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We examine a spiralling slender viscous jet emerging from a rapidly rotating orifice,
extending Wallwork et al. [I.M. Wallwork, S.P. Decent, A.C. King, R.M.S.M. Schulkes, The tra-
jectory and stability of a spiralling liquid jet. Part 1. Inviscid theory, J. Fluid Mech. 459
(2002) 43–65] by incorporating viscosity. The effects of viscosity on the trajectory of the
jet and its linear instability are determined using a mixture of computational and asymp-
totic methods, and verified using experiments. A non-monotonic relationship between
break-up length and rotation rate is demonstrated with the trend varying with viscosity.
The sizes of the droplets produced by this instability are determined by considering the
most unstable wave mode. It is also found that there is a non-monotonic relationship
between droplet size and viscosity. Satellite droplet formation is also considered by analys-
ing very short wavelength modes. The effects of long wavelength modes are examined, and
a wave which propagates down the trajectory of the jet is identified for the highly viscous
case. A comparison between theoretical and experimental results is made, with favourable
agreement. In particular, a quantitative comparison is made between droplet sizes pre-
dicted from the theory with experimental observations, with encouraging agreement
obtained. Four different types of break-up are identified in our experiments. The experi-
mentally observed break-up mechanisms are discussed in light of our theory.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In Wallwork et al. [1] we presented asymptotic and numerical results for an inviscid liquid emerging from a rapidly rotat-
ing container. Experimental results were given for a low viscosity liquid, showing good agreement between theory and
experimental data. This work has applications to prilling [2] which is a common industrial technique for producing pellets
(for example, fertiliser and magnesium pellets). In this process thousands of liquid jets emerge from a specially perforated
rapidly rotating drum. Each jet follows a curved trajectory and breaks up into droplets due to a surface tension driven insta-
bility. These droplets cool and solidify forming pellets. There are numerous economic reasons for wanting to control this
instability process (including the optimization of the process, the uniformity of the product, and the minimization of satellite
drop formation to decrease waste). We wish to control this instability by forcing the jet at the orifice by using a vibration
(either by vibrating the nozzle or using acoustic insonification), and this will force the jet giving droplets of a desired size.
However, this cannot be done until a thorough understanding of the instability has been achieved.

Previous work presented on this prilling scenario has examined inviscid liquids [1,3,4]. However, in industrial settings,
the liquids used are viscous. Typically, liquids used in prilling have viscosities ranging over approximately
10�3 � 100 kg m�1 s�1, and the rotation rate of the drum is typically several hundred revolutions per minute or more.
. All rights reserved.
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There is previous work detailing viscous jets, namely experimental work presented by Partridge et al. [5] and non-linear
analysis presented by Părău et al. [6]. In Părău et al. [6] many assumptions were made. It was assumed that the trajectory of
the jet can be computed without considering the viscosity of the liquid, and it was assumed that waves on the jet were al-
ways long when compared to the radius of the jet. In addition, it was assumed that the unstable waves always propagate
away from the orifice and never towards the orifice. It was also assumed that the instability can always be described using
a temporal rather than a spatial instability approach. These four assumptions are not made here, and instead we take a more
careful look at the influence of viscosity on the jet. We shall find circumstances in which the assumptions made in Părău
et al. [6] were realistic, but others in which they are not. We concentrate on the Newtonian model for viscosity here due
to the complexity of the equations produced even in this situation, though non-Newtonian models are of considerable engi-
neering interest and will be considered in future publications.

Rayleigh [7] and Weber [8] incorporated viscosity into the linear instability calculation for a straight jet. Here we firstly
determine the effect of viscosity on the trajectory of our curved jets, and then apply the methods of Rayleigh and Weber to
determine the viscous instability of our curved jets. We will also follow the spatial stability methodology of Keller et al. [9],
before presenting some experimental results for viscous Newtonian liquids. We consider short and long wavelength modes,
main and satellite drop formation, and the break-up length in detail. We also discuss the dynamics of break-up and identify
four different types of break-up.

Other works on curved liquid sheets and jets are summarised and referenced in part I of this work [1]. Important works
include Tuck [10], Vanden-Broeck and Keller [11], Entov and Yarin [12], Dias and Vanden-Broeck [13], Yarin [14] and Cum-
mings and Howell [15]. In particular, Dias and Vanden-Broeck [13] investigated steady two-dimensional inviscid solutions
with gravity, determining the trajectory of the flow, and Cummings and Howell [15] investigated nearly straight slender vis-
cous fluid fibres arising in extrusion problems.
2. The equations of motion

We consider a circular cylindrical container of radius s0 rotating about its axis with rotation rate X. A viscous jet emerges
from an orifice on the curved surface of the cylinder. This is the scenario in industrial prilling.

We derive non-dimensional equations of motion following Wallwork et al. [1] but incorporating viscosity. We work in a
rotating reference frame in which the orifice is fixed. If g is the acceleration due to gravity and s0 is the radius of the drum,
then we assume that s0X

2 � g so that the jets do not fall significantly out of plane before breaking up into drops. This is a
reasonable assumption to make as we are modelling jets emerging from a rapidly rotating cylinder used in the prilling pro-
cess, and so the effect of rotation is much larger than that of gravity. We use a curvilinear coordinate system ðs;n;/Þ where s
is the arclength along the centreline of the jet from the orifice, and ðn;/Þ are plane polar coordinates in any cross-section of
the jet. The centreline of the jet is at Xiþ Zk where i and k are unit vectors in Cartesian coordinates, with the origin X ¼ Z ¼ 0
at the centre of the orifice, where the x-axis is directed normal to the surface of the container in the initial direction of the jet
and the z-axis is orthogonal to the x-axis in the plane of the centreline of the jet. The positive z-axis points in the opposite
direction to the motion of the container. Also, X ¼ Xðs; tÞ and Z ¼ Zðs; tÞwhere t is time. The y-axis is in the same direction as
the axis of the cylinder, so the centreline of the jet lies in the plane y ¼ 0.

We non-dimensionalise using the transformations
�u ¼ u
U
; �v ¼ v

U
; �w ¼ w

U
; �p ¼ p

qU2 ; �n ¼ n
a
; � ¼ a

s0
;

R ¼ R
a
; �s ¼ s

s0
; �t ¼ tU

s0
; X ¼ X

s0
; Z ¼ Z

s0
;

ð1Þ
where U is the exit speed of the jet in the rotating frame, q is the liquid density, a the radius of the orifice, � is an aspect ratio,
p is the pressure, R is the jet radius and u, v and w are the tangential, radial and azimuthal velocity components relative to the
centreline of the jet, respectively. The bars denote dimensionless quantities in the above expressions. Then the jet velocity is
u ¼ ues þ ven þwe/, where es is the unit vector tangential to the jet’s centreline, and en and e/ are the usual plane polar
coordinate unit vectors in any cross-section of the jet.

We drop the overbars and derive the continuity equation, the Navier–Stokes equations, with the kinematic condition, tan-
gential and normal stress conditions on the jet’s surface n ¼ Rðs;/; tÞ in this coordinate system. (The equations are written
out in full in Părău et al. [6]).

We also have an arclength condition which is
X2
s þ Z2

s ¼ 1; ð2Þ
since s is the arclength along the centreline and subscripts in s refer to derivatives with respect to s. In addition we have
v ¼ w ¼ 0 on n ¼ 0; ð3Þ
since on the centreline of the jet at n ¼ 0 there must be purely tangential flow.
The initial conditions at the orifice ðs ¼ 0Þ are X ¼ Z ¼ Zs ¼ 0;Xs ¼ 1;R ¼ 1 and u ¼ 1. The dimensionless parameters are

the Weber number We ¼ qU2a=r, the Rossby number Rb ¼ U=ðs0XÞ, the aspect ratio � ¼ a=s0 (which we choose to be small
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and base our asymptotics on it: this will correspond to a slender jet) and the Ohnesorge number Oh ¼ l= ffiffiffiffiffiffiffiffiffiffiraqp
, where r is

the surface tension of the liquid and l is the liquid’s viscosity. The rotation rate of the drum is X. Note that we choose the
lengthscale in our viscous parameter Oh to be a rather than s0 so that this represents viscous shear across the width of the jet.
Typical values for industrial scale prilling are 0 < Oh < 3, 0:01 < Rb < 1;10 < We < 1000, and � � 0:01.
3. Asymptotic form of the steady state solutions

In Wallwork et al. [1] an inviscid steady jet trajectory and steady expressions were obtained for the velocity, pressure and
jet radius based upon a regular slender jet asymptotic expansion using 0 < �� 1. We here extend this calculation to include
viscosity.

We take w ¼ 0 so that is there is no velocity component in the azimuthal direction (no swirl), as in Wallwork et al. [1]. We
apply the steady slender jet expansions from Wallwork et al. [1], namely
u ¼ u0ðsÞ þ �u1ðs;n;/Þ þ Oð�2Þ;
p ¼ p0ðs;n;/Þ þ �p1ðs;n;/Þ þ Oð�2Þ;
R ¼ R0ðsÞ þ �R1ðs;/Þ þ Oð�2Þ;
X ¼ X0ðsÞ þ �X1ðsÞ þ Oð�2Þ;

9>>>=>>>; ð4Þ
where ui ¼ uies þ v ien, v0 ¼ 0, and Xi ¼ Xiiþ Zik for i ¼ 0;1; . . . For simplicity of notation, we write the leading-order com-
ponents X0 and Z0 as X and Z, respectively. We obtain the leading-order equations
n
du0

ds
þ v1 þ n

@v1

@n
¼ 0; ð5Þ

u0
du0

ds
¼ � @p0

@s
þ 1

Rb2 ððX þ 1ÞXs þ ZZsÞ þ
Oh

We1=2

1
n
@u1

@n
þ @

2u1

@n2 þ
1
n2

@2u1

@/2

 !
; ð6Þ

@p0

@n
¼ 0; ð7Þ

� cos / XsZss � XssZsð Þu2
0 ¼ �

@p1

@n
� 2u0 cos /

Rb
þ cos /

Rb2 ðX þ 1ÞZs � ZXsð Þ þ Oh

We1=2

1
n
@v1

@n
þ @

2v1

@n2 þ
1
n2 �v1 þ

@2v1

@/2

 ! !
;

ð8Þ
@p0

@/
¼ 0; ð9Þ

sin / XsZss � XssZsð Þu2
0 ¼ �

1
n
@p1

@/
þ 2u0 sin /

Rb
þ sin /

Rb2 ZXs � ðX þ 1ÞZsð Þ þ Oh

We1=2

2
n2

@v1

@/

� �
; ð10Þ

u0
dR0

ds
¼ v1 on n ¼ R0; ð11Þ

@u1

@n
¼ u0 cos / XsZss � XssZsð Þ on n ¼ R0; ð12Þ

p0 ¼
1

nWe
on n ¼ R0; ð13Þ

p1 �
2Oh

We1=2

@v1

@n
¼ 1

We
� 1

R2
0

R1 þ
@2R1

@/2

 !
þ cos / XsZss � XssZsð Þ

 !
on n ¼ R0; ð14Þ

v1 ¼ 0 on n ¼ 0; ð15Þ
X2

s þ Z2
s ¼ 1: ð16Þ
We can define a Reynolds number Re ¼
ffiffiffiffiffiffiffi
We
p

=Oh ¼ qUa=l and Re ¼ Oð1Þ. Therefore fRe ¼ Re=� ¼ qUs0=l ¼ Oð��1Þ. Hence
we are in a high Reynolds number limit for Reynolds numbers based on arclengths of order s0. This scaling for viscosity used
in this paper is necessary so that in the following section we will obtain a linear dispersion relation for unsteady travelling
waves that is a curved jet generalisation of the classical straight viscous jet result of Weber [8]. This results in viscous terms
in (5)–(16) as shown above. However, we will show that these equations actually produce at leading-order the same trajec-
tory as in the inviscid case given by Wallwork et al. [1].

From the continuity equations (5) and (15) we obtain v1 ¼ �ðn=2Þðdu0=dsÞ. Substituting this expression for v1 into Eqs.
(8) and (10), we find that the viscous terms on the right hand sides of these equations become identically equal to zero.
Therefore viscosity now only appears in the above equations in (6) and (14). We can rewrite (6) as
f ðsÞ ¼ r2
n;/u1; ð17Þ
where
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r2
n;/ ¼

1
n
@

@n
þ @2

@n2 þ
1
n2

@2

@/2
is the in-plane Laplacian operator. Eqs. (7) and (9) imply that p0 ¼ p0ðsÞ. In (17), f ðsÞ ¼We1=2ðu0du0=dsþ dp0=ds�
ððX þ 1ÞXs þ ZZsÞ=Rb2Þ=Oh.

We therefore have to solve (17) subject to boundary condition (12). This is a Neumann problem on a circular domain,
where s is a parameter. To determine a solvability condition we multiply Eq. (17) by ûðs;n;/Þ and integrate the result over
the domain of interest S ð0 6 n 6 R0; 0 6 / 6 2pÞ giving
Z Z

S
ûr2

n;/u1 dS ¼
Z Z

S
ûf ðsÞdS; ð18Þ
where û satisfies the homogeneous Neumann problem, so that
r2
n;/û ¼ 0 with

@û
@n
¼ 0 on n ¼ R0: ð19Þ
Green’s identity gives
Z Z
S

ûr2
n;/u1 dS ¼

Z
B

û
@u1

@n
dB; ð20Þ
where B is the boundary of S. From (12), (18) and (20) we obtain
Z 2p

0

Z R0

0
ûnf ðsÞdnd/ ¼

Z 2p

0
û
@u1

@n

� �
n¼R0

R0 d/ ¼
Z 2p

0
½û�n¼R0

R0gðsÞ cos /d/; ð21Þ
where gðsÞ ¼ u0ðXsZss � XssZsÞ. The general solution to (19) which is bounded in 0 6 n 6 R0 and also periodic in / with period
2p is simply û ¼ cðsÞ, for some function cðsÞ. Therefore (21) gives cðsÞf ðsÞR2

0 ¼ 0. But the jet radius R0 cannot be zero. Since
û ¼ cðsÞ is the general solution to the homogeneous problem, we must then have f ðsÞ ¼ 0 for all s. Therefore (6) and (12) give
rise to two equations: namely f ðsÞ ¼ 0 and r2

n;/u1 ¼ 0. We note that neither of these expressions contain viscosity.
Finally, if we perform the calculation sin /ð8Þ þ cos /ð10Þ we obtain
sin /
@p1

@n
þ cos /

1
n
@p1

@/
¼ 0: ð22Þ
The boundary condition for this equation is (14). Once (22) is solved for p1, (14) can then be viewed as a differential equation
for R1. But R1 must be periodic in / with period 2p. Consequently, the cos /ðXsZss � XssZsÞ=We term in (14), which would
otherwise cause / sin / type behaviour in R1, must be balanced from a contribution in p1 to avoid this non-periodic solution
for R1. Hence the solution to (22) and (14) is therefore
p1 ¼
n

WeR0
cos / XsZss � XssZsð Þ þ h1ðsÞ �

Oh

We1=2

du0

ds
ð23Þ
and R1 ¼ g1ðsÞ cos /þ g2ðsÞ sin /þ g3ðsÞwhere h1ðsÞ; g1ðsÞ; g2ðsÞ and g3ðsÞ are arbitrary functions of s which could be found at
next-order in this asymptotic expansion in �. Note that p1 only appears as derivatives with respect to n and / in Eqs. (8) and
(10), respectively. Therefore, from substituting (23) into (8) and (10), we see that we obtain no viscous contribution to the
leading-order trajectory from p1, since the term in (23) which is dependent on the Ohnesorge number is dependent on s only
and not on n or /. Therefore we have shown that the viscous terms vanish in (5)–(16), and we find the same leading-order
problem for the trajectory here as in the inviscid case in Wallwork et al. [1]. (These leading-order equations are given in
Appendix.) Hence viscosity does not affect the steady solution at leading-order, except in a viscous correction to p1 in
(23) which does not affect the leading-order trajectory, velocity, pressure or jet radius. This means that the slender jet
approximation in this case results in no shear across the jet, except at higher-order.

So viscosity does not affect the leading-order steady solution. But we would like to know how the trajectory of this jet is
affected by viscosity at higher-order. We therefore proceed to next-order to find the viscous correction to the steady trajec-
tory by finding X1 and Z1.

We solve this problem following the same methodology outlined already in this section, but at next-order in �. Similar
solvability condition arguments apply at next-order. Naturally the algebraic manipulations are tedious and the equations
all very lengthy, and we feel that to give details here would not add any insight. The details are available in Wallwork
[16]. The equations after considerable work become
g2
1 ¼

WeR4
0

6
2u2

0 þ
1

R0We

� �
XsZss � XssZsð Þ2 � 4

Rb
u0 XsZss � XssZsð Þ � 1

Rb2 ZXs � ðX þ 1ÞZsð Þ XsZss � XssZsð Þ � 1ð Þ
� �

ð24Þ
and
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u2
0 �

1
R0

� �
ðX1s Zss þ XsZ1ss � X1ss Zs � XssZ1s Þ ¼

1
R0

2g1 �
1

We
ðXsZss � XssZsÞ

� �
þ 1

Rb2 Z1Xs þ ZX1s � X1Zs � ðX þ 1ÞZ1sð Þ

þ Oh

We1=2

17
6

du0

ds
XsZss � XssZsð Þ � 1

3
u0ðXsZsss � XsssZsÞ

� �
; ð25Þ
where X1ðsÞ and Z1ðsÞ are the Oð�Þ corrections to the leading-order components of the expansions in X and Z, and X and Z in
(24) and (25) are short-hand for X0 and Z0, respectively. The above two equations must be solved simultaneously with the
arclength condition (2) to Oð�Þ which is
XsX1s þ ZsZ1s ¼ 0: ð26Þ
The initial conditions are X1 ¼ Z1 ¼ X1s ¼ Z1s ¼ 0 at s ¼ 0. We solve the differential equations (24)–(26) numerically. These
numerical solutions give the correction to the centreline caused by viscosity, and the trajectory is given by
ðX þ �X1;0; Z þ �Z1Þ.

Fig. 1 shows the trajectory of the centreline containing terms from both leading-order and next-order for various values of
the Ohnesorge number. We can see from the graphs that increasing viscosity has the effect of making the jets more tightly
coiled, though the leading-order solution acts as a very good approximation to the trajectory until large values of the arc-
length s, unless Oh is large. However Oh is small or Oð1Þ for most liquid jets, since if Oh� 1 then it is difficult to form a
jet in experiments [17].
4. Linear instability of the steady state solutions: Short waves

Using a multiple scales approach, we pose the expansions
u ¼ �uðs;n;/; �Þ þ d~uðs;�s;n;/; t;�tÞ;

R ¼ Rðs;/; �Þ þ deRðs;�s;/; t;�tÞ;
p ¼ �pðs;n;/; �Þ þ d~pðs;�s;n;/; t;�tÞ;

X ¼ Xðs; �Þ þ d�eXðs;�s; t;�tÞ;

9>>>>>=>>>>>;
ð27Þ
where ð�u; ~uÞ ¼ ð�u; ~uÞes þ ð�v; ~vÞen þ ð �w; ~wÞe/, ðX; eXÞ ¼ ðX; eXÞiþ ðZ; eZÞk and d is a small dimensionless parameter which mea-
sures the size of the unsteady disturbances as in Wallwork et al. [1]. (We note that we first tried
X ¼ Xðs; �Þ þ dfX0ðs;�s; t;�tÞ þ d�eXðs;�s; t;�tÞ, but fX0 was found to be identically equal to zero). Here �s ¼ s=� is a short lengthscale
and �t ¼ t=� is a short timescale associated with short wave-like disturbances of Oð�Þ. Then s is a long lengthscale associated
with the curving of the trajectory of the jet, while �s is associated with waves with length of the order of the jet radius.

We can investigate the linear instability of the above steady solution caused by viscous perturbations (using either the
leading-order or higher-order steady solution from the previous section). These linear viscous perturbations disturb the basic
Graph showing the trajectory including terms from both leading-order and next-order for various Ohnesorge numbers ðRb ¼ 2;We ¼ 18;000;
Þ. The circle represents the container.
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steady solution (denoted by a quantity with an overbar in (27)) by unsteady quantities presented with a tilde. Substituting
these perturbations into our viscous equations of motion, linearising in the unsteady quantities (i.e. taking terms of OðdÞ),
and taking the leading-order equations in �, we obtain
n
@~u
@�s
þ ~v þ n

@~v
@n
þ @

~w
@/
¼ 0; ð28Þ

@~u
@�t
þ u0ðsÞ

@~u
@�s
¼ � @

~p
@�s
þ Oh

We1=2

@2~u
@�s2 þ

1
n
@~u
@n
þ @

2~u
@n2 þ

1
n2

@2~u

@/2

 !
; ð29Þ

@~v
@�t
þ u0ðsÞ

@~v
@�s
þ u0ðsÞ cos / Zs

@2eX
@�s@�t

� Xs
@2eZ
@�s@�t

 !
� cos / Xs

@2eZ
@�s2 � Zs

@2eX
@�s2

 !
u2

0ðsÞ ¼ �
@~p
@n

þ Oh

We1=2 �u0 cos / Xs
@3eZ
@�s3 � Zs

@3eX
@�s3

 !
þ @

2 ~v
@�s2

1
n
@~v
@n
þ @

2 ~v
@n2 þ

1
n2 �~v þ @

2 ~v
@/2 � 2

@ ~w
@/

 ! !
; ð30Þ

@ ~w
@�t
þ u0ðsÞ

@ ~w
@�s
þ u0ðsÞ sin / Xs

@2eZ
@�s@�t

� Zs
@2eX
@�s@�t

 !
þ sin / Xs

@2eZ
@�s2 � Zs

@2eX
@�s2

 !
u2

0ðsÞ ¼ �
1
n
@~p
@/

þ Oh

We1=2 u0 sin / Xs
@3eZ
@�s3 � Zs

@3eX
@�s3

 !
þ @

2 ~w
@�s2

1
n
@ ~w
@n
þ @

2 ~w
@n2 þ

1
n2 �~wþ @

2 ~w

@/2 þ 2
@~v
@/

 ! !
; ð31Þ

@eR
@�t
þ Zs

@eX
@�t
� Xs

@eZ
@�t

 !
cos /� ~v þ u0ðsÞ

@eR
@�s
¼ 0 on n ¼ R0; ð32Þ

@~v
@�s
þ @

~u
@n
� u0 cos / Xs

@2eZ
@�s2 � Zs

@2eX
@�s2

 !
¼ 0 on n ¼ R0; ð33Þ

~p� 2Oh

We1=2

@~v
@n
¼ 1

We
� 1

R2
0

eR þ @2eR
@/2

 !
þ cos / Xs

@2eZ
@�s2 � Zs

@2eX
@�s2

 !
� @

2eR
@�s2

 !
on n ¼ R0; ð34Þ

~v ¼ ~w ¼ 0 on n ¼ 0; ð35Þ

and Xs
@eX
@�s
þ Zs

@eZ
@�s
¼ 0; ð36Þ

u0 ¼ 1þ X2 þ 2X þ Z2
� �

=Rb2 þ 2ð1� 1=R0Þ=We
� �1

2 ð37Þ
is the leading-order jet speed from Wallwork et al. [1] and is the solution to (5)–(16). To investigate the higher-order steady
state in the previous section, it is instead necessary to retain terms of Oð1Þ and Oð�Þ in the expansion in �.

We look for solutions in modes of the form
~u ¼ ûðs;n;/; tÞ exp ikðsÞ�sþ kðsÞ�tð Þ þ c:c:;
~p ¼ p̂ðs; n;/; tÞ exp ikðsÞ�sþ kðsÞ�tð Þ þ c:c:;eR ¼ bRðs;/; tÞ exp ikðsÞ�sþ kðsÞ�tð Þ þ c:c:;eX ¼ bXðs; tÞ exp ikðsÞ�sþ kðsÞ�tð Þ þ c:c:;

9>>>>=>>>>; ð38Þ
where û ¼ ûes þ v̂en þ ŵe/, bX ¼ bX iþ bZk. In addition c.c. denotes the complex conjugate, kðsÞ is the wavenumber and kðsÞ is
the wave frequency. We solve the resulting set of linear equations. Looking for solutions by expanding the remaining un-
knowns (in the variables with ‘‘hats”) in Fourier series in /, we find a countably infinite set of eigenvalue relationships, each
associated with cosðn/Þ or sinðn/Þ for each integer n. After some lengthy algebra we determine that these are stable modes
for n P 1, plus one unstable mode, corresponding to n ¼ 0, which has the eigenvalue relation
�2ik5OhWeI1ð~kR0ÞI0ðkR0ÞR2
0u0 þ k5I1ðkR0Þ

ffiffiffiffiffiffiffi
We
p

I1ð~kR0ÞR2
0 þ k4I0ðkR0ÞWe3=2R2
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� 2ik4OhWeI1ð~kR0ÞI1ðkR0ÞR0u0 � 2k4OhWeI1ð~kR0ÞI0ðkR0ÞR2
0kþ 4ik4OhWeI1ðkR0ÞI0ð~kR0Þ~kR2

0u0

þ 4k3OhWeI1ðkR0ÞI0ð~kR0Þ~kR2
0k� 2ik3OhWeI1ð~kR0ÞI0ðkR0ÞR2

0
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where
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~k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ

ffiffiffiffiffiffiffi
We
p

ðkþ iku0Þ
Oh

s
ð40Þ
and In is the modified Bessel function of order n. Note for this mode ~w ¼ 0. If R0 ¼ u0 ¼ 1 then this reduces to the eigenvalue
relationship for a straight viscous jet. However, in this paper R0 and u0 are functions of arclength s, and depend upon the
rotation parameter Rb and satisfy the differential equations (5)–(16).

This eigenvalue relationship can be considered in two different ways, temporal instability or spatial instability.
4.1. Temporal instability

Temporal instability corresponds to k real and (39) is an algebraic equation to be solved for k, which will be complex,
describing the temporal growth rate ReðkÞ of the wave and its frequency ImðkÞ. Instability here occurs for ReðkÞ > 0.

In the case of temporal instability it is necessary to determine the most unstable wavenumber k ¼ k�ðsÞ for which the
growth rate of the mode ReðkÞ is a maximum for each value of the arclength s. In this way, the growth rate, frequency
and the wavelength of the most unstable mode will vary down the jet.

Taking Oh ¼ 0 in the dispersion relation (39), we obtain
k� ¼ 0:697
R0ðsÞ

ð41Þ
and
k0 ¼ �ik�u0ðsÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�I1 k�R0ðsÞð Þ

WeI0 k�R0ðsÞð Þ
1

R2
0ðsÞ
� k�2

 !vuut ; ð42Þ
where R0ðsÞ and u0ðsÞ satisfy the steady equations (5)–(16). These steady equations were solved computationally in Wall-
work et al. [1], and R0ðsÞ and u0ðsÞwere obtained numerically. Since Reðk0Þ > 0 this mode is unstable. In fact (42) gives unsta-
ble waves for all 0 < k� < 1=R0ðsÞ, though the value of k� given by (41) makes Reðk0Þ a maximum. This temporal instability
result is the inviscid result of Wallwork et al. [1].

Taking the long wavelength limit, k! 0, of the eigenvalue relationship (39) for Oh ¼ Oð1Þ and writing
k ¼ �iku0ðsÞ þ k̂ ð43Þ
gives
k̂ � k
�6R0ðsÞOhkþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9R2

0ðsÞOh2k2 � 2R3
0ðsÞk

2 þ 2R0ðsÞ
q

4
ffiffiffiffiffiffiffi
We
p

R0ðsÞ
: ð44Þ
Examining the most unstable mode from this above long wavelength result gives
k� ¼ 1

21=4R3=4
0 ðsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R0ðsÞ

p
þ 3Oh

q : ð45Þ
Substituting this result for k� into the above result for k̂ shows that this long wavelength mode is always unstable.
Also we can see that taking Oh ¼ 0 in the long wavelength result (45) gives
k� ¼ 1ffiffiffi
2
p

R0ðsÞ
� 0:697

R0ðsÞ
ð46Þ
and so the longwavelength approximation happens to also be a reasonable numerical approximation for the shorter inviscid
waves. The above results show that an increase in viscosity causes a decrease in k� and hence an increase in the wavelength
of the most unstable mode. Also, the temporal growth rate of this mode decreases with an increase in viscosity, as would be
expected. All of the above results correspond to results for straight liquid jets, with the important exception that R0 is a con-
stant for a uniform straight liquid jet [8], whereas here it is a function of s.

Rotation enters the above formulation via R0ðsÞ and u0ðsÞ which are dependent upon Rb, and the mode varies with the
long lengthscale s. Since u0ðsÞ increases with s and R0ðsÞ decreases with s for the curved jet arising in this rotational problem
(the jet is accelerating: see Wallwork et al. [1]), we see that the wavelength of the most unstable mode 2p=k� decreases as s
increases, whilst the growth rate ReðkÞ, the wave frequency �ImðkÞ and the wave speed �ImðkÞ=k� all increase with s.

Since the rotation of the container, given by Rb, does not appear explicitly in the above expressions for instability, but
appears instead in the formulae governing u0ðsÞ and R0ðsÞ, it is instructive to consider these results in terms of small s asymp-
totics. We solve the leading-order steady equations (5)–(16) by posing algebraic expansions in s, and substitute these into
the instability results giving



Fig. 2.
Oh ¼ 0:

Fig. 3.
Oh ¼ 0:

4290 S.P. Decent et al. / Applied Mathematical Modelling 33 (2009) 4283–4302
k� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffi
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p

Oh
p 1þ sWe

4Rb2ð2Weþ 1Þ
3þ

ffiffiffi
2
pffiffiffi

2
p
þ 3Oh

 ! !
ð47Þ
for long waves as s! 0. Consequently, for small s at least, increasing the rotation rate of the container (i.e. decreasing Rb)
increases the wavenumber and the growth rate of the most unstable mode.

We can determine numerically the wavenumber k ¼ k� which gives the most unstable mode for each s by solving (39)
directly. Figs. 2 and 3 show the growth rate of this most unstable mode and k� plotted against s for various Ohnesorge num-
bers. The trends can be seen to agree with the above conclusions from the asymptotics. Figs. 4 and 5 show the growth rate
ReðkÞ and the most unstable wavenumber k� plotted against s for various values of Rb. Again the trends predicted from the
asymptotics can be observed.

4.2. Spatial instability

For spatial instability k ¼ �ix where x is a real frequency. This was developed in Keller et al. [9] and shown to be phys-
ically more realistic than the temporal instability. The eigenvalue relationship (39) is then solved for k which will be com-
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Graph showing the growth rate Reðk0Þ of the most unstable mode against arclength s for various Ohnesorge numbers. The solid curve shows
365, the short-dashed curve below that shows Oh ¼ 3:65 and the long-dashed curve below that shows Oh ¼ 36:52. ðWe ¼ 13:33;Rb ¼ 1:12Þ.
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Graph showing the wavenumber of the most unstable mode k� against arclength s for various Ohnesorge numbers. The solid curve shows
365, the short-dashed curve below that shows Oh ¼ 3:65 and the long-dashed curve below that shows Oh ¼ 36:52. ðWe ¼ 13:33;Rb ¼ 1:12Þ.
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Fig. 4. Graph showing the growth rate Reðk0Þ of the most unstable mode against arclength s for various values of Rb. The solid curve shows Rb ¼ 0:749, the
short-dashed curve below that shows Rb ¼ 2:25 and the long-dashed curve at the top shows Rb ¼ 0:225. ðWe ¼ 13:33;Oh ¼ 3:65Þ.
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Fig. 5. Graph showing the wavenumber of the most unstable mode k� against arclength s for various values of Rb. The solid curve shows Rb ¼ 0:749, the
short-dashed curve below that shows Rb ¼ 2:25 and the long-dashed curve at the top shows Rb ¼ 0:225. ðWe ¼ 13:33;Oh ¼ 3:65Þ.
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plex, describing the wavenumber of the wave ReðkÞ and its spatial growth rate �ImðkÞ. In this case, instability occurs when
ImðkÞ < 0.

Comparing a longwave analysis for temporal and spatial instability, we write k ¼ x=u0 þ iK, solving the eigenvalue rela-
tionship for K in the limit x! 0. Looking for the frequency of the most unstable mode x ¼ x� which, after some algebra,
gives
x� ¼ u0k�; ð48Þ
where k� is given by (45).
The eigenvalue relationship (39) can be solved computationally. Fig. 6 shows the frequency x of the most unstable mode

plotted against s for various Ohnesorge numbers, with decreasing Ohnesorge number corresponding to increasing x. Figs. 7
and 8 show numerical solutions to (39) at two different values of the arclength s. Each line on these graphs has been con-
structed by varying x from 0 to1. On each line x is real. The figures describe two different points on the same jet, and the
most unstable mode on each curve occurs at the minimum value. Figs. 7 and 8 show that increasing the Ohnesorge number
causes the jet to be less unstable since the waves are more heavily damped by viscosity. For larger values of viscosity the



Fig. 6. Graph showing the frequency of the most unstable mode x against arclength s for various Ohnesorge numbers. The solid curve shows Oh ¼ 0:365,
the short-dashed curve below shows Oh ¼ 3:65 and the long-dashed curve below that shows Oh ¼ 36:52. ðWe ¼ 13:33;Rb ¼ 1:12Þ.

Fig. 7. Graph showing numerically ImðkÞ against ReðkÞ at s ¼ 0 for various Ohnesorge numbers ðWe ¼ 18;000;Rb ¼ 2Þ. The frequency x is real on each line,
but varies from 0 to 1 along each line from left to right.
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most unstable mode occurs at longer wavelengths, i.e. at smaller values of ReðkÞ. These trends for spatial instability all agree
with those of temporal instability. However, the numerical result for the most unstable mode differ between the temporal
and spatial instability cases, and Keller et al. [9] has shown that the spatial instability approach is most physically realistic.
5. Break-up length, droplet size and satellite drop formation

We now determine the effect of viscosity on the break-up length of the jet. The leading-order steady free-surface ampli-
tude is R0ðsÞ. The unsteady wave-like perturbation to this is denoted by eRðs;�s; t;�t;/Þ. If the amplitude of this unsteady dis-
turbance at the orifice (at s ¼ 0) is d then we have the leading-order condition for jet break-up from linear spatial instability
theory as
1 ¼ �d
x�ðsÞ

2u2
0ðsÞImðkðsÞÞ

exp � sImðkðsÞÞ
�

� �
: ð49Þ



Fig. 8. Graph showing numerically ImðkÞ against ReðkÞ at s ¼ 15 for various Ohnesorge numbers ðWe ¼ 18;000;Rb ¼ 2Þ. The frequency x is real on each line,
but varies from 0 to 1 along each line from left to right.
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It is necessary that the perturbation at the orifice be sufficiently small that this condition is not satisfied at s ¼ 0, which
means that
Fig. 9.
Oh ¼ 3:
21=4 � d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3OhWe
p

: ð50Þ
Eq. (49) can be solved numerically to determine the relationship between the break-up length of the jet and the rotation rate
parameter Rb for various values of the viscosity parameter Oh. This is shown in Fig. 9. Note that the curve is not monotonic
for the smallest Ohnesorge number. That is, increasing the rotation rate of the container (i.e. decreasing Rb) may increase or
decrease the break-up length of the jet, whilst holding all other parameters constant. This requires some explanation. The
results from the previous section show that increasing the rotation rate of the container increases the wave speed of the dis-
turbances but also increases the growth rate of those disturbances. These two effects are in competition to make the jet
either longer or shorter, respectively, and therefore no simple monotonic relationship necessarily exists between break-
up length and rotation rate.

It is now also possible to determine the wavelength of the disturbance at the predicted point of break-up. Fig. 10 shows
this wavelength plotted against Rb for various Oh. From this it is possible to determine the main droplet size produced by this
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The natural logarithm of the break-up length plotted against Rb for various Ohnesorge numbers. The curves show from top to bottom: Oh ¼ 36:5,
65, Oh ¼ 0:365 and Oh ¼ 0:00365. ðWe ¼ 13:33; � ¼ 0:0235; d ¼ 10�8Þ.
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Fig. 10. The wavelength of the most unstable mode at the point of break-up plotted against Rb for various Ohnesorge numbers. The curves show from top to
bottom: Oh ¼ 36:5, Oh ¼ 3:65, Oh ¼ 0:365 and Oh ¼ 0:00365. ðWe ¼ 13:33; � ¼ 0:0235; d ¼ 10�8Þ.
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instability by calculating the volume of the liquid over one wavelength of the jet instability at the break-up point. Since the
droplets will be approximately spherical, the droplet radius can be determined from this volume. Fig. 11 shows this non-
dimensional radius (with respect to the size of the orifice a) plotted against Oh for various Rb. Note that the relationship
between the droplet radius is not monotonic with Oh. This also requires some explanation. As the Ohnesgorge number is
increased, while holding all other parameters constant, the wavelength of the unstable mode at instability increases
(Fig. 3). However, since the break-up length also increases (Fig. 9) and the jet radius R0ðsÞ thins along the jet due to jet accel-
eration, the maximum radius of the unstable wave at the break-up point decreases with increasing Ohnesgorge number.
Hence increasing viscosity makes the unstable waves at the break-up point longer but with smaller amplitude. Hence these
two competing mechanisms are producing counter-influences on the size of the droplets produced by instability, and make it
possible for the droplet size to increase or decrease with increasing viscosity (Fig. 11). Fig. 12 shows droplet radius plotted
against Oh.

The extent of satellite drop formation can be estimated by considering the range of unstable wavenumbers. Section 4
shows that travelling waves are unstable for 0 < k < 1=R0ðsÞ for both temporal and spatial instability. Thus as 1=R0ðsÞ
0.2 5.2 10.2 15.2 20.2
Rb

0.0

0.5

1.0

1.5

2.0

dr
op

le
t s

iz
e

Fig. 11. The droplet radius produced by instability plotted against Rb for various Oh. The long-dashed curve shows Oh ¼ 0:00365, the solid curve shows
Oh ¼ 0:365, the short-dashed curve shows Oh ¼ 3:65 and the dotted curve underneath the other curves shows Oh ¼ 36:5. ðWe ¼ 13:33; � ¼ 0:0235;
d ¼ 10�8Þ.
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Fig. 12. The droplet radius produced by instability plotted against Oh for various Rb. The curves show from top to bottom: Rb ¼ 22:47, Rb ¼ 4:49 and
Rb ¼ 1:50. ðWe ¼ 13:33; � ¼ 0:0235; d ¼ 10�8Þ.
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Fig. 13. The upper limit of unstable wavenumbers 1=R0 at the break-up point plotted against Rb for various Oh. The upper curve shows Oh ¼ 3:65, the
middle curve shows Oh ¼ 0:365 and the lower curve shows Oh ¼ 0:0365. (We ¼ 13:33 and � ¼ 0:02).
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increases along the jet, shorter waves become unstable, which could produce satellite drops. Fig. 13 shows 1=R0ðsÞ at the
break-up point on the jet plotted against Rb for various values of Oh. Satellite drop formation is a non-linear process, but
we suggest that the availability of these short unstable modes will increase the frequency of satellites. We present some
experimental evidence to support this claim in Section 7.

6. Linear instability of the steady state solutions: Long waves

We now examine long travelling wave disturbances of the steady state by posing the expansions
u ¼ �uðs;n;/; �Þ þ d~uðs;n;/; tÞ;
R ¼ Rðs;/; �Þ þ deRðs;/; tÞ;
p ¼ �pðs;n;/; �Þ þ d~pðs; n;/; tÞ;
X ¼ Xðs; �Þ þ deXðs; tÞ;

9>>>>=>>>>; ð51Þ
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where the variables with bars are the steady solutions and the variables with a tilde correspond to an unsteady perturbation,
which aside from the fact that these perturbations do not depend upon �s or �t, are similar to (27). Determining equations at
OðdÞ, examining the leading-order behaviour in �, and eliminating ~v; ~w and ~p, we find
Table 1
A comp

Oh

0.0036
0.0036
0.0036
0.0029
0.0029
0.0029
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0.178
0.352
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where ~j is the mean curvature of the free-surface, namely
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ffiffiffiffiffiffiffi
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=ð�OhÞ is the Reynolds number. Looking for wave-like disturbances
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where D is some constant and m is chosen to give the correct amplitude of disturbance of the unsteady perturbation, the
above equations can be solved to find equations linking a, b, c and d. If D is considered to be large or small, then an eigenvalue
relationship can be found linking k and k. As in Eggers and Dupont [18], unstable waves are found to occur at k ¼ 1 unless
both components of curvature appear at leading-order in the formulation, i.e. unless higher-order terms in � are retained in
~j. If D is chosen to be equal to � then we effectively reintroduce �s and �t into these equations, corresponding to the exam-
ination of short waves in the long wavelength equations. (Whereas in Section 4 we considered short waves on the �s length-
scale and then found the long wave limit of those equations to be a useful approximation, this rescaling would correspond to
arison between experimental and theoretical data for drop sizes (ds) for 13 different experiments.

We Rb � ds (theory) ds (expt) Sat. freq. Sat. size Mode

5 0.98 0.024 1.78 1.5 0.0 – 1
5 1.81 0.024 1.99 2.0 0.0 – 1
5 3.53 0.024 2.10 2.5 0.0 – 1
17.5 1.07 0.024 1.68 1.6 0.4 0.4 2
17.5 2.01 0.024 1.93 2.1 1.0 0.6 2
17.5 3.94 0.024 2.08 2.1 0.7 0.6 2
25 1.17 0.024 1.69 1.4 1.4 0.7 3
25 2.20 0.024 1.95 1.7 0.5 0.5 3
25 4.31 0.024 2.10 1.8 1.4 0.8 3
17.5 0.62 0.071 1.06 1.1 1.1 0.6 3
17.5 0.67 0.071 1.10 1.2 1.2 0.6 3
1.5 0.26 0.024 1.19 1.2 0.7 0.8 4
1.5 0.37 0.024 1.44 1.2 0.6 0.8 4



Fig. 14. Drop size distributions for three rotational rates, Rb ¼ 3:94, 2.01 and 1.07 (50, 100 and 200 rpm) in break-up mode 2 ð15 < We < 20; Oh ¼ 0:0029Þ.

Fig. 15. Pictures of a jet emerging from the 2 mm orifice with the can rotating at different rotation rates.
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taking long wave equations but then taking the short wavelength limit of those equations.) This of course should lead to the
same results as in Section 4. This is indeed the case, and the eigenvalues in Section 4 as k! 0 are re-obtained when this
distinguished limit is taken.

However, these equations reveal an additional neutrally stable mode with frequency1
1 Reg
m ¼ 2.
k u0ðsÞ 	
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

WeR0ðsÞ
p !

: ð58Þ
ardless of whether the above distinguished limit in D is taken or not. In fact we find both the unstable modes of Section 4 plus this neutral mode if
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These neutrally stable modes correspond to disturbances in the trajectory eX and eZ and appear out of Eqs. (54) and (55). If
c ¼ d ¼ 0 then these modes do not exist. These modes will cause a long wave to travel along the trajectory of the jet, trans-
forming the jet’s centre line in a sinusoidal manner. Since u0 !1 and R0 ! 0 as s!1 these frequencies tend to infinity as
s!1. Also, note that since the frequency of the most unstable mode from Section 4 is ku0, we see that one of the above
frequencies is larger and the other smaller than this most unstable frequency.

Since the wavespeed of a linear travelling wave with frequency x is x=k, we can see that the most unstable mode travels
at the mean streamwise speed of the steady state u0, while one of these neutrally stable modes travels faster and the other
travels slower than u0. Moreover, the neutrally stable mode associated with the negative alternative sign in the above equa-
tion can have a negative frequency and hence travel upstream rather than downstream. Since u0 ¼ R0 ¼ 1 at s ¼ 0 at the ori-
fice, we can see that these waves may only travel upstream if We < 1.

We also notice that at high Weber numbers the above neutrally stable frequencies are approximately ku0, and so these
modes will be particularly relevant at Oð1Þ values of We and less. As these waves appear out of a long wave analysis, we
might expect these waves to only be observed when the jet is sufficiently long for them to develop. Since the break-up length
of the jet increases with viscosity, we then expect these modes to be particularly important for jets with high viscosity. That
is we might expect these neutrally stable modes to be observed for highly viscous jets at low We. We discuss this in the fol-
lowing section.

Lin and Lian [19] showed that jets with We < 1 undergo absolute instability with waves propagating back upstream. Baird
and Davidson [20] also found a discontinuity at We ¼ 1, and noted that jets with We < 1 have more of a rounded shape than
cylindrical. This was also pointed out by Keller and Weitz [21] who discovered that a jet rises instead of falls under gravity
for We < 1. Ramos [22] also showed that a jet forms non-cylindrical shapes when We < 1 and that a long wavelength model
Fig. 16. Flow maps summarising the dynamics of the break-up observed in experiments. (a) Shows Reynolds Number plotted against rotation rate (radians
per second). (b) Shows the same data plotted on a Oh–We plot. The four different types of break-up are also shown, in addition to situations where no jet
was observed.



Fig. 17. Pictures of different break-up mechanisms observed in experiments. Pictures (1)–(3) show a jet at successive times with Rb ¼ 1:06;Oh ¼ 0:0095
and We ¼ 13:4 We call this mode 2. Pictures (4)–(6) show a jet at successive times with Rb ¼ 0:80;Oh ¼ 0:241 and We ¼ 21:47. We call this mode 3.
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may not be valid for small Weber numbers. Finnicum et al. [23] identified a singularity at We ¼ 1 whilst investigating two-
dimensional liquid curtains falling under gravity.

7. Experiments

We briefly report experiments carried out on Newtonian liquids – specifically water and glycerol–water mixtures. (For
example, a 60% glycerol and 40% water (glycerol(60)–water(40)) mixture has a viscosity approximately 10 times that of
water (so l � 0:01 kg m�1 s�1: see Lide [24]) with a surface tension approximately equal to 6:8
 10�2 kg s�2.) We use the
same experimental apparatus as in Wallwork et al. [1] using a can of radius 4.25 cm with various different orifices between
1 mm and 3 mm in radius.

Fig. 14 shows graphs of the experimentally observed drop size distributions from three sets of experiments. Each graph
shows the relative frequency of each drop size observed against the relative diameter of each droplet. (Hundreds of droplets
were measured in each experiment). Note that the size distributions are bi-modal, pointing to the formation of main and
satellite drops. Table 12 shows a summary of a comparison of drop sizes and frequencies produced from experimental drop size
distributions such as Fig. 14 (see Wallwork [16] and Wong et al. [25,17] for further data) with theoretical predictions using the
methods presented in earlier sections.

In these calculations we choose d ¼ 0:01, though we did not attempt to optimise the fit between theory and experiment
by selecting the appropriate value of d. No doubt better agreement could be obtained by selecting d but we did not want to
bias the results since it is not possible to measure d in our experiments. However, the size of the resulting droplets is only
2 Table 1 shows a comparison between experimental and theoretical data for drop sizes for 13 different experiments. Drop size (theory) shows the size of the
droplet predicted from the most unstable wavenumber at break-up. This should be compared to the experimental drop size, determined as the size of the
droplet which corresponds to the maximum value on the droplet distribution curve for the main droplet (the most commonly observed main droplet). The
satellite frequency column shows the relative frequency of satellites compared to main droplets observed in experiments. This is calculated as the ratio of the
maximum relative frequency on the droplet distribution for the portion of that curve corresponding to satellites compared to the maximum value for the
relative frequency for the main droplets. (These curves are usually bi-modal, so this is the ratio of the relative frequencies at the two maxima of the
distribution.) The satellite size column shows the size of the most commonly observed satellite droplet in each experiment. The mode number in the final
column refers to the dynamics of the break-up of the jet, and is assigned a number from 1 to 4 to refer to four different types of break-up. The sizes of droplets
shown here are all non-dimensional relative to the size of the orifice.
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weakly dependent on d. For example, taking values of d between 0.005 and 0.05, using (49) we predict break-up lengths be-
tween 0.164 and 0.3785 in dimensionless units for a fluid with We ¼ 10;Rb ¼ 2;Oh ¼ 0:0001. This yields dimensionless main
drop radii of between 1.7133 and 1.7797. Increasing the viscosity ðOh ¼ 0:1Þ predicts break-up lengths between 0.197 and
0.462 and main drop radii between 1.7439 and 1.8613. Therefore, whilst break-up length is largely dependent on d, we pre-
dict minimal differences in the main drop radii. Părău et al. [6] also showed a similar relationship for a long wavelength mod-
el. In Table 1 we can see some good areas of agreement between the experimental and theoretical predictions for the size of
the main droplets (columns 5 and 6).

Fig. 15 shows the behaviour of water jets at three different rotation rates for an orifice of radius 2 mm. Fig. 16 shows sev-
eral different experiments summarised on two parameter space diagrams: one diagram showing the experiments plotted for
Reynolds number Re ¼

ffiffiffiffiffiffiffi
We
p

=Oh against the rotation rate X measured in radians per second; the second diagram shows the
experiments on a Oh–We diagram. Both diagrams show the same set of experiments, with different experiments achieved by
varying the water/glycerol mixture, the radius of the orifice, the rotation rate and the rotating frame exit speed U (by varying
the amount of liquid inside the container). Four so-called break-up modes were identified: mode 1 where the jet produces a
droplet from its end with minimal satellite formation (e.g. Fig. 15 has fairly minimal satellite formation); mode 2 where more
significant satellite drop formation occurs; mode 3 where break-up appears to occur at more than one place at once; mode 4
where the jet appears to shatter behind the bifurcation point at break-up. Also there were scenarios in which no jet was ob-
tained, and droplets were produced directly out of the orifice. Further experiments are described in Wong et al. [25,17].

Fig. 17 shows examples of what we call modes 2 and 3. Notice increased satellite drop formation in mode 2. In mode 3, a
very long jet is obtained due to the high viscosity of the liquid, with a ‘‘beads-on-a-string” type structure, observed elsewhere
before in other contexts (e.g. Decent and King [26] and Clasen et al. [27]). Mode 3 has long thin modes at break-up, as pre-
dicted in Section 5 for highly viscous jets. Some evidence of the cone structures observed by Peregrine et al. [28] can be ob-
served in Fig. 17.

Fig. 18 shows an example of our so-called mode 4. Note that the jet appears to shatter behind the bifurcation point after
break-up occurs. We suggest that the neutrally stable modes described in the previous section which travel upstream for
small Weber numbers might be partly responsible for what is seen in Fig. 18, since information can be seen in Fig. 18 to prop-
agate upstream after the bifurcation occurs. This agrees with the observation at the end of the previous section that the neu-
trally stable trajectory waves might be especially relevant for low Weber number and large viscosity since here Oh ¼ 0:233
Fig. 18. Pictures (1)–(4) show experimental observations at successive time intervals for Rb ¼ 0:32;Oh ¼ 0:233 and We ¼ 0:9. We call this mode 4.



S.P. Decent et al. / Applied Mathematical Modelling 33 (2009) 4283–4302 4301
(large when compared to most experimental runs) and We ¼ 0:9 (small). However, break-up is clearly a non-linear event.
Partridge et al. [5] and Părău et al. [6] have investigated the non-linear disturbances and show a good correlation between
experimental results and theoretical predictions for break-up of a low viscosity jet.

Returning to Table 1 we observe some evidence of a general trend for satellites to become more frequent for larger values
of We, Oh and rotation rates (i.e. small Rb). Examining Fig. 13 we see that 1=R0ðsÞ at break-up increases for increased Oh and
increased rotation rate. From Wallwork et al. [1], we see that 1=R0 increases at break-up for increased Weber number (since
as We increases, the jet speed increases, producing increased thinning). Hence it would appear that we have a general trend
that as the rotation rate, We and Oh increase, 1=R0 increases at break-up so that shorter unstable wave modes are present at
break-up, increasing the production of satellite drop formation. There is further experimental evidence for this in Fig. 16a
where we see the mode with low satellite drop production (mode 1) occurring at lower rotation rate. However, of course,
satellite drop formation is a non-linear process.

8. Conclusions

In summary, we have shown that the trajectory and steady state of the liquid jet emerging from a rotating container is
only affected by viscosity at higher-order in �. The linear instability calculation reveals similar results for both temporal and
spatial instability over a wide set of parameter values. While the results are similar, they are not identical. From Keller et al.
[9] it is clear that the spatial stability results are the correct ones to use. A long wavelength viscous analysis allows asymp-
totic formulae to be developed for these instability results. It can be seen in some cases that the temporal instability results
are identical at leading-order to the spatial instability results. This is very useful to know since the temporal approach is eas-
ier to use, though less accurate. It should be noted that we may instead use the higher-order results in � for the steady state
in the instability calculations by replacing u0 by u0 þ �u1 and R0 by R0 þ �R1, and choosing a typical value of � (such as 0.02).
This enables us to determine the effects of viscosity in the steady state on the instability results.

The break-up length and mean droplet radius produced by instability can be determined using the linear instability cal-
culations. We find that the droplet radius increases with Rb increasing. We also find that the break-up length of the jet does
not have a monotonic relationship with Rb, and the droplet size does not have a monotonic relationship with Oh. Some good
points of agreement have been obtained between theoretical and experimental measurements of the size of the drops pro-
duced by instability. The formation of satellites and break-up dynamics have been discussed in light of the theory and exper-
iments, with some very favourable agreement.
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Appendix

The leading-order problem for the trajectory of the jet described in Section 3 for a viscous jet is identical to the leading
order problem for an inviscid jet presented in Wallwork et al. equations (3.18)–(3.24), namely it can be simplified using Sec-
tion 3 to
p0 ¼
1

WeR0
;

u0 ¼ 1þ 1

Rb2 X2 þ 2X þ Z2
� �

þ 2
We

1� 1
R0

� �� �1
2

;

p1 ¼
n

WeR0
cos / XsZss � XssZsð Þ þ h1ðsÞ;

v1 ¼ �
n
2

du0

ds
;

Zss ¼
WeR0Xs

WeR0u2
0 � 1

2u0

Rb
þ ZXs � ðX þ 1ÞZs

Rb2

� �
;

R0s ¼ �
WeR2

0ððX þ 1ÞXs þ ZZsÞ
Rb2ð2WeR0u2

0 þ 1Þ
;

X2
s þ Z2

s ¼ 1:
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