − 2

3
a(3)

σ
σ [νgρ]μ, (70)

where ã(3)μνρ ≡ 2
3 (a(3)μνρ − a(3)[νρ]μ + a(3)σ

σ [νgρ]μ) satisfies

ã(3)μνρ = ã(3)μ[νρ], ã(3)
σ

σμ = ã(3)
σ

μσ = 0, ã(3)[μνρ] = 0. (71)

Noting that γ5 is pure-imaginary and anti-symmetric in our convention, insertion of (64) into 
(13) yields

a(3)[μνρ]i j = −a(3)[μνρ]j i , ã(3)μνρi
j = 0, a(3)

ρ
ρμi

j = a(3)
ρ

ρμ
j
i ,

a(1)μi
j + a(1)μ

j
i = −4

3
a(3)

ρ
ρμi

j , a(2)μi
j + a(2)μ

j
i = −2

3
iενρσμa(3)

[νρσ ]
i
j . (72)

Eqs. (66), (68) and (72) are exhaustive constraints arising from the positivity conditions (13)
(see also the comments in footnote 6). One can easily verify that all connections considered in 
the body of text satisfy these relations. Comparing with the model of Einstein–Maxwell-dilaton 
theory in Section 3.3, one sees that b(1)[μν][ij ] term correspond to the Maxwell field, a(1)μi

j is 
the gauge connection and b(1)ρ

ρ
(ij) denotes the superpotential contributions.

Although the positivity conditions (13) put some restrictions to the possible form of the con-
nections, some unfamiliar terms (a(3)

ρ
ρμ and b̂(1)μν ) remain. Eq. (72) implies that a(1) fails to 

describe the connection contained in the subgroup of U(N) if a(3)
ρ

ρμ is nonvanishing. Also, 
there exist no supergravity models which contain b̂(1)(μν)ij = b̂(1)(μν)(ij) (see e.g., [55] for 

[see (70) for definition] at the final expression. Because of this, the imaginary self-dual property of b(1)[μν] follows from 
(68).
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ungauged models). Hence the positivity conditions leave some more freedom than extended su-
pergravity models, although it is not clear yet such terms in fact produce the positive and finite
Witten–Nester energy.

Nevertheless, we can fix these remaining terms as follows. Let us consider the case in which 
∇̂μεi = 0 is satisfied, for which the spacetime is in “BPS.” If the supergravity embedding is 
indeed possible, the bilinear vector V μ = iε̄iγ μεi vector turns out to be a Killing field for the 
BPS metric [15].7 Hence it might be reasonable to require that V μ = iε̄iγ μεi satisfies the Killing 
equation when ∇̂μεi = 0 is satisfied. This gives

0 = ∇(μVν)

= iε̄i
[
γ 0(A(μ

j
i

)T
γ 0γν) − γ(νAμ)i

j
]
εj + iε̄iγ(μBν)

ij εj − iε̄iγ(μBν)ij ε
j , (73)

where we have used iε̄iγ
0(B(μ

ji )T γ 0γν)εj = −iε̄iγ(νBμ)
ij εj . It follows that Aμi

j obeys

γ 0(A(μ
j
i

)T
γ 0γν) = γ(νAμ)i

j . (74)

Substituting (64) into the above equation and using (72), we have further constraints

a(3)ρ
ρ

μi
j = 0, a(3)[μνρ]i j = 0. (75)

This implies that a(1)i
j = −a(1)

j
i , viz., a(1) is anti-hermitian and therefore describes the con-

nection contained in U(N).
For the connection Bμij , Eq. (73) does not imply γ(μBν)ij = 0 since the property (2) must 

be taken into account. With this remark in mind, the condition ε̄iγ(μBν)ij ε
j = 0 yields

b̂(I )(μν)ij = 0, I = 1,2. (76)

After the replacement a(2) → −a(1), b(2) → b(1) with chiral projections, we finally arrive at

Aμi
j = Aμi

j
I, Bμij = W(ij)γμ + Fμν[ij ]γ ν, (77)

where Aμ is anti-hermitian, W(ij) is an N × N symmetric matrix and Fμν = F[μν] is imaginary 
self-dual �Fμν = iFμν . This is exactly the same form as those appearing in extended supergravity 
models considered thus far.8 It therefore turns out that the conditions (13) and (73) are closely 
related to the construction of extended supergravity. Note however that the condition (77) is not 
sufficient to probe that the Witten–Nester energy is positive nor the supergravity embedding is 
possible. For example, the connection Aμi

j in the maximal gauged supergravity is not U(8) but 
SU(8) [i.e., Tr(Aμ) = 0], which corresponds to the R-symmetry.

Since V μ = iε̄iγ μεi generates an asymptotic time translation at infinity, the condition (73)
requires that this asymptotic symmetry is enhanced to the exact symmetry for the configuration 
in which ∇̂μεi = 0 is satisfied. This is in accordance with the intuition that the BPS states are in 
mechanical equilibrium for which gravitational attractions and moduli fields are compensated by 
the electromagnetic repulsive forces, implying the existence of the Killing field.

7 The Einstein–Maxwell-dilaton theory does not have a supergravity origin for the general coupling as shown in Sec-
tion 3.3, yet this property continues to hold and the positivity condition is also met. In the Einstein-Λ(> 0) system for 
which the positivity condition is not satisfied, the bilinear vector field also fails to be a Killing vector.

8 More precisely, this is true except for the gauged supergravity in which the “trombone symmetry” is gauged. In this 
case, b(1)ρ

ρ [ij ] = 0 is not satisfied [53]. This accords with the intuition since this kind of gaugings contributes positively 
to the cosmological constant and even more this theory does not have a covariant action (even in the electric gaugings). 
It would be interesting to understand better this fact and its relation to the positivity conditions.
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Though we did not discuss the new types of connections in the body of text, the results of this 
appendix will be instrumental for constructing (bosonic sector of) supergravity incorporating 
noncanonical scalar fields and constraining modified theories of gravity.
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