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Summary Antiepileptic drugs (AEDs) are no longer restricted to the treatment of
epilepsy. These are widely used in a broad spectrum of psychiatric and neurological
disorders. Liver plays a major role in the metabolism of a majority of these drugs.
Hepatotoxicity is rare, but a real concern when initiating therapy. Likewise, liver
disease can adversely affect the biotransformation of some of these drugs.

This manuscript addresses the significance of elevated liver enzymes associated
with AED use, the role of therapeutic drug monitoring, pharmacokinetics during liver
disease and potential risk of hepatotoxicity.
# 2006 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Hepatic biotransformation of AEDs in
health and liver disease

Almost all antiepileptic drugs (AEDs) with the excep-
tion of Gabapentin and Vigabatrin undergo hepatic
biotransformation (Table 1).

Lipophilic AEDs require conversion to a hydrophi-
lic/water-soluble state for renal excretion. This
process comprises phase-I and -II reactions. Phase-
I reactions include oxidation, reduction and hydro-
xylation, whereas phase-II reactions imply conjuga-
tion. Glucoronidation is a common phase-II reaction,
leading to active and inactive metabolites.

Liver disease can affect the metabolism of AEDs
in several ways and due to different underlying
etiologies. Drug metabolism depends on hepatic
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blood flow, albumin binding, the degree of drug
uptake by the hepatocyte, the functional integrity
of the hepatocytes and finally the patency of the
hepatobiliary system. A functional compromise at
any level can potentially impair biotransformation,
causing parent compounds to accumulate or the
generation of active metabolites to be interrupted.

The decision to continue or withdraw drug ther-
apy depends on the underlying pathology, the extent
of hepatic insult, the role of the AED in potentially
accentuating the insult and finally the risks (status
epilepticus) of discontinuing this agent. In some
instances, it is safe to continue the drug at a lower
dose and, in others, it is not safe to continue the
drug at all. Impaired biotransformation can lead to
an alternative route of metabolism and, the gen-
eration of hepatotoxic metabolites, as in Valproic
acid (VPA)-induced hepatotoxicity.

The Child—Pugh classification for alcoholic liver
disease and portal hypertension1 classifies liver
. Published by Elsevier Ltd. All rights reserved.
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Table 1 Metabolism of AEDs

Predominantly
metabolized
by the liver

Partially
metabolized
by the liver

Extrahepatic
metabolism
or excretion

Benzodiazepines Leviteracetam Gabapentin
Carbamazepine Topiramate Vigabatrin
Ethosuximide Zonisamide
Felbamate
Lamotrigine
Oxcarbazepine
Phenobarbital
Phenytoin
Tiagabine
Valproate
disease as mild, moderate and severe (Child—Pugh
Grade A, B and C, respectively), and is useful when
considering the pharmacokinetics of a drug in the
presence of liver disease. This classification con-
siders five parameters: bilirubin; albumin; pro-
thrombin time; and the presence of encephalo-
pathy and ascites. The number of abnormal vari-
ables determines the score, with a higher score
representing a more severe disease.

The assessment of liver functions and
hepatotoxicity during AED therapy

Liver enzymes can serve asmarkers of hepatocellular
injury (aspartate aminotransferase [AST], alanine
aminotransferase [ALT]) or of an obstruction in the
bile flow–—cholestasis (alkaline phosphatase [ALP]
and gamma-glutamyl transferase [GGT]). Although
these enzymes are elevated in liver disease, the
elevation can also be secondary to enzyme induction
in the absence of hepatic pathology. An elevated
partial thromboplastin time (PTT) or decrease in
albumin along with elevated liver enzymes is a more
specific marker of liver dysfunction.

Carbamazepine (CBZ), Phenobarbital (PB) and
Phenytoin (PHT) are potent enzyme inducers. On
the other hand, Topiramate (TPM) has weak
enzyme-inducing characteristics. A few weeks to
a month’s therapy with one of the enzyme inducers,
leads to a modest elevation of ALT, AST, ALP and
GGT, whereas a less than two fold increase in ALT,
AST and ALP is usually insignificant. GGT is a non-
specific marker of liver disease and often elevated
during AED therapy. Because ALP can originate from
both the liver and bone, an elevated ALP, in the
absence of elevated GGT, points to an extrahepatic
origin. Hyperammonemia is also a marker of liver
disease, and a four to five fold increase in levels is
associated with central nervous system (CNS) man-
ifestations. With the exception of VPA, AEDs typi-
cally do not lead to elevated ammonia levels. A two
to three fold elevation in serum ammonia can result
during VPA therapy and is usually insignificant. This
elevation probably results from a decreased synth-
esis of mitochondrial acetyl CoA, leading to a
decrease in N-acetylglutamate, an activator of car-
bamoyl phosphate synthetase.2 A more than two to
three fold increase in liver enzymes during AED
therapy should caution the physician of a potential
of coexistent liver disease. If subsequent follow-up
reveals a progressive increase in the values of the
enzymes, investigations for coexistent liver disease
are warranted, and may require a switch to an
alternative AED.

AED-induced liver disease can be a part of a gen-
eralized hypersensitivity reaction, as is recognized
with CBZ, lamotrigine (LTG), PB and PHT. Cases of
hypersensitivity reaction with other AEDs are also
reported. Fever, transient skin rash, eosinophilia and
lympadenopathy are associated features.
Characteristics specific to individual
drugs

The following section deals with individual medica-
tions. Drugs with predominantly extrahepatic meta-
bolism/clearance are grouped together.

Benzodiazepines

Clobazam, clonazepam, diazepam, lorazepam and
midazolam are commonly used benzodiazepines
(BDZ) in the treatment of epilepsy, alcohol with-
drawal seizures and status epilepticus.3—7

As a group, BDZs are highly protein bound in
plasma, and undergo extensive hepatic biotrans-
formation. Renal excretion of the parent com-
pound is minimal. Due to a predominant hepatic
metabolism, liver disease can significantly affect
the metabolism of various BDZ. For example, liver
cirrhosis can markedly increase the elimination
half-life of diazepam and lorazepam.8—10 The
elimination of lorazepam was not significantly
impaired in patients with viral hepatitis.11 We
were unable to identify established cases of
BDZ-induced hepatotoxicity in the span of last
30 years.

In summary, the literature recommends reducing
the dose of BDZs in the presence of liver disease.
Clinical response and dose-dependent side effects
are useful measures for making this change. Hepa-
totoxicity is not a major concern and sequential
blood testing is not necessary, provided the baseline
liver function tests are normal.
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Carbamazepine

Carbamazepine (CBZ) is effective for the treatment
of partial and secondarily generalized tonic—clonic
seizures. Hepatic biotransformation is the main
route of elimination.12,13 Epoxidation and hydroxy-
lation are the main metabolic pathways though
conjugation reactions may also have a role.12 The
most important metabolic product is 10,11-CBZ
epoxide, which has been shown to be pharmacolo-
gically active.12 CBZ induces its own metabolism
(autoinduction) that starts within 24 h of the initia-
tion of therapy and is completed after 3—5 weeks of
treatment.14 Therefore, when measuring CBZ drug
levels it is worth delaying the first measure until 4—5
weeks to find steady state level following auto-
induction. Therapy with other AEDs and several
other classes of medications also induces CBZ meta-
bolism (heteroinduction). Due to these interactions,
higher doses of CBZ are required to maintain a
steady concentration in the blood.

A transient and asymptomatic elevation of liver
enzymes occurs in 25—61% of patients receiving
CBZ.15,16 Serious CBZ-associated hepatotoxicity
takes two forms: a hypersensitive reaction in the
form of granulomatous hepatitis that presents with
fever and abnormal liver functions tests; and an
acute hepatitis and hepatocellular necrosis with
fever, rash, hepatitis and lymphadenopathy simu-
lating biliary tract infection,17 which may result
from direct drug toxicity.

Hepatotoxic reactions of CBZ usually occur within
3—4 weeks after the initiation of therapy and are
independent of serum CBZ levels. Symptoms usually
resolve after the drug is discontinued; however,
fatal hepatotoxicity can occur even after early
intervention and discontinuation of the drug.18

The profile of patients susceptible to serious hepa-
totoxicity is not established.

Ethosuximide

Ethosuximide (ESM) is an effective treatment for
absence ( petit mal) seizures. It has a half-life of
40—60 h and is not protein bound. It is extensively
metabolized in the liver and only a small percent of
the drug is excreted unchanged in the urine.19,20

Since ESM undergoes significant liver metabolism, it
has potential interactions with other enzyme-indu-
cing AEDs, though the clinical importance of these
drug—drug interactions is unclear. ESM is not asso-
ciated with enzyme induction or hepatotoxicity.21

One case of ESM-induced liver dysfunction is
reported in a 13-month-old child manifested by
increased enzymatic activity, but the enzymes
reverted to normal when the therapy was discon-
tinued. Since this patient was concurrently being
treated with Acetazolamide and PB and, had been
treated with VPA two months previously,22 it was
hard to establish if ESM was solely responsible for
the abnormal liver functions. Although hepatotoxi-
city is not a recognized adverse effect from ESM, the
product monograph recommends using ‘‘extreme
caution’’ in its administration in patients with
known liver disease.

Felbamate

Felbamate (FBM) is a broad-spectrum antiepileptic
medication, approved for marketing in the US in
1993, which was found to be effective against both
partial and generalized seizures. It undergoes bio-
transformation by phase-I and -II reactions, hydro-
xylation and glucoronidation, respectively. The
metabolites and the parent compound are excreted
through the kidneys. It inhibits the cytochrome P-
450 system thus resulting in significant interactions
with other AEDs and in most instances increasing the
levels of PHT, CBZ epoxide and VPA. In 1994, several
cases of aplastic anemia and serious hepatotoxicity
were noted which led to the gradual discontinuation
of this drug from a vast patient population. The
estimated incidence of hepatic failure is 164 per
million patients treated.23

The American Academy of Neurology has issued a
practice guideline for the use of FBM, reserving it for
medically refractory epilepsy such as Lennox Gas-
taut syndrome. Emphasis is also placed on an
informed consent, a detailed past history of cyto-
penia, drug-induced allergic reactions and immune
disorders.24

Lamotrigine

Lamotrigine (LTG) is an effective treatment both for
focal and generalized epilepsies. It primarily under-
goes hepatic metabolism. Human experiments
demonstrate that the clearance of LTG depends
on the severity of hepatic impairment.25 One group
noted the need to reduce the dose by 50—75% in
patients with liver cirrhosis corresponding to Child—
Pugh Grade B or C, respectively.26 In vitro experi-
ments by Furlan et al.27 demonstrated no significant
changes in the metabolic clearance of LTG in the
presence of liver disease. This discrepancy between
in vivo and in vitro experiments, suggests the need
for extreme caution when generalizing laboratory
results to human therapeutics.

Although no changes were reported in routine
laboratory tests of hepatic function in the phase-
III/IV studies, hepatic failure and multiorgan failure
has been described in adult and pediatric patients
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taking LTG.28—31 Sauve et al.29 note that the hepa-
totoxicity often seems associated with other symp-
toms such as hyperthermia, cutaneous rash,
rhabdomyolysis, and coagulopathy.

Based on human studies, the dose of LTG needs
adjustment in the presence of liver disease. This
adjustment should be based on therapeutic
response rather merely on serum levels. Reports
of LTG-related liver disease is rare, with suboptimal
data to establish causality between this drug and
hepatotoxicity.

Oxcarbazepine

Oxcarbazepine (OXC) is effective for partial and
secondarily generalized tonic—clonic seizures. Its
spectrum of action is quite similar to CBZ. Like
CBZ, it is predominantly metabolized through the
liver. It is a less potent enzyme inducer with rela-
tively less prominent interaction with other AEDs.
Furthermore, it is not biotransformed to CBZ epox-
ide, and therefore is better tolerated than the first
generation CBZ. Hepatic metabolism converts OXC
to its active metabolite monohydroxylated deriva-
tive.32 Liver disease has no effect on the pharma-
cokinetics of OXC and monohydroxylated
derivative.33 OXC has not been associated with
hepatotoxicity except for anecdotal case reports,
but it can cause a modest elevation of liver
enzymes.34—36

Phenobarbital (PB)

Phenobarbital (PB) was introduced as an AED in
1912. It is the oldest AED still in use and is effective
in partial and secondarily generalized tonic—clonic
seizures, in the control of status epilepticus and in
the prevention of febrile seizures.37

PB is metabolized by hydroxylation in the hepatic
mixed function oxidase system. p-Hydroxypheno-
barbital (PBOH) is the major metabolite, which is
subsequently conjugated to glucuronic acid to form
PBOH glucuronide. Nine to 33% of the dose is
excreted unchanged in the urine, and the renal
clearance depends on the urine flow and pH. The
half-life of PB ranges from 75 to 126 h in healthy
subjects and is significantly prolonged in patients
with liver cirrhosis. In patients with acute viral
hepatitis, the prolongation of elimination half-life
is not statistically significant.38 PB is a potent indu-
cer of hepatic microsomal enzymes and can enhance
the metabolism of several drugs, including AEDs,
steroids and anticoagulants. It also increases the
hepatic metabolism of sex hormones that may lead
to the failure of oral contraceptives. Dose-depen-
dent hepatotoxicity is a rare occurrence: only a
minority of susceptible patients with a defect in
drug detoxification develops hepatotoxicity.39,40 A
more common occurrence is an asymptomatic and
clinically insignificant elevation of ALP and GGT.41

Alternately, hepatic involvement may occur as
part of a generalized hypersensitivity or idiosyn-
cratic reaction seen in about 9% of patients, an
incidence that is similar in patients taking CBZ
and PHT.42 Fever, transient skin rash, eosinophilia,
and lymphadenopathy are the other features of this
reaction. The hepatic involvementmay present with
a hepatotoxic, cholestatic or a mixed picture. Gran-
ulomatous inflammatory changes develop in the
liver and are reversible on discontinuation of the
drug.

Phenytoin (PHT)

Merritt and Putnam introduced PHT as an anticon-
vulsant in 1938.43 It is one of the most commonly
used compounds for treating secondarily general-
ized tonic—clonic seizures and status epilepticus.44

Ninety-five percent of PHT is bio-transformed by the
liver and less than 5% is eliminated unchanged in the
urine.45 PHT at clinically accepted doses can satu-
rate the hepatic enzymatic system that metabolizes
the drug (zero-order kinetics). This is particularly
significant in the presence of liver disease, and the
dose increment should be gradual.

GGT is elevated in 50—90% of patients on PHT
therapy.46 Although a number of studies have found
elevated ALP with PHT therapy46,47 these numbers
have not been reproduced in age- and sex-matched
studies.48 Elevation of ASTand ALPare considered as
more specific markers of liver disease than ALT and
GGT.48 In the absence of primary hepatic disease and
drug hypersensitivity syndrome, a mild elevation in
enzymes is clinically insignificant.

Hepatic injury due to PHT is an infrequent
occurrence, but once it develops, 10—38% of cases
will progress to a fatal outcome.17 The interval
between the initiation of PHT therapy and the
onset of clinical abnormalities ranges from 1 to 6
weeks in the vast majority of patients.49 The most
common presenting symptoms were fever, rash and
lymph-adenopathy. Jaundice and hepato-spleno-
magaly were common findings as well, and a sub-
stantial proportion of patients experienced
hemorrhagic complication.50 Biochemical features
of PHT hepatotoxicity are variable but generally
include abnormal serum bilirubin, transaminases,
and ALP levels, as well as eosinophilia and leuko-
cytosis. The morphologic and pathologic abnorm-
alities are non-specific, including, but not limited
to, primary hepatocellular degeneration and/or
necrosis.49
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The clinical course of PHT hepatotoxicity ranges
from prompt resolution on drug withdrawal to fatal
hepatic injury.50 Hepatic injury with PHT is most
likely secondary to a hypersensitivity reaction
rather than a direct hepatotoxic effect. Clinico-
pathological studies looking at liver biopsies are
in keeping with this hypothesis.50 Toxicity after drug
overdose primarily affects the central nervous sys-
tem with signs of neurotoxicity rather than hepa-
totoxicity.51 When clinical and biochemical picture
is suggestive of hepatotoxicity prompt discontinua-
tion of the drug is essential.

Tiagabine

Tiagabine is an effective add-on treatment for
partial seizures with or without secondary general-
ization.52—54 It is highly protein bound and predo-
minantly metabolized by the liver by the 3A family
of cytochrome P450 (CYP). It does not seem to
induce or inhibit hepatic microsomal enzymes.55

Liver disease is shown to attenuate its metabolism.
Based on this finding the recommendations are to
consider reducing the dosage and increasing the
dosing intervals to minimize neurotoxicity.56 Its
use is discouraged in patients with severely
impaired liver functions.57 Our Medline search did
not demonstrate established cases of Tiagabine-
induced liver disease.

Topiramate

Topiramate (TPM) is effective for partial and gen-
eralized seizures.58 It is minimally bound to plasma
proteins (15%) and has a half-life of about 21 h. In
healthy volunteers, 20% of the dose is metabolized,
and about 40% is excreted unchanged via the kid-
ney. Biliary excretion plays a minor role in TPM
metabolism.59 The mean plasma concentration of
TPM was found to be 40—50% when it was used as an
adjunct therapy with liver enzyme inducing AEDs.
The product monograph reports a 30% increase in
the drug concentration associated with moderate
to severe liver disease.60 In such cases, monitoring
central nervous system side effects such as, psy-
chomotor slowing, speech problems, confusion and
mood alterations, can help in deciding dosage
adjustment. TPM can infrequently lead to elevated
liver enzymes. We came across two possible cases
of TPM-induced hepatotoxicity61,62 in the litera-
ture, and one case report suggesting reversible
hepatic failure after adding TPM to VPA.63 These
are isolated case reports requiring further corro-
borating evidence. Routine monitoring of liver
function tests is not recommended during TPM
therapy.64
Valproic acid (VPA)

VPA has a broad spectrum of activity against both
focal and generalized epilepsies. It is 80—90% pro-
tein bound. Hepatic biotransformation is the main
route of elimination and involves glucuronidation,
b-oxidation and v-oxidation.65,66 Retrospective stu-
dies have demonstrated a transient elevation of
liver aminotransferases in up to 10—15% of patients
on VPA67,68 but these finding were not reproduced in
a prospective study with a relatively small sample
size.69 Rarely, levels of other liver enzymes includ-
ing ALP, lactic dehydrogenase (LDH) and GGT may
also rise in the serum.70 The medication can be
continued if the rise in enzyme levels is moderate:
up to two to three times the baseline levels and the
patient has remained asymptomatic. If the changes
in hepatic functions are clinically symptomatic it is
recommended to discontinue the drug with suppor-
tive therapy such as maintaining serum glucose,
Vitamin K supplement and carnitine therapy.71,72

A rare, idiosyncratic reaction to VPA therapy is
irreversible hepatic failure.73 The incidence of VPA-
induced fatal hepatic dysfunction is highest, 1/500,
in children under 2 years of age, treated with poly-
pharmacy.73,74 The risk declines with age with a rate
of 1/12,000 when used in polytherapy and 1/37,000
when used in monotherapy after the first 2 years of
life.74,75 Certain risk factors for VPA-induced liver
failure have been identified and include: Younger
age, mental retardation, history of metabolic dis-
orders or inborn error of metabolism, polypharmacy,
stressful condition such as infection and underlying
liver disease.76 In adults, the risk of an idiosyncratic
reaction is much less than in children. König et al.77

critically reviewed 26 fatalities in adult patients
from hepatotoxicity from 1980 to 1996. Three
patients were on monotherapy and 12 had no con-
current illnesses. The authors therefore advised
vigilance even when adults with no underlying ill-
ness receive VPA monotherapy. VPA therapy can be
associated with hyperammonemia in the presence
of normal AST, ALT and ALP.78 The mechanism of
hyperammonemia therefore is independent of the
acute hepatic injury but can be seen in acute VPA
overdose.79 In vitro studies have shown causality
between VPA and oxidative stress, especially in the
presence of glutathione deficiency.80,81 These find-
ings support the previous observations, linking
inborn errors of metabolism with a higher incidence
of VPA associated toxicity in humans.82,83

The idiosyncratic hepatic toxicity to VPA usually
occurs during the first 2—3 months of therapy and
leads to reduced alertness, vomiting, hemorrhage,
increased seizures, anorexia, jaundice, edema, and
ascites. The most frequently reported hepatic his-
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topathological findings were necrosis and steato-
sis.82 Laboratory tests are poor predictors of hepto-
toxicity with VPA because hepatotoxic reactions
have occurred even after a protracted period of
normal liver enzymes levels while on therapy.
Furthermore, clinical parameters are known to pre-
cede laboratory abnormalities in most patients who
had adverse hepatic reactions to VPA. A shift from b-
oxidation to v-oxidation is a probable trigger in the
pathogenesis. This leads to the formation of 4-en
VPA, the compound leading to microvesicular stea-
tosis, which is a hallmark of VPA-induced hepatic
injury.17 The depletion of L-carnitine, a co-factor in
the beta-oxidation of fatty acids, is another postu-
lated mechanism.72 The initial observation that
concomitant therapy with VPA and ketogenic diet
can predispose the patient to hepatotoxicity84 was
not substantiated in a recent review.85 A recent
study demonstrated the presence of non-alcoholic
fatty liver disease in 61% of VPA-treated patients as
compared to 23% receiving CBZ therapy.86 Given the
significant number developing the fatty change and
a very small fraction developing liver toxicity, a
cause-and-effect relationship cannot be estab-
lished.

In summary, VPA associated hepatotoxicity in
adults is a rare but potentially serious diagnosis.
Routine biochemical monitoring does not reduce the
risk; therefore patient education to identify early
clinical manifestations is important. A moderate
elevation of liver enzymes (less than two times of
baseline) is usually insignificant but requires vigi-
lance. The use of VPA with co-existent liver disease
is discouraged.

Zonisamide

Zonisamide is a broad-spectrum antiepileptic drug
with efficacy against partial and generalized sei-
zures.87,88 Hepatic biotransformation accounts for
70% clearance and the rest is excreted unchanged
by the kidneys.89 CYP 3A seems to be the principal
family of the cytochrome P-450 involved in its meta-
bolism. Elevated liver enzymes are found in 2—4% of
the patients with chronic therapy90 but no significant
heptotoxicity has been reported. In the presence of
underlying liver disease, considering the long half-
life, clinical and biochemicalmonitoring is advisable.
Antiepileptic drugs with predominant
extrahepatic clearance

This group includes Gabapentin, levetiracetam and
vigabatrin.
Gabapentin is excreted unchanged in the urine. It
does not affect the liver enzymes and has not been
associated with hepatotoxicity.91

Vigabatrin (VBN) is excreted unchanged by the
kidneys without undergoing hepatic metabolism.92

A case of fatal hepatotoxicity is reported in a 3-year-
old child treated with VBN for 9 months along with
PB,93 with an underlying history of prematurity,
perinatal cerebral hemorrhage and leukomalacia.
A definite cause-and-effect relationship could not
be established.

Levetiracetam (LEV) is predominantly (66%)
excreted unchanged by the kidneys, with a smaller
amount (27%) metabolized to three inactive com-
pounds.94 It does not bind to plasma proteins. The
pharmacokinetics of LEV are not affected by mild to
moderate liver impairment.95 In patients with
severe liver cirrhosis (Child—Pugh Class C) total
clearance was reduced by 57% and a reduction in
dose by 50% is recommended.96 We did not come
across any report of LEV-induced hepatotoxicity on a
Medline search.
Conclusion

With the ever-increasing indications and markets for
AEDs, the need for a better understanding of their
pharmacokinetics and potential toxicity is impera-
tive. Based on our extensive literature review we
would like tomake the following concluding remarks:
1. T
here is no proven value of routine blood testing
for monitoring liver functions in asymptomatic
patients.97 We do recommend a baseline test to
identify an existing problem.
2. T
he presence of underlying liver disease may
require dose adjustment and not necessarily
the discontinuation of the medication. Excep-
tions apply to FBM, VPA and possibly CBZ.
3. I
n most established cases hepatic toxicity is idio-
syncratic or part of a hypersensitivity reaction.
Dose dependent hepatotoxicity is rare and
usually reversible with prompt discontinuation
of the offending agent.
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