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Fuzzy-valued fuzzy measures are defined in an axiomatic way. Extending a result 
of Klement (J. Math. Anal. Appl. 75 (1980), 330-339) it is shown that they can be 
characterized by a suitable family of ordinary measures and Markov kernels. 

I. INTRODUCTION 

It is the aim of this article to develop axiomatically a measure theory in 
which fuzzy sets are measured by fuzzy rather than by crisp numbers. To be 
precise, we consider fuzzy-valued fuzzy measures to be functions from a 
fuzzy o-algebra u (see [ 121) into the set ,J?(w+) of fuzzy nonnegative 
numbers. The definition of R(w +) and other notations and preliminaries are 
given in Section II. In Section III, we first give the definition of fuzzy-valued 
fuzzy measures, show the connection with crisp-valued fuzzy measures as 
studied in [ 13, 151, and present some natural examples of these measures. 

In [ 131 the author has shown that, given a generated fuzzy u-algebra, a 
finite crisp-valued fuzzy measure can be characterized by an ordinary 
measure P and a Markov kernel K. The main result of this article is an 
extension of the cited result to the fuzzy-valued case. Each finite fuzzy- 
valued fuzzy measure corresponds to a family (P, , K,),EtO, ,, of ordinary 
measures and Markov kernels, respectively, fulfilling some rather technical 
conditions (Section IV). Finally, using this result for some of our examples 
in Section III the families (P, , K,),,[,,, , L are constructed explicitly in these 
cases. 

II. BASIC NOTATIONS AND PRELIMINARIES 

Throughout this article, X will denote an ordinary nonempty set. A fuzzy 
set on X, as usual, is then a mapping ,u: X-t [0, 11, the value ,u(x) being 

* This research was supported by a grant of the JubGumsfonds der ijsterreichischen 
Nationalbank (project No. 1665). 

312 
0022-247X/83 $3.00 
Copyright 0 1983 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82322667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


FUZZY-VALUED MEASURES 313 

interpreted as the degree of membership of the point x in the fuzzy set ,u. We 
shall write R + for [0, co[ and R, for [0, co]. Then 9, and 3, will denote 
the u-algebra of Bore1 subsets of R + and R,, respectively. If A is a 
nonempty subset of I?, we shall write 9 nA for the u-algebra of Bore1 
subsets of A. 

In a lattice (L, <j the symbols A and V denote meet and join, respectively, 
of two elements of L. If the lattice (L, <j is complete, we shall write A and 
V for intimum and supremum, respectively. For example, (iR + , <j is a 
(noncomplete) lattice and (R + , <j and ([0, llx, <j, where in the latter case 
< is the usual (pointwise) partial ordering of fuzzy sets on X, are complete 
lattices. Furthermore, (IR + , <, +) and (w + , <, +) form partially ordered, 
commutative semigroups. 

The concept of fuzzy numbers we shall use for our definition of fuzzy- 
valued fuzzy measures follows the ideas of Hohle [9-l 11. There are some 
significant differences to other definitions of fuzzy numbers which are 
summarized in Dubois and Prade [6] and which have been studied by Zadeh 
[21], Dubois and Prade [4,5], Mizumoto and Tanaka [16], Dubois [3], and 
others. We also shall restrict ourselves to nonnegative fuzzy numbers, for an 
extension to a vector space of fuzzy numbers see Hiihle [9]. 

A nonnegative fuzzy number is defined to be a mapping p: R + --f [0, 1 ] 
fulfilling either 

P(O) = 0, P(a) = 1, (2.1) 

VrER+:p(r)=V{p(s)(sElR+,s<r}, (2.4 

or being the fuzzy infinity E, defined by 

&co = l{co,. (2.3) 

We shall denote the family of nonnegative fuzzy numbers by R(R +j. 
The interpretation of the fuzzy number p is as follows: p(r) is the degree of 

p being contained in the ordinary interval [0, r[. A partial ordering on 
A?@ + j is given by 

pScp*VrE ~+:p(r)2cp(r) (2.4) 

and (R(E+), 5) is a complete lattice. A natural algebraic operation r, on 
R(R + j is defined by 

7.h@, rp)(r) = V {p(s) A q(t) 1 s, t E R + , s + t = r}. (2.5) 

Then (R(li? + j, 5, z,,) forms a partially ordered, commutative semigroup. 
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There is a natural embedding of (R +, <, +) into (X(w +), 5, r,) by virtue of 
the complete monomorphism x -P s,, where c, for x E R + is defined by 

Ex = l,x,m,. (2.6) 

Next, for any p E R(E + ) we consider its quasi-inverse [plq to be a 
function from [0, l] into R, as follows: 

[PI”(a) = v b-E R+ I p(r) < aI. (2.7) 

This notion of the quasi-inverse was introduced by Sherwood and Taylor 
[18]. Since all proper prime ideals in ([0, 11, () are of the form (0, a], 
a E [0, l[, or [0, a[, a E 10, I], it is also a special case of the quasi-inverse 
studied by HGhle [9, 111. It is straightforward that the set Zq(R + ) of all 
quasi-inverses of elements of R(R+) is precisely the set of all functions 

f: [0, 1 ] -i R + fulfilling 

f(a)=V Lf@)W Pd4L if a > 0, 
(2.8) 

= 0. if a = 0. 

If we endow R”(R+) with <, the usual (pointwise) partial ordering of real 
functions and +, the usual (pointwise) addition of real functions, then it is 
obvious that (R”(E +), <) is a complete lattice and @P(R+), <, +) is a 
partially ordered, commutative semigroup. Moreover, p+ [p14 is a complete 
isomorphism from (R(w +), 5, r,,) onto (Zq(R +), ,<, +). 

If we are interested in finite fuzzy numbers only, we consider ,i%“(R +) 
which consists of the restrictions of elements ofR(R+)\{sco} to R, , i.e., of 
all functions fulfilling 

P(o)=o, VWIrE~+J=L (2.9) 

VrEIR+:p(r)=V{p(s)IsEIR+,s<r}. (2.10) 

That means, R(R +) is the set of all nondecreasing, left-continuous functions 
fulfilling the boundary condition (2.9), i.e., Z(iR+) coincides with the set 
g’ of all nonnegative probability distribution functions (see Schweizer 
[ 171). The partial ordering 5 and the operation r,, can be restricted to 
Z(R+) in a straightforward manner. Now (R(lR+), 5) is a lattice (but not 
a complete one) and (R(lR +), 5, r,.,) is still a partially ordered, commutative 
semigroup in which, additionally, the cancellation law holds. Of course, 
x-+ E, is again a monomorphism from (W, , <, +) into (R’(R +), <, 7,,). 

Given a finite fuzzy number p E R(lR +), its quasi-inverse [p]q is now a 
function from [0, 1 [ into IT? + . The set X9@+) of all quasi-inverses of finite 
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fuzzy numbers is therefore the set of all functions f: [0, l[ -+ R + satisfying 
property (2.8). Obviously, (Rq(R +), <) is a (noncomplete) lattice and 
(z*(lF? +), <, t) is a partially ordered, commutative semigroup, where the 
cancellation law holds. And still p+ [p]* is an isomorphism from 
W(W +), 2, rA) into (R*(R +I, <, +>. 

Finally, we recall the definition of a Markov kernel which we shall use 
frequently in this article. If (X, “P) is an ordinary measurable space, then a 
function 

K: x x (9 n [O, 1[) + [O, l] (2.11) 

is called a Markov kernel from (X, _pP) to ([0, 1 [, 9 n [0, l[) if it fulfills the 
following properties: for each B E 9 n [0, 1[ the function 

K( ., B): x -+ K(x, B) (2.12) 

is measurable (with respect to d and 9 n [0, 1)); for each x E X the 
function 

K(x, .): B -+ K(x, B) (2.13) 

is a probability measure on ([0, l[, 9 n [0, l[). For other notations 
concerning lattice theory we refer to Birkhoff [2], in the fields of measure 
and probability theory to Halmos [7] and Bauer [ 11. 

III. FUZZY-VALUED FUZZY MEASURES 

The idea of measuring fuzzy sets using fuzzy numbers rather than crisp 
numbers was presented for the first time by Zadeh [21] in the context of 
linguistic variables. An axiomatic measure theory of this type for G-fuzzy 
sets, i.e., mappings p: X+ G, G being a regular Boolean algebra, can be 
found in Hohle [8]. Since [0, l] is not a Boolean algebra, our approach is 
somewhat different. 

First recall the definition of a fuzzy u-algebra (cf. [ 121). A fuzzy o-algebra 
(T is a subfamily CT of [0, 11’ containing all constant fuzzy sets and being 
closed under complementation and countable union, i.e., fulfilling these 
properties: 

01 constant * a E 0, (3.1) 

,UEfJ*l-PEU, (3.2) 

@“LM-N* v Pu,E~* (3.3) 
nEN 

The pair (X, a) is then called a measurable space. Obviously, if &’ is a 
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classical u-algebra on X, then the family c(J) of all measurable functions 
p: X-r [0, 1 ] forms a fuzzy u-algebra; it is called a generated one. 

A crisp-valued fuzzy measure m on (X, o) is a function m: u + R ’ such 
that 

m(0) = 0, (3.4) 

mCuVV>+mCuAv)=mCu)+m(v), (3.5) 

If m( 1) < co, then the measure is said to bejkite. These measures have been 
studied extensively in [ 13, 151. Analogously, a fuzzy-valued fuzzy measure r?~ 
on (X, o) is a function Gi: ~7 -*R(a +) such that 

Again the measure is called Jnife if S(l) < E,. 
Using the isomorphism p--t [plq we can characterize fuzzy-valued fuzzy 

measures as follows: 

PROPOSITION 3.1. A function &: a --+R(l?? +) is a fuzzy-valued fuzzy 
measure if and only if we have 

[R(O)Jq = 0, (3.10) 

[rii(u v v)]” + [qu A v)]” L [ii(l + [rii(v>]q, (3.11) 

Pu,,<P*<...* [e (yNr,)]O=lN [W”>l”. (3.12) 

Now let us present some examples of fuzzy-valued measures showing that 
they are indeed proper generalizations of crisp-valued ones. 

EXAMPLE 1. If m is a crisp-valued fuzzy measure on (X, cr.), then C,,, 
given by 

E-,01) = %I(,) (3.13) 

is a (trivial) fuzzy-valued fuzzy measure. Note that we also have 

mW=j” ICn@)l”(a> da IO. 11 
(3.14) 
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Generally, if rii is a fuzzy-valued fuzzy measure on (X, cr), then 

mW=J [~Or)l”(a> da (3.15) 
lO,I[ 

defines a crisp-valued fuzzy measure on (X, u). These results have been 
proved in [ 141. 

EXAMPLE 2. It was shown in [ 131 that, given a generated fuzzy u- 
algebra $@‘) on X, a function m: Q&) + I? + is a finite crisp-valued fuzzy 
measure if and only if there is a (classical) finite measure P and a Markov 
kernel K from (X, s’) to ([0, 1 [, 9 n [0, 1 [) such that 

m01) = i, K(x, to, P(x)[) dP(x). (3.16) 

Now let m be a finite crisp-valued fuzzy measure and P and K the 
corresponding measure and Markov kernel, respectively. Then rii defined by 

e@)(r) = v {a E [O, 11 1 P({K, > 1 -a}) < r}, (3.17) 

where K, is the function specified by 

K,(x) = KG, IO~~u(x)l), 

is a finite fuzzy-valued fuzzy measure. Again we have 

(3.18) 

mCu) = Ilo I, [%~)l’ da 

and, if A E &’ is a crisp set, then 

WA) = +(A). 

(3.19) 

(3.20) 

EXAMPLE 3. Let ,pP be the power set of X. Then rii defined by 

e@)(r) = V {a E [0, l] ] card({,u > 1 - a}) < r} (3.21) 

is a fuzzy-valued fuzzy measure on (X, (0, llx), called thefuzzy cardinality. 
Note that again for crisp sets A we have 

fi(1.4) = ‘&d(n)* (3.22) 

EXAMPLE 4. Let (X, u) and (Y, <) be two fuzzy measurable spaces and 
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f: (X, a) + (Y, Zj) a fuzzy measurable function (cf. [ 121). If Kr is a fuzzy- 
valued fuzzy measure on (X, o), then [ffi] given by 

(3.23) 

is a fuzzy-valued fuzzy measure on (Y, <), called the image of iii under 
J Furthermore, [f%i] is finite if and only if S is finite. 

IV. CHARACTERIZATION OF FINITE FUZZY-VALUED MEASURES 

As we mentioned in Example 2, a finite crisp-valued fuzzy measure on 
(X, [(sz’)) can be characterized completely by an ordinary finite measure P 
and a Markov kernel K. In this section, we show that a fuzzy-valued fuzzy 
measure can be identified with a suitable family (P,, Ka)nE,o,,, of ordinary 
finite measures and Markov kernels, respectively. Throughout this section let 
,z’ be an ordinary u-algebra on X. A family (P, , Ka)ae,o, ,, , where each P, 
is an ordinary finite measure on (X, &‘) and each K, is a Markov kernel 
from (X,&) to ([0, l[,L?n [0, I[) is called an adaptedfamily provided the 
following properties are fulfilled: 

(i) P, is the zero measure, 

(ii) for each A E ,Fp the function a + P,(A) is bounded, 
nondecreasing and left-continuous, and 

(iii) for each y E [0, 1 ] we have 

The expression dP,“/dP, in (iii) stands for the Radon-Nikodym derivative 
of P,” with respect to P, (which always exists as a consequence of (ii)). 

Now we get the result, 

LEMMA 4.1. Let (CT KaL~o,l~ be a family of ordinary measures P, on 
(X, ~4) and Markov kernels K, from (X, d) to ([0, 1 [, 9 f7 [O, 1 [). Then 
for each ,u E &d) the function Fp: [0, I[ -+ R + speciJied by 

F‘,(a) = .i, fL(x, PA P(x)[> dP,(x) (4.2) 

is a bounded element of R4(R +) if and only if (P,, K,),E,O,,, is an adapted 
family. 
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ProoJ Assume first that for each ,u E r(d) F,, is a bounded element of 
$P(F? +). Then F,, is also nondecreasing, left-continuous, and we have 
F,(O) = 0. Now choosing A E &’ leads to 

P,(A) = j K,(x, [O, l,(x)[) @a(x) = F&4 
X 

Therefore the validity of (i) and (ii) is checked easily using the 
corresponding properties of F,A. As for condition (iii), observe first that for a 
given (y, A) E [0, l] x XY we obtain 

Fyx I~@) = jA K,(x, 10, Y[> dp,. 

Thus, if ((x,),,~ ] Q, then 

T I, &A Lo, Y[) dP,(x). 

Since A was choosen arbitrarily this proves that (iii) is fulfilled. Hence 
(P,T K,LEpl,U is an adapted family. 

Conversely, if (P,, K,),E,O,l, is an adapted family, it is readily seen that 
(i) implies F,(O) = 0 for all ,U E [(M’). The boundedness of F, is an 
immediate consequence of the boundedness of both K and a -+ P,(X). Next 
choose a measurable step function s, say, 

k 

s = 1 yi X lAi. 
i=l 

Then, if (a,JnEN T a, we get 

(F&AeM = 

and therefore, because of (iii) and the Lebesgue monotone convergence 
theorem, 

(Fs‘s(an))n,N T Wh (4.3) 

showing that F, is nondecreasing and left-continuous. 
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For an arbitrary ,u E [(.G’), let (s,),~~ be a nondecreasing sequence of 
measurable step functions such that p = V,,, s,. Thus for (cI,),~~ T c1 the 
application of (iv) and of the Lebesgue monotone convergence theorem 
yields 

Hence F,, is nondecreasing and left-continuous, too, and therefore an element 
of S?(lF? +). I 

Now we are ready to state the main result. 

THEOREM 4.2. A function 2: &@‘) -+R(lR+) is a jinite fuzzy-valued 
fuzzy measure on (X, [(AS?‘)) if and only if there is an adapted fami!y 

(P,, u-4O.1, such that for each p E ((A) 

[+G)l”(a> = (/L(x [O~cl(~)[)d~,(~). (4.4) 

Furthermore, 5 is characterized by (P, , Knjaero, ,, uniquely in the sense that, 

if (L KJasLo,ll and (CL JLLw~ are adapted families fulfilling (4.4), 
then we have P, = Q, for each a E [0, 1[ and K,(., A) = L,(., A) P, almost 
everywhere for each (a, A) E [0, 1 [ x x2. 

ProojI If 6 is a finite fuzzy-valued fuzzy measure, then by 
Proposition 3.1 [$(.)I” fulfills (3.10~(3.12). Then, for each a E [0, I[, the 
function p -+ [rii@)]“( (r is a finite crisp-valued fuzzy measure. Now, from ) 
[ 131 we know that there is an ordinary finite measure P, on (X, d) and a 
Markov kernel K, from (X, d) to ([0, l[, 9 f7 [O, 1 [) such that for each 
P~EW) 

[~cU)19(a) = j- K,(x, [O&)[) dP,(x). 

Since F,, = [ti(u)19 is bounded and an element of Z9(R +) Lemma 4.1 tells 
us that (L KoLslo,l~ has to be an adapted family. 

On the other hand, if (P,, K,),,,O,,( is an adapted family, then for each 
p E I$&) the function F, defined by (4.2) is bounded and belongs to 
Z9(R+). Using the properties of the Markov kernel and of the integral, 
especially the Lebesgue monotone convergence theorem, it is perfectly clear 
that the mapping p -t F,, also fulfills (3.10~(3.12). Thus, by Proposition 3.1 
there is a finite fuzzy-valued fuzzy measure fi such that [&($)]” = F,, for all 
P E g.4 

Finally, suppose that both (P,, Krr)oe,o,,, and (Q,, LJaElo,,, are adapted 
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families fulfilling (4.4). Then putting p = 1, leads immediately to P, = Q, 
for all a E [0, 1 [. Consequently, if ,U = y X 1,) we obtain 

j 
A 

which implies K,(.,A) = L,(., A) P, almost everywhere for all (CGA) E 
[0, 1[ x d. This completes the proof. 1 

We now want to apply these results to some examples. 

EXAMPLE 5. In Example 1, we mentioned that, given a fuzzy-valued 
measure rii on (X, c(d)) then m defined by (3.14) is a crisp-valued fuzzy 
measure on (X, [(s’)). Obviously, if rii is finite, so is m. Then by 
Theorem 4.2, 6 is characterized by an adapted family (P,, K,),E,O,,, , by the 
main result of [ 131 m is represented by an ordinary finite measure P on 
(X, s’) and a Markov kernel K from (X, LZY) to ([0, l[, 9 n [0, l[). It is 
now easy to construct P and K if the family (P, , Kn)as,o, I, is known. For 
each A E a?’ we have 

P(A) = jLo l, P,(A) da, 

K is determined P almost everywhere by 

w, (0, Y[) = fg (x), 

where dQ,/dP is again the Radon-Nikodym derivative of the measure Q, 
with respect to P, QY being given by 

Q,(A) = j j Kc&, [O,Y[> dP,(x) da 
lO,lI A 

for each A E a?. 

EXAMPLE 6. In Example 2 we started with a finite crisp-valued fuzzy 
measure m on (X, c(d)) and, using the characterization of m by an ordinary 
finite measure P and a Markov kernel K, we constructed a finite fuzzy- 
valued fuzzy measure rii by means of (3.17). If we now look at the adapted 
family UJ,, fLLE~o,l~ characterizing rii according to Theorem 4.2, we obtain 
for PO the zero measure and therefore we can choose an arbitrary Markov 
kernel K,. If a # 0, we get P, = P, and the Markov kernel K, is determined 
P almost everywhere by 

Ka(., LO, Y[> = l,KK(..,O.yil>l-a, 
for each y E [0, 11. 
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EXAMPLE 7. If we are given an ordinary finite measure P on (X, .v’), we 
can also ask which finite fuzzy-valued fuzzy measures rii on (X, ((-4)) fulfill 
Eq. (3.20) for each A E ..&‘. The solution is simply the set of finite fuzzy- 
valued fuzzy measures such that for the corresponding adapted families 

(Pa~KYLe,o,l,~ P, = 0, and P, = P for all a > 0 holds. 

EXAMPLE 8. Suppose (X, .&‘) and (Y, F) are two ordinary measurable 
spaces and f: (X, [(M’)) -+ (Y, t;(F)) is fuzzy measurable. Let rii be a finite 
fuzzy-valued fuzzy measure and (P, , K,),El,,, , , the corresponding adapted 
family. Then the adapted family (Q,, La)ae,o,,, associated with the finite 
fuzzy-valued fuzzy measure [fiii] defined by (3.23) fulfills the following 
properties: 

Q, = [Pal, L,(*, q = W,(*, B) If-‘(~)), 

where [Ji”,] is the image of P, under f and E(K,(., B) if -l(g)) stands for 
the conditional expected value of K,(., B) with respect to the a-algebra 
f-‘(Gy=(f-‘(C)ICE@}. 
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