
Journal of Computational and Applied Mathematics 233 (2009) 165–172

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Newmethod based on the HPM and RKHSM for solving forced Duffing
equations with integral boundary conditions
Fazhan Geng a,∗, Minggen Cui b
a Department of Mathematics, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
b Department of Mathematics, Harbin Institute of Technology, Weihai, Shandong 264209, China

a r t i c l e i n f o

Article history:
Received 17 March 2009
Received in revised form 1 July 2009

Keywords:
Duffing equation
Integral boundary conditions
Homotopy perturbation method
Reproducing kernel Hilbert space method

a b s t r a c t

This paper investigates the forced Duffing equation with integral boundary conditions.
Its approximate solution is developed by combining the homotopy perturbation method
(HPM) and the reproducing kernel Hilbert space method (RKHSM). HPM is based on the
use of the traditional perturbation method and the homotopy technique. The HPM can
reduce nonlinear problems to some linear problems and generate a rapid convergent
series solution in most cases. RKHSM is also an analytical technique, which can solve
powerfully linear boundary value problems. Therefore, the forced Duffing equation with
integral boundary conditions can be solved using advantages of these two methods. Two
numerical examples are presented to illustrate the strength of the method.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the following forced Duffing equation with integral boundary conditions:
u′′(t)+ σu′(t)+ f (t, u) = 0, 0 < t < 1, σ ∈ R− {0},

u(0)− µ1u′(0) =
∫ 1

0
h1(s)u(s)ds, u(1)+ µ2u′(1) =

∫ 1

0
h2(s)u(s)ds,

(1.1)

where f : [0, 1] × R→ R and µi are nonnegative constants.
Various problems arising in heat conduction [1–3], chemical engineering [4], thermo-elasticity [5], and plasmaphysics [6]

can be reduced to the nonlocal problems. Boundary value problemswith integral conditions constitute a very interesting and
important class of problems. The integral boundary problems have been investigated by many authors in recent years [7,8].
The Duffing equation is a well known nonlinear equation of applied science which is used as a powerful tool to discuss some
important practical phenomena such as orbit extraction, nonuniformity caused by an infinite domain, nonlinearmechanical
oscillators, etc. Another important application of the Duffing equation is in the field of the prediction of diseases. The
numerical solutions of the forced Duffing equations with two-point boundary conditions have been widely investigated.
However, there are few references on the forced Duffing equation with integral boundary conditions. The existence and
uniqueness of the solution of the forced Duffing equation with integral boundary conditions are presented by means of a
constructivemethod [9]. Dehghan presented some effectivemethods for solving problemswith nonlocal conditions [10–14].
In thiswork,wewill give the analytic approximation of the solution to the forcedDuffing equationwith integral boundary

conditions (1.1) by combining HPM and RKHSM.
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The HPM is based on the use of the traditional perturbation method and the homotopy technique. Using this method, a
rapid convergent series solution can be obtained in most cases. Usually, a few number of terms of the series solution can
be used for numerical purposes with a high degree of accuracy. Furthermore, the HPM does not require the discretization
of the problem. Thus it is suitable for finding the approximation of the solution without discretization of the problem. The
method was successfully applied to boundary value problems, partial differential equations and other fields [15–29].
Reproducing kernel theory has important application in numerical analysis, differential equation, probability and

statistics and so on [30–40]. Recently, using the RKHSM, Xie, Yao, Cui, Geng and Chen discussed many linear and nonlinear
differential equations [32–40].
The rest of the paper is organized as follows. In the next section, the HPM is introduced. The RKHSM is introduced in

Section 3. TheHPMandRKHSMare applied to (1.1) in Section 4. The numerical examples are presented in Section 5. Section 6
ends this paper with a brief conclusion.

2. Analysis of HPM

To illustrate the basic ideas of this method, we consider the following nonlinear differential equation:
A(u)− f (r) = 0, r ∈ Ω, (2.1)

with the boundary conditions of
B(u, ∂u/∂n) = 0, r ∈ Γ , (2.2)

where A is a general differential operator, B a boundary operator, f (r) a known analytical function and Γ is the boundary of
the domainΩ .
Generally speaking, the operator A can be divided into parts which are L and N , where L is linear, but N is nonlinear. (2.1)

can therefore be rewritten as
L(u)+ N(u)− f (r) = 0, r ∈ Ω. (2.3)

By the homotopy technique, we construct a homotopy V (r, p) : Ω × [0, 1] → Rwhich satisfies:
H(V , p) = (1− p)[L(V )− L(u0)] + p[A(V )− f (r)] = 0, p ∈ [0, 1], r ∈ Ω, (2.4)

or
H(V , p) = L(V )− L(u0)+ pL(u0)+ p[N(V )− f (r)] = 0, p ∈ [0, 1], r ∈ Ω, (2.5)

where p ∈ [0, 1] is an embedding parameter, u0 is an initial approximation of (2.1), which satisfies the boundary conditions.
Obviously, from (2.4) or (2.5), one obtains

H(V , 0) = L(V )− L(u0) = 0, (2.6)
H(V , 1) = A(V )− f (r) = 0, (2.7)

the changing process of p from zero to unity is just that of V (r, p) from u0(r) to u(r). In topology, this is called deformation,
and L(V )− L(u0) and A(V )− f (r) are called homotopies.
According to the HMP, we can first use the embedding parameter p as a ‘‘small parameter’’, and assume that the solution

of (2.4) or (2.5) can be written as a power series in p:

V = V0 + pV1 + p2V2 + · · · . (2.8)
Setting p = 1 results in the approximate solution of Eq. (2.1):

u = lim
p→1
V = V0 + V1 + V2 + · · · . (2.9)

The combination of perturbation method and homotopy method is called the HPM, which has eliminated the limitations
of traditional perturbation methods. On the other hand, this technique is of full advantage of traditional perturbation
techniques. The series (2.9) is convergent in most cases. However, the convergent rate depends on the nonlinear operator
A(V ) (the following opinions are suggested in [18])
(1) The second derivative ofN(V )with respect to V must be small because the parametermay be relatively large, i.e., p→ 1.
(2) The norm of L−1(∂N/∂V )must be smaller than one so that the series converges.

3. Analysis of RKHSM

In this section, we illustrate how to solve the following linear second order ordinary differential equations with integral
boundary conditions using RKHSM:

Lu(x) = f (x), 0 < x < 1,

u(0)− µ1u′(0) =
∫ 1

0
h1(s)u(s)ds, u(1)+ µ2u′(1) =

∫ 1

0
h2(s)u(s)ds,

(3.1)

where Lu = u′′(x)+ b(x)u′(x)+ c(x)u(x), b(x), c(x) are continuous and u(x) ∈ W 32 [0, 1], f (x) ∈ W
1
2 [0, 1].
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In order to solve (3.1) using RKHSM, we first construct a reproducing kernel Hilbert spaceW 32 [0, 1] in which every function
satisfies the integral boundary conditions of (3.1).

Definition 3.1 (Reproducing Kernel). Let E be a nonempty abstract set. A function K : E × E → C is a reproducing kernel of
the Hilbert space H if and only if

(a) ∀ t ∈ E, K(·, t) ∈ H
(b) ∀ t ∈ E,∀ ϕ ∈ H, (ϕ(·), K(·, t)) = ϕ(t).

The last condition is called ‘‘the reproducing property’’: the value of the function ϕ at the point t is reproduced by the inner
product of ϕ(·)with K(·, t).
A Hilbert space which possesses a reproducing kernel is called a reproducing kernel Hilbert space (RKHS).

3.1. The reproducing kernel Hilbert space W 32 [0, 1]

The inner product space W 32 [0, 1] is defined as W
3
2 [0, 1] = {u(x) | u, u

′, u′′ are absolutely continuous real-valued
functions, u(3) ∈ L2[0, 1], u(0)−µ1u′(0) =

∫ 1
0 h1(s)u(s)ds, u(1)+µ2u

′(1) =
∫ 1
0 h2(s)u(s)ds}. The inner product inW

3
2 [0, 1]

is given by

(u(y), v(y))W32 = u(0)v(0)+ u
′(0)v′(0)+ u(1)v(1)+

∫ 1

0
u(3)v(3)dy, (3.2)

and the norm ‖u‖W32 is denoted by ‖u‖W32 =
√
(u, u)W32 , where u, v ∈ W

3
2 [0, 1].

Remark. In the above spaceW 32 [0, 1], the reproducing kernel satisfying integral boundary conditions cannot be obtained
by using the method in [34–36]. The following theorem gives a new method for obtaining such a reproducing kernel.

Theorem 3.1. The space W 32 [0, 1] is a reproducing kernel Hilbert space. That is, there exists Rx(y) ∈ W 32 [0, 1], for any
u(y) ∈ W 32 [0, 1] and each fixed x ∈ [0, 1], y ∈ [0, 1], such that (u(y), Rx(y))W32 = u(x). The reproducing kernel Rx(y) can
be denoted by

Rx(y) =


5∑
i=0

aiyi − c1H1(y)− c2H2(y), y ≤ x,

5∑
i=0

biyi − c1H1(y)− c2H2(y), y > x,
(3.3)

where Hi(y) =
∫ y
0

∫ y
0

∫ y
0

∫ y
0

∫ y
0

∫ y
0 hi(y)dydydydydydy, i = 1, 2.

Proof. Note that

(u(y), Rx(y))W32 = u(0)Rx(0)+ u
′(0)R′x(0)+ u(1)Rx(1)+

∫ 1

0
u(3)(y)R(3)x (y)dy

+ c1

[
u(0)− µ1u′(0)−

∫ 1

0
h1(s)u(s)ds

]
+ c2

[
u(1)+ µ2u′(1)−

∫ 1

0
h2(s)u(s)ds

]
. (3.4)

Through several integration by parts for (3.4), it becomes

(u(y), Rx(y))W32 = u(0)[Rx(0)+ c1 − R
(5)
x (0)] + u(1)[Rx(1)+ c2 + R

(5)
x (1)]

+ u′(0)[R′x(0)− c1µ1 + R
(4)
x (0)] + u

′(1)[c2µ2 − R(4)x ]

− u′′(0)R(3)x (0)+ u
′′(1)R(3)x (1)−

∫ 1

0
u(y)[R(6)x (y)+ c1h1(y)+ c2h2(y)]dy. (3.5)

Since Rx(y) ∈ W 32 [0, 1], it follows that

Rx(0)− µ1R′x(0) =
∫ 1

0
h1(s)Rx(s), Rx(1)+ µ2R′x(1) =

∫ 1

0
h2(s)Rx(s)ds. (3.6)
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If

Rx(0)+ c1 − R(5)x = 0, Rx(1)+ c2 + R(5)x (1) = 0, R′x(0)− c1µ1 + R
(4)
x (0) = 0,

c2µ2 − R(4)x = 0, R(3)x (0) = 0, R(3)x (1) = 0,
(3.7)

then

(u(y), Rx(y))W32 = −
∫ 1

0
u(y)[R(6)x (y)+ c1h1(y)+ c2h2(y)]dy.

For ∀x ∈ [0, 1], if Rx(y) also satisfies

− [R(6)x (y)+ c1h1(y)+ c2h2(y)] = δ(y− x), (3.8)

then

(u(y), Rx(y))W32 = u(x).

The characteristic equation of (3.8) is given by

λ6 = 0,

then we can obtain characteristic values λ = 0 whose multiplicity is 6. So, let

Rx(y) =


5∑
i=0

aiyi − c1H1(y)− c2H2(y), y ≤ x,

5∑
i=0

biyi − c1H1(y)− c2H2(y), y > x,

where Hi(y) =
∫ y
0

∫ y
0

∫ y
0

∫ y
0

∫ y
0

∫ y
0 hi(y)dydydydydydy, i = 1, 2. On the other hand, for (3.8), let Rx(y) satisfy

R(k)x (x+ 0) = R
(k)
x (x− 0), k = 0, 1, 2, . . . , 4. (3.9)

Integrating (3.8) from x− ε to x+ ε with respect to y and letting ε→ 0, we have the jump degree of R(5)x (y) at y = x

R(5)x (x− 0)− R
(5)
x (x+ 0) = 1. (3.10)

From (3.6), (3.7), (3.9) and (3.10), the unknown coefficients of (3.3) can be obtained. �

In [39], Li and Cui defined a reproducing kernel Hilbert spaceW 12 [0, 1] and gave its reproducing kernel

Rx(y) =
1

2 sinh(1)
[cosh(x+ y− 1)+ cosh(|x− y| − 1)].

3.2. The solution of (3.1)

In (3.1), it is clear that L : W 32 [0, 1] → W 12 [0, 1] is a bounded linear operator. Put ϕi(x) = Rxi(x) and ψi(x) = L
∗ϕi(x)

where L∗ is the adjoint operator of L. The orthonormal system {ψ i(x)}
∞

i=1 ofW
3
2 [0, 1] can be derived from the Gram–Schmidt

orthogonalization process of {ψi(x)}∞i=1,

ψ i(x) =
i∑
k=1

βikψk(x), (βii > 0, i = 1, 2, . . .). (3.11)

Theorem 3.2. For (3.1), if {xi}∞i=1 is dense on [0, 1], then {ψi(x)}
∞

i=1 is the complete systemof W
3
2 [0, 1] andψi(x) = LyRx(y)|y=xi .

The subscript y by the operator L indicates that the operator L applies to the function of y.

Proof. Note here that

ψi(x) = (L∗ϕi)(x) = ((L∗ϕi)(y), Rx(y))
= (ϕi(y), LyRx(y)) = LyRx(y)|y=xi .

Clearly, ψi(x) ∈ W 32 [0, 1].
For each fixed u(x) ∈ W 32 [0, 1], let (u(x), ψi(x)) = 0, (i = 1, 2, . . .), which means that,

(u(x), (L∗ϕi)(x)) = (Lu(·), ϕi(·)) = (Lu)(xi) = 0. (3.12)
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Since {xi}∞i=1 is dense on [0, 1], (Lu)(x) = 0. It follows that u ≡ 0 from the existence of L
−1. So the proof of Theorem 3.2 is

complete. �

Theorem 3.3. If {xi}∞i=1 is dense on [0, 1] and the solution of (3.1) is unique, then the solution of (3.1) is

u(x) =
∞∑
i=1

i∑
k=1

βikf (xk)ψ i(x). (3.13)

Proof. Applying Theorem 3.2, it is easy to know that {ψ i(x)}∞i=1 is the complete orthonormal basis ofW
3
2 [0, 1].

Note that (v(x), ϕi(x)) = v(xi) for each v(x) ∈ W 12 [0, 1]. Hence we have

u(x) =
∞∑
i=1

(u(x), ψ i(x))ψ i(x)

=

∞∑
i=1

i∑
k=1

βik(u(x), L∗ϕk(x))ψ i(x)

=

∞∑
i=1

i∑
k=1

βik(Lu(x), ϕk(x))ψ i(x)

=

∞∑
i=1

i∑
k=1

βik(f (x), ϕk(x))ψ i(x)

=

∞∑
i=1

i∑
k=1

βikf (xk)ψ i(x) (3.14)

and the proof of the theorem is complete. �

Now, the approximate solution un(x) can be obtained by the n-term intercept of the exact solution u(x) and

un(x) =
n∑
i=1

i∑
k=1

βikf (xk)ψ i(x). (3.15)

Remark. Put Q = Span{{ψ i}ni=1}. Clearly, Q ⊂ W
3
2 [0, 1]. In fact, un(x) is the projection of the exact solution u(x) onto space

Q .

Theorem 3.4. Assume that u(x) is the solution of (3.1) and rn(x) is the error between the approximate un(x) and the exact
solution u(x). Then the error rn(x) is monotone decreasing in the sense of ‖ · ‖W32 .

Proof. From (3.14) and (3.15), it follows that

‖rn‖W32 =

∥∥∥∥∥ ∞∑
i=n+1

i∑
k=1

βikf (xk)ψ i(x)

∥∥∥∥∥
W32

=

∞∑
i=n+1

(
i∑
k=1

βikf (xk)

)2
. (3.16)

(3.16) shows that the error rn is monotone decreasing in the sense of ‖ · ‖W32 and the proof is complete. �

4. The application of HPM and RKHSM to (1.1)

For (1.1), according to the HPM, we construct a homotopy as follows:

H(u, p) = u′′(t)+ σu′(t)+ Pf (t, u) = 0 (4.1)

where p ∈ [0, 1] is an embedding parameter. In the case p = 0, (4.1) becomes a linear equation, which is easy to be solved,
and when p = 1, (4.1) turns out to be the original one, (1.1).
In view of the HPM, we use the homotopy parameter p to expand the solution

u = u0 + pu1 + p2u2 + p3u3 · · · (4.2)
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The approximate solution of (1.1) can be obtained by setting p = 1

u = u0 + u1 + u2 + u3 · · · . (4.3)

Substituting (4.2) into (4.1), and equating the coefficients of the identical powers of p yields the following equations:

p0 : u′′0(t)+ σu
′

0(t) = 0, u0(0)− µ1u′0(0) =
∫ 1

0
h1(s)u0(s)ds, u0(1)+ µ2u′0(1) =

∫ 1

0
h2(s)u0(s)ds,

p1 : u′′1(t)+ σu
′

1(t) = −f (t, u)|p=0, u1(0)− µ1u′1(0) =
∫ 1

0
h1(s)u1(s)ds,

u1(1)+ µ2u′1(1) =
∫ 1

0
h2(s)u1(s)ds,

p2 : u′′2(t)+ σu
′

2(t) = −
df (t, u)
dp

∣∣∣∣
p=0
, u2(0)− µ1u′2(0) =

∫ 1

0
h1(s)u2(s)ds,

u2(1)+ µ2u′2(1) =
∫ 1

0
h2(s)u2(s)ds,

p3 : u′′3(t)+ σu
′

3(t) = −
d2f (t, u)
2!dp2

∣∣∣∣
p=0
, u3(0)− µ1u′3(0) =

∫ 1

0
h1(s)u3(s)ds,

u3(1)+ µ2u′3(1) =
∫ 1

0
h2(s)u3(s)ds,

p4 : u′′4(t)+ σu
′

4(t) = −
d3f (t, u)
3!dp3

∣∣∣∣
p=0
, u4(0)− µ1u′4(0) =

∫ 1

0
h1(s)u4(s)ds,

u4(1)+ µ2u′4(1) =
∫ 1

0
h2(s)u4(s)ds,

· · · · · ·

pm : u′′m(t)+ σu
′

m(t) = −
dm−1f (t, u)
(m− 1)!dpm−1

∣∣∣∣
p=0
, um(0)− µ1u′m(0) =

∫ 1

0
h1(s)um(s)ds,

um(1)+ µ2u′m(1) =
∫ 1

0
h2(s)um(s)ds.

To solve the above equations, we use the RKHSM presented in Section 3 and obtain u0, u1, u2, u3, . . .

u0(t) =
∞∑
i=1

i∑
k=1

βikf0(tk)ψ i(t),

u1(t) =
∞∑
i=1

i∑
k=1

βikf1(tk)ψ i(t),

u2(t) =
∞∑
i=1

i∑
k=1

βikf2(tk)ψ i(t),

u3(t) =
∞∑
i=1

i∑
k=1

βikf3(tk)ψ i(t),

u4(t) =
∞∑
i=1

i∑
k=1

βikf4(tk)ψ i(t),

· · · · · ·

um(t) =
∞∑
i=1

i∑
k=1

βikfm(xk)ψ i(x),

(4.4)

where f0(t) = 0, f1(t) = −f (t, u)|p=0(t), f2(t) = −
df (t,u)
dp |p=0(t), f3(t) = −

d2f (t,u)
2!dp2
|p=0(t), f4(t) = −

d3f (t,u)
3!dp3
|p=0(t),

fm(t) = −
dm−1f (t,u)
(m−1)!dpm−1

|p=0(t).
Therefore, the approximate solution of Eq. (1.1) and them-term approximation to this solution are obtained

u =
∞∑
k=0

uk, Um =
m−1∑
k=0

uk. (4.5)
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Table 1
Numerical results for Example 5.1.

x True solution u(x) Relative error (U5,10) Relative error (U5,20) Relative error (U5,50) Relative error (U5,100)

0.01 0.031411 9.19E−3 2.21E−3 3.52E−4 7.49E−5
0.08 0.248690 8.13E−3 2.03E−3 3.25E−4 8.17E−5
0.16 0.481754 8.07E−3 2.01E−3 3.23E−4 8.11E−5
0.32 0.844328 8.04E−3 2.01E−3 3.22E−4 8.09E−5
0.48 0.998027 8.02E−3 2.01E−3 3.22E−4 8.08E−5
0.64 0.904827 8.00E−3 2.00E−3 3.20E−4 8.03E−5
0.80 0.587785 7.93E−3 1.98E−3 3.18E−4 7.97E−5
0.96 0.125333 7.96E−3 1.96E−3 3.14E−4 7.85E−5

0.2 0.4 0.6 0.8 1
t

0.001

0.002

0.003

0.004

0.005

0.2 0.4 0.6 0.8 1
t

0.00005

0.0001

0.00015

0.0002

Absolute errors Absolute errors

Fig. 1. Figures of absolute errors |u(x)− U2,10(x)|, |u(x)− U5,50(x)| for Example 5.2.

Now, the approximate solution Um,n(t) can be obtained by the n-term intercept of the uk(t), k = 0, 1, 2, . . . , and

Um,n(t) =
m−1∑
k=0

n∑
i=1

Aikψ i(t), (4.6)

where Aik =
∑i
j=1 βijfk(tj).

5. Numerical examples

In this section, we present and discuss the numerical results by employing the HPM and RKHSM for two examples. The
results demonstrate that the present method is remarkably effective.

Example 5.1. Consider the following forced Duffing equation:u
′′(t)+ u′(t)+ t(1− t)u3 = f (t), 0 < t < 1,

u(0)−
2
π2
u′(0) = −

∫ 1

0
u(s)ds, u(1)+

1
π2
u′(1) = −

∫ 1

0
su(s)ds,

where f (t) = π cos(π t)− sin(π t)
(
π2 + (−1+ t) t sin(π t)2

)
. It is easy to see that the exact solution is u(t) = sin(π t).

Solution: According to (4.4)–(4.6), one can obtain the approximation Um,n(x) of u(x).
When we takem = 5, n = 10, 20, 50, 100, the numerical results are shown in Table 1.

Example 5.2. Consider the following forced Duffing equation:
u′′(t)− u′(t)− 2u(t)+ sin(u) = f (t), 0 < t < 1,

u(0)−
4
3π2
u′(0) = −

∫ 1

0
cos

(πs
2

)
u(s)ds, u(1)+

6
π2
u′(1) = −

∫ 1

0
(2s+ 2)u(s)ds,

where f (t) = − (π cos(π t))−
(
2+ π2

)
sin(π t)+ sin(sin(π t)). It is easy to see that the exact solution is u(t) = sin(π t).

Solution: According to (4.4)–(4.6), one can obtain the approximation Um,n(x) of u(x).
When we takem = 2, n = 10 andm = 5, n = 51, the numerical results are shown in Fig. 1.

6. Conclusion

In this paper, the combination of HPM and RKHSM was employed successfully for solving the forced Duffing equation
with integral boundary conditions. The numerical results show that the presentmethod is an accurate and reliable analytical
technique for the forced Duffing equation with integral boundary conditions.
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