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a b s t r a c t

In this paper we study the Ox-asymmetric solutions of the planar photogravitational
restricted three-body problem in the case of primaries with equal masses and equal values
of the radiation pressure parameters. In particular, we are concerned with the families of
asymmetric orbits which bifurcate from thewell known families a, b, and c. Their evolution
is examined via the numerical construction of series of the critical bifurcation points of
a, b, and c with respect to the variation of the common radiation parameter q. We also
present some illustrative cases of these families for several values of this parameter. In
order to avoid the singularity due to binary collisions between the third body and one of
the primaries, the equations of motion of the problem are regularized by using the Levi-
Civita transformations.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we deal with the ‘‘Copenhagen case’’ of the planar photogravitational restricted three-body problem. By
extending the corresponding case of the classical gravitational problem, we admit that the mass and radiation pressure
parameters of the primaries are equal, i.e. 1− µ = µ = 0.5 and q1 = q2 = q. The factors q1, q2 are related to the notation
of Schuerman [11] by q1 = 1 − b1, q2 = 1 − b2 where b1, b2 are the ratios of the magnitudes of radiation to gravitational
forces due to the two primary bodiesm1 andm2. This problem can be used to model the motion of small particles under the
influence of binary stars.
Poynting [8] has stated that particles, such as small meteors or cosmic dust, are comparably affected by gravitational

and light radiation forces as they approach luminous celestial bodies. The importance of the radiation influence on
celestial bodies has been recognized by many scientists, especially in connection with the formation of concentrations of
interplanetary and interstellar dust or grains in planetary and binary star systems, as well as the perturbations on artificial
satellites. The expression of the total radiation force on a particle P due to a radiation source S was given in [10], from the
standpoint of the theory of relativity. Robertson stated that considering only terms of the first order in v/c constituted a
justifiable approximation, readily interpretable in classical mechanics and electrodynamics, to yield:

F = F1 + F2 + F3, (1)

where

F1 = Fp
R
R
, F2 = −Fp

v · R
cR

R
R
, F3 = −Fp

v
c
. (2)
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Fp denotes the measure of the radiation pressure force, R is the position vector of P with respect to S, v the corresponding
velocity vector and c the velocity of light. The quantity Fp is given by

Fp =
3Lm

16πR2psc
, (3)

where L is the luminosity of the radiating body, while m, p and s are the mass, density and cross section of the particle,
respectively. The first component F1 in Eq. (1) expresses the radiation pressure. The second one, F2, represents the Doppler
shift owing to the motion of the particle. The third component F3 is due to the absorption and subsequent re-emission of
part of the incident radiation. The last two forces constitute the so-called Poynting–Robertson effect [9]. In the present paper
we consider only the influence of the radiation pressure [1].
In spite of the apparent symmetry, it is known that in the gravitational problem there are asymmetric solutions with

respect to either one or both of the two axes Ox and Oy (see, for example, [13]). In this contribution we are particularly
interested in the families of asymmetric periodic orbits which bifurcate from the families of a, b, and c (we use the same
notation as in Hénon’s paper [2]). In the gravitational case q = 1, these latter classes consist of periodic solutions which are
symmetric with respect to the Ox axis. Their starting-points are the collinear equilibrium points L2, L3 and L1, respectively,
and each of these families contains exactly one critical orbit for which ah = 1 and bh = 0 (see Section 3). Any of these orbits
is a bifurcation point of a family of periodic solutions which are not symmetric with respect to either Ox or both Ox and Oy.
The evolution of the afore-mentioned critical orbits is studied by means of the numerical construction of series with

respect to the variation of the common radiation parameter q. The computation of these series is accomplished by using the
method that has been introduced in [2,3]. One may suspect that, a priori, there is a physical limiting case for the existence
of the bifurcation point of c. This is the value of the radiation pressure parameter q∗ = 1/8, when its starting-point, L1,
coincides with the triangular equilibrium points L4 and L5 (for details, see [6]). We have studied the whole range between
the gravitational case and this critical value. We have found that for some subregions of this range there are more than one
critical members of c. We have seen that q∗ is indeed a critical value for all these bifurcation points. Regarding the families a
and b, we have found that their critical orbits, originally existing in the gravitational case, cease to exist at a value of q greater
than q∗. For a small range of q just before this value, another bifurcation point appears in a and b. The data describing the
evolution of the afore-named series are presented in tabular and graphical form.
To complete our study, we have used the members of these series as starting-points to compute the families of

asymmetric periodic orbits that bifurcate with a, b and c, for several values of q. We give the data of some representative
cases of these families, too.

1.1. Equations of motion

Consider the motion of an infinitesimal mass that is influenced by the gravitational and radiation pressure forces of
two illuminating primary bodies of mass m1 and m2 and radiation pressure factors q1 and q2. The two heaviest bodies (the
primaries) revolve under their mutual gravitational attraction around their center of mass in circular orbits. The units of
measure of mass, length and time are taken so that the sum of the masses and the distance between the primaries is unity,
and, also, the Gaussian constant of gravitation G is 1. A rotating rectangular coordinate system whose origin is the center
of mass of the primaries and whose Ox-axis contains the primaries is used. The angular velocity of the system is also unity
(for details see [14]). Then, in this coordinate system the corresponding dimensionless equations of motion are written as
follows [12]:

ẍ− 2ẏ =
∂Ω

∂x
, ÿ+ 2ẋ =

∂Ω

∂y
, (4)

where dots denote time derivatives.Ω stands for the photogravitational potential in synodic coordinates and it is given by

Ω =
1
2
(x2 + y2)+

q1(1− µ)
r1

+
q2µ
r2
, (5)

where 1− µ and µ are the mass ratios ofm1 andm2 tom1 +m2, respectively, and ri are the distances

r1 =
√
(x+ µ)2 + y2, r2 =

√
(x+ µ− 1)2 + y2. (6)

In our case, 1− µ = µ = 0.5 and q1 = q2 = q.
The energy integral of this problem is given by the expression

C = 2Ω − (ẋ2 + ẏ2), (7)

where C is the Jacobian constant.
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1.2. Regularized equations of motion

During the computation of the series and the families, we had, in many cases, to compute orbits which were close
to the vicinity of singularities of the problem. In these cases, we regularized the equations of motion by applying the
transformations of Levi-Civita [4,14]. These transformations can be introduced as follows. Consider the relations

z = f (w),
dt
dτ
= g(w) = |f ′(w)|2 (8)

which connect the original coordinate system and the time variable
z = x+ iy and t, (9)

(i is the imaginary unit) to the new variables
w = u+ iv and τ , (10)

where

f (w) = µ+ w2 or f (w) = µ− 1+ w2. (11)
If the first formula is applied for f , the singularity at the primary body of massm1 is regularized, while, if the second one is
used, the singularity atm2 is eliminated. Then, in the first case, the regularized equations of motion are

u′′ − 8(u2 + v2)v′ =
∂Ω∗

∂u
, v′′ + 8(u2 + v2)v′ =

∂Ω∗

∂v
, (12)

where primes denote time derivatives with respect to the new time τ . The function of the photogravitational potential in
regularized coordinates is given by

Ω∗ = 2(u2 + v2)

{
−C + (2uv)2 + (u2 − v2 + µ)2 +

2q1(1− µ)[
(2uv)2 + (u2 − v2 + 2µ)2

]1/2
+

2q2µ[
(2uv)2 + (u2 − v2 + 2µ− 1)2

]1/2
}
. (13)

The Jacobian constant value is common in the two systems. In the new system, it can be obtained by

C = (u′2 + v′2) = 2Ω∗. (14)
The afore-mentioned transformation can easily been reversed. The original time t is obtained by a single integration of the
time transformation:

t =
∫ τ

g(w)dτ , (15)

while the coordinates x and y are given by

x = u2 − v2 + µ and y = 2uv. (16)
The relations corresponding to the transformation which eliminates the singularity at the primary body of mass m2 are
similar.

2. The family network

In this section we present the network of the planar symmetric simple-periodic orbits of the classical restricted three-
body problem as they have been illustrated in [7]. By the term ‘‘symmetric simple-periodic orbits’’ we mean the period-1
solutionswhich have two perpendicular intersectionswith the horizontal Ox-axis. In the Copenhagen case, there are twenty
two families which are classified in three groups. The first group consists of pairs of families whosemembers are symmetric
to each other with respect to the origin. The second one contains families whose members are symmetric with respect to
the Oy-axis. The families which belong to the third group have the following property: for each periodic orbit of any of these
familieswith Jacobian constant C , there is a symmetric solutionwith respect to theOy-axiswhich belongs to the same family
and corresponds to the same value of the Jacobian constant. Fig. 1 presents the network that is formed by these families for
q = 1. The fundamental families a, b and c are included in this network. The families a and b consist of retrograde solutions
around L2 end L3, respectively, and they belong to the first group, i.e. for a given periodic orbit of the first family, one may
obtain a symmetric orbit which belongs to the second one, by replacing x, y and µ by −x, −y and 1 − µ, and vice-versa.
Family c consists of retrograde solutions around L1 and belongs to the second group.
We remark that, in Fig. 1, as well as in all the data representations which are given in this paper, only those parts of

the families which represent simple-periodic orbits are given. The family characteristic curves may continue with parts
corresponding to higher-multiplicity orbits which appear after collision solutions with one of the primaries, but these parts
are not considered in this paper.
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Fig. 1. The network of the families of the simple symmetric periodic solutions of the classical restricted three-body problem. Small circles indicate the
critical periodic orbits (ah = 1, bh = 0) which are given by the first entries in Tables 1 and 2.

Table 1
The series, with respect to the radiation parameter q, of critical periodic orbits (ah = 1, bh = 0) of the family b

q x0 x1 T/2 C

1.0 −1.71555788 −0.54973450 2.89508541 2.02078683
0.9 −1.65423664 −0.54116423 2.87621884 1.84732407
0.8 −1.58742265 −0.53220019 2.85434619 1.66660773
0.7 −1.51363274 −0.52289059 2.82862262 1.47708066
0.6 −1.43055580 −0.51344303 2.79786439 1.27633591
0.5 −1.33410663 −0.50462341 2.76045357 1.06002398
0.4 −1.21467874 −0.50008147 2.71481830 0.81699447
0.323493 −1.05121053 −0.54532783 2.68181192 0.53617102
0.397547 −0.85286119 −0.85286119 2.70576395 0.48489815

Table 2
A series, with respect to the radiation parameter q, of critical periodic orbits (ah = 1, bh = 0) of family c

q x0 (= −x1) T/2 C

1.0 −0.26244069 2.63087648 2.37166911
0.9 −0.25540454 2.63030912 2.21393119
0.8 −0.24761727 2.63209761 2.04817200
0.7 −0.23882563 2.63729051 1.87301444
0.6 −0.22861934 2.64761066 1.68660412
0.5 −0.21627271 2.66609874 1.48633231
0.4 −0.20033150 2.69868437 1.26830458
0.3 −0.17725424 2.75881792 1.02618644
0.2 −0.13456609 2.88646856 0.74814705
1/8 0.0 3.14159265 0.5

This series starts from the critical point which is contained in this family when q = 1.

3. The evolution of the critical solutions

In this section we describe the evolution of the critical solutions (with ah = 1, bh = 0) that belong to a, b and c. We
note here that, Hénon in 1965 [2] defines the isoenergetic stability index Sh = (ah + dh)/2, where ah, dh are the horizontal
coefficients from the variational matrix,(

∆x
∆ẋ

)
=

(
ah bh
ch dh

)(
∆x0
∆ẋ0

)
. (17)

∆x, ∆ẋ are constrained to maintain the value of the Jacobian constant C and ah = ∂x/∂x0, bh = ∂x/∂ ẋ0, ch = ∂ ẋ/∂x0,
dh = ∂ ẋ/∂ ẋ0. For high accuracy (i.e. the accuracy of the numerical integration), we integrated the equations of motion
simultaneously with equations of variation and for the calculation of the stability coefficients we used the relevant relations
in [5]. The stability condition of an orbit is −1 < Sh < 1 and if the orbit is symmetric then we had ah = dh while if the
orbit is asymmetric ah 6= dh in general. In the same work [2] it was shown that if and only if ah takes the value 1 and at the
same time bh = 0 (ch 6= 0), then the family of symmetric periodic orbits intersects another family of asymmetric periodic
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Fig. 2. Left: The evolution of the critical periodic orbit of the family b in the original (left) and in the regularized coordinate system (right) as the radiation
factor varies: (1) q = 1, (2) q = 0.409, (3) q = 0.32355, and (4) q = 0.397547. Small circles indicate the positions of L4 and L5 .

orbits. Using this critical periodic orbit, which belongs in both families, we can calculate the whole one-parameter family of
asymmetric periodic orbits.
As has been already mentioned, the evolution of the critical solutions is studied via the numerical construction of series

of these bifurcation points with respect to the variation of q. Namely, we consider that a plane orbit is periodic, symmetric
(w.r.t. Ox-axis) and horizontally critical (here we are interested in ah = 1) if the following conditions be simultaneously
satisfied:

y(x0, ẏ0, t; q) = 0
ẋ(x0, ẏ0, t; q) = 0
ah(x0, ẏ0, t; q) = 1

(18)

at t = T/2. We expand Eq. (18) into Taylor series around (x0, ẏ0, t) up to first order terms:

∂y
∂x0

δx0 +
∂y
∂ ẏ0

δẏ0 +
∂y
∂t
δt +

∂y
∂q
δq = −y,

∂ ẋ
∂x0

δx0 +
∂ ẋ
∂ ẏ0

δẏ0 +
∂ ẋ
∂t
δt +

∂ ẋ
∂q
δq = −ẋ,

∂ah
∂x0

δx0 +
∂ah
∂ ẏ0

δẏ0 +
∂ah
∂t
δt +

∂ah
∂q
δq = 1− ah.

(19)

The partial derivatives ∂y/∂q, ∂ ẋ/∂q and ∂ah/∂q are computed by using additional integrations while the rest of the
coefficients of system (19) are obtained by the integration of the equations of variation. Then, we consider the value of
q to be fixed, i.e. δq = 0, and thus we are able to compute the quantities δx0, δẏ0 and δt by solving the system (19). We use
then, the initial conditions vector (x0+δx0, 0, 0, ẏ0+δẏ0) and half period t+δt , and repeat the process until the conditions
(18) are satisfied within the desired accuracy, say ε ≤ 10−8. If a particular critical solution is known for a given value of q, a
new one for q+ δq can be predicted by solving Eq. (19) again, after setting y = ẋ = 1− ah = 0. The independent conditions
that must be satisfied are one less than the number of variables involved. This shows that the bifurcations actually form a
one-parameter family which we shall call a ‘‘series’’ of periodic orbits.
In the gravitational case, each of the families a, b and c contains exactly one critical point. These orbits are denoted by

small circles in Fig. 1.
Table 1 and Fig. 2 present the evolution of the bifurcation point of b. In Table 1, for each member of the series, we give

the positions of the infinitesimal mass on the Ox-axis, x0 and x1, at t = 0 and t = T/2 as well as the values of the half-period
and the Jacobian constant.
In the left part of Fig. 1, the orbit named by (1) represents the period-1 critical orbit of b when q = 1. The orbit marked

by (2) is the bifurcation point of b for q = 0.409 and it is still a solution of period 1. The solution indicated by (3) is a
period-2 critical solution when q = 0.32355. Then, for smaller values of q, the size of the inner loop of the members of
the series increases until, finally, for q = 0.397547 we have the period-2 solution (4) whose loops coalesce. This is the
termination point of the series and it coincides with a member of the family h. As can be seen in the right-hand frame of
Fig. 2, in the regularized coordinate system, themultiplicity of all the critical orbits are 1. For any value of q in the range from
1 to 0.397547, family b continues to contain exactly one critical solution (ah = 1 and bh = 0). In the range from 0.397547
to 0.323493, another critical orbit appears in b (see the left frame of Fig. 4).
The evolution of the critical points of family a is analogous to that of b, since, as has been mentioned before, it consists of

orbits which are symmetric, with respect to the origin O, with the members of the latter family. Thus, the termination point
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Fig. 3. The evolution of the critical periodic orbit, which originally exists in family c when q = 1, c as the radiation factor varies: (1) q = 1, (2) q = 0.4,
and (3) q = 0.15. Small circles indicate the positions of L4 and L5 . The small triangle indicates the common position of L1 , L4 and L5 when q = q∗ .

Fig. 4. The positions x0 (t = 0, solid lines) and x1 (t = T/2, dashed lines) of the critical periodic orbits (ah = 1, bh = 0) of families a, b (left) and c (right).

of the series corresponding to a is a critical orbit of h which is O-symmetric with the end-point of the series related to b (see
Fig. 4).
The critical orbit which originally is contained in the family c for q = 1 continues to exist until q = q∗. Its evolution with

respect to q is presented in Table 2 and Fig. 3. The corresponding series consists of period−1 symmetric orbits whose size
gradually decreases until, finally, this series terminates on L1.
The afore-mentioned series of critical solutions of the family c is not unique. As we will see in Section 4.2, for values

of the parameter q less than 0.955, this family contains more critical orbits. For these values of q, family c starts from the
collinear equilibrium point L1 and it has as terminal points asymptotic solutionswhich intersect the Ox-axis perpendicularly
and spiral to L4 for t →+∞ and to L5 for t →−∞ (for details, see [7]).
We note here that, in the circular restricted three-body problem for decreasing values of the radiation factors q1, q2, the

triangular equilibrium points L4, L5 approach the inner collinear point L1 and finally disappear by coalescing on the axis and
transferring their stability to L1 at the same time [12]. When q1 = q2 = q, this occurs at the critical value of the common
radiation factor q∗ = 1/8 [6].
The characteristic curve (x0, C) of the family c also spirals asymptotically to a point with C = CL4,5 . Along each loop of

this spiral there is a critical solution of c. We calculated the series, with respect to the variation parameter q, of the critical
periodic orbits and we found that the afore-mentioned characteristic curve retains this behavior for 0.955 ≥ q ≥ 0.14. So,
theoretically, for each of these values of q, the family c may contain an infinite number of bifurcation points with families of
asymmetric periodic orbits. If q is smaller than 0.14 but greater than q∗, there are exactly two critical solutions in the family
c. We have seen that one of these solutions results from the bifurcation point that exists in c when q = 1. The evolution
of the second critical solution of c that persists throughout the whole range from 0.955 to q∗ is represented in Table 3. The
shapes of the members of the corresponding series are almost alike to those given in Fig. 2. For q < q∗, one critical orbit
exists on the ‘‘Short’’-family that starts from L1,4,5.
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Table 3
Another series, with respect to the radiation parameter q, of critical periodic orbits (ah = 1, bh = 0) of the family c

q x0 (= −x1) T/2 C

0.955 −0.33179341 6.16472801 2.72677099
0.9 −0.31577097 6.12020973 2.60447449
0.8 −0.29198680 6.04754239 2.38018634
0.7 −0.27110771 5.98210494 2.14973073
0.6 −0.25108033 5.92423804 1.91023469
0.5 −0.23045895 5.87799828 1.65873290
0.4 −0.20741814 5.85443733 1.39127733
0.3 −0.17827074 5.88550058 1.10173368
0.2 −0.13115529 6.10260555 0.77889489
1/8 −0.03701696 7.03027714 0.50039431

Fig. 5. Left: Characteristic curves, in the (x0, C) plane, of the families a, b and c (black lines) and the families of asymmetric periodic orbits which bifurcate
from them (blue lines) in the gravitational restricted three-body problem (q = 1). The evolution of the critical periodic orbits of a, b and c, with respect
to the radiation factor q, is also given (red lines). In the inner window, a zoom of the end of one of the families of asymmetric orbits bifurcating from c is
illustrated. The borders of shaded areas represent the zero-velocity curves when q = 1. The dotted lines are the zero velocity curves when the radiation
factor is q = 1/8. Right: A magnification of the area around L1 where now a second series of critical periodic orbits of family c appears (red dashed line).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

In Fig. 4, the variation of the intersections of the orbits of the afore-mentioned series with the Ox-axis is shown. In the
left part of this figure, the series relative to the families a and b are presented. In the right part, we give the corresponding
data for two series of critical points of the family c as well as the limiting values of q for their existence.

4. Families of asymmetric orbits

In this section we deal with the families of asymmetric orbits which bifurcate from the critical points of a, b and c. First,
we present, for comparison purpose, these families in the classical gravitational problem when q = 1. Then, we describe
the behavior of these families in the photogravitational one by giving and discussing their data for some illustrative cases
of the radiation pressure factor.

4.1. Gravitational case

The left part of Fig. 5 represents the (x0, C)-characteristic curves of the families a, b and c (black lines) along with those
of the families of asymmetric periodic orbits that bifurcate from them (blue lines) when q = 1. The starting points of a, b
and c are found in the vicinity of the local minima of the zero-velocity curves which are the borders of the shaded areas. The
series of the bifurcation points of a, b and c are also shown in this figure (red lines) together with the zero-velocity curves
for q = q∗ (dotted lines).
As can be seen, the three families of asymmetric orbits end by spiraling to points whose Jacobian constant value equals

that of the triangular equilibrium points. So, the termination points of these families are homoclinic asymptotic solutions
of L4 or L5. A magnification of the vicinity of the termination point of the family of asymmetric orbits bifurcating from c is
shown in the inner window.
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Fig. 6. Left: The (C, T ) characteristic curves of family a (black line) and the family of asymmetric orbits which bifurcates from it (red line). Middle: The
stability curves of a (solid line) and of its bifurcation (dotted line). Right (first frame): The critical orbit of family a. Right (second frame): A member of the
family of asymmetric orbits near to one of its termination points. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 7. Left: The (C, T ) characteristic curves of family b (black line) and the family of asymmetric orbits which bifurcates from it (red line). Middle: The
stability curves of b (solid line) and of its bifurcation (dotted line). Right (first frame): The critical orbit of family b. Right (second frame): A member of the
family of asymmetric orbits near to one of its termination points. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

In the left frame of Fig. 6, we present the (C, T ) characteristic curve of family a (black line) and its bifurcating family of
asymmetric periodic orbits (red line). In the middle frame, the horizontal stability diagram of these families is given. More
precisely, the (C, ah) and (C, bh) characteristic curves of a are shown (continuous lines) together with the variation of the
horizontal stability coefficient Sh = (ah + dh)/2 [3]. We note that the family of asymmetric solutions consists of unstable
members except in a part near the bifurcation point. It is clear that the members of this family are asymmetric with respect
to both axes and that its termination point is a homoclinic asymptotic orbit to L5 (Fig. 6, right frame).
In Figs. 7 and 8 we present the corresponding data for the families b and c. Besides the expected symmetry of the results

concerning the families a and b, one may notice that the family of asymmetric orbits bifurcating from c is also stable in its
starting part and its termination points are homoclinic orbits to L5. Its members are asymmetric with respect to the Ox-axis
only.

4.2. Photogravitational case

Fig. 9 presents the (x, C)-characteristic curves of the families a, b and c (black lines) as well as those of the families of
asymmetric periodic orbits that bifurcate from them (blue lines) when q = 0.75. Although the behavior of a and b is similar
to that of the gravitational problem, this is not the case for family c. While, when q = 1, this family is heading for a collision
with the primarym1, for q = 0.75 the characteristic curve of c ends by spiraling to a point whose Jacobian constant value is
equal to CL4,5 . As has been mentioned in Section 3, for any loop of this spiral another critical orbit exists in this family. Here
we present two families of asymmetric solutions which bifurcate from c: (a) the family which bifurcates from that critical
orbit which emerges from the evolution of the bifurcation point contained in c when q = 1 and (b) the family that bifurcates
from c from the critical point that exists in the first loop of the afore-mentioned spiral. In the inner frame of Fig. 9 it can be
seen that both of these families (blue lines) terminate upon spiraling to points whose the Jacobian constant value is equal
to CL4,5 . The critical points are denoted by small circles.
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Fig. 8. Left: The (C, T ) characteristic curves of family c (black line) and the family of asymmetric orbits which bifurcates from it (red line). Middle: The
stability curves of c (solid line) and of its bifurcation (dotted line). Right (first frame): The critical orbit of family c. Right (second frame): A member of the
family of asymmetric orbits near to one of its termination points. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 9. Families a, b and c (black lines) and the families of asymmetric periodic bifurcating from them (blue lines) for q = 0.75. In the inner window, the
end of c and its bifurcations is shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 10. Left: The (C, T ) characteristic curves of family b (black line) and the family of asymmetric orbits which bifurcates from it (red line) for q = 0.75.
Middle: The stability curves of b (solid line) and of its bifurcation (dotted line). Right (first frame): The critical orbit of family b. Right (second frame): A
member of the family of asymmetric orbits near to its termination point. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

In Fig. 10, the (C, T ) characteristic curves, the stability diagrams and some indicative orbits of family b and its bifurcating
family of asymmetric solutions are given. Because of symmetry, the behavior of family a is analogous to that of b and will
not be discussed.
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Fig. 11. Upper left: The (C, T ) characteristic curves of family c (black line) and two of the families of asymmetric orbits which bifurcate from it (blue and
red lines) for q = 0.75. Upper middle: The stability curves of c (solid line) and of its first bifurcation (dotted line). Upper right: The critical orbit of family c
and a member of the family of asymmetric orbits near to its termination point. Lower left: The stability curves of c (solid line) and of its second bifurcation
(dotted line). Lower right: The critical orbit of family c and a member of the family of asymmetric orbits near to its termination point. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Families a, b and c (black lines) and the families of asymmetric periodic bifurcating from them (blue lines) for q = 0.5. In the inner window, the
end of c and its bifurcations is shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 11 represents the corresponding data for family c. In the upper left frame, family c (black line) and the bifurcating
families (blue and red lines) are shown together. In the other two upper frames, c is presented along with the first family
of asymmetric orbits while the lower frames are devoted to the family c and its second bifurcation. The termination points
of the first and the second bifurcations of c are homoclinic asymptotic orbits to L5 and L4, respectively. The evolution of
the rest of the families of asymmetric solutions bifurcating from c is qualitatively similar to that of either the first or the
second one.
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Fig. 13. Left: The (C, T ) characteristic curves of family b (black line) and the family of asymmetric orbits which bifurcates from it (red line) for q = 0.5.
Middle: The stability curves of b (solid line) and of its bifurcation (dotted line). Right (first frame): The critical orbit of family b. Right (second frame): A
member of the family of asymmetric orbits near to its termination point. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 14. Upper left: The (C, T ) characteristic curves of family c (black line) and two of the families of asymmetric orbits which bifurcate from it (blue and
red lines) for q = 0.25. Upper middle: The stability curves of c (solid line) and of its first bifurcation (dotted line). Upper right: The critical orbit of family c
and a member of the family of asymmetric orbits near to its termination point. Lower left: The stability curves of c (solid line) and of its second bifurcation
(dotted line). Lower right: The critical orbit of family c and a member of the family of asymmetric orbits near to its termination point. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

In Figs. 12–14 we present the behavior of a, b, and c and their bifurcating families of asymmetric solutions for q = 0.5.
The picture is qualitatively the same as in the previous case. The size of the members of c and its bifurcations are smaller
now, since they surround L1 while L4, L5 are closer to this equilibrium point. Fig. 15 represents the status of a, b, and c and
their bifurcating families of asymmetric solutions for q = 0.25. The situation is quite different in this case for the families
a and b since they contain no critical orbits any more. On the contrary, c contains many such solutions. The behavior of the
first two is shown in Fig. 16. The members of family c look like those of the previous case.
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Fig. 15. Families a, b and c (black lines) and the families of asymmetric periodic bifurcating from them (blue lines) for q = 0.25. In the inner windows,
the end of c and its bifurcations is shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 16. Upper left: The (C, T ) characteristic curves of family c (black line) and two of the families of asymmetric orbits which bifurcate from it (blue and
red lines) for q = 0.25. Upper middle: The stability curves of c (solid line) and of its first bifurcation (dotted line). Upper right: The critical orbit of family c
and a member of the family of asymmetric orbits near to its termination point. Lower left: The stability curves of c (solid line) and of its second bifurcation
(dotted line). Lower right: The critical orbit of family c and a member of the family of asymmetric orbits near to its termination point. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

5. Conclusions

In this contribution, we study the evolution of the families of symmetric solutions a, b and c, their critical points (ah = 1,
bh = 0) as well as the families of asymmetric orbits which bifurcate from them, when the gravitation and radiation pressure
forces of the two primaries are equal. This evolution was examined for values of the radiation factor in the whole range of
q. The main results of this study are the following:
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• The number of the critical orbits of the families a, b and c depends on the value of q.
• Families a and b contain exactly one such solution each for all values of q in the range q = 1 to q = 0.397547. When q

varies between 0.397547 and 0.323493, another critical orbit appears in these families. The series of critical orbits of a and
b terminate on a member of family h. For values of q less than 0.323493, a and b possess no critical orbits.
• Family c contains exactly one critical orbit for values of the radiation pressure parameter in the range q = 1 to 0.955.

For 0.995 ≤ q ≤ 0.14 c contains more such solutions whose number tends to∞. For q < 0.14 and q > 1/8, c contains two
critical points. If q ≤ 1/8, one of these points persists on family ‘‘Short’’.
• The (x, C) characteristic curves of all the families of asymmetric solutions that bifurcate from a, b or c spiral to points

whose the Jacobian constant value is equal to CL4,5 .
• The termination points of all the families of asymmetric solutions that bifurcate from a, b or c are homoclinic asymptotic

solutions to L4 or L5. More precisely, when ẋ0 > 0, these termination orbits are asymptotic to one of the triangular
equilibrium points while, when ẋ0 < 0, they are asymptotic to the other point.
• The families of asymmetric orbits which bifurcate from a or b consist of member which are not symmetric to both the

axes Ox and Oy.
• The families of asymmetric orbits which bifurcate from c are composed of members which are not symmetric to the

Ox axis only.
• All the members of the families of asymmetric orbits that bifurcate from a, b or c are unstable except for those which

are in the vicinity of their bifurcation points.
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