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1. INTRODUCTION

Let V be a bounded domain in Rn, for n G 2, with smooth boundary
� 4 V, and denote by l the increasing sequence of eigenvalues of yDm

over V with Dirichlet boundary conditions. Let g : V = R ª R be a C1

Ž . Ž . Ž .function satisfying: i g x, j is bounded for j large and negative, ii
Ž .g x, j may grow superlinearly in j for j large and positive. Denote by w1

a Ž .a positive eigenfunction corresponding to l , and let h g C V , for some1
2Ž .a ) 0, be orthogonal to w with respect to the L V inner product. In1

this paper we are concerned with the existence of multiple solutions of the
semilinear elliptic boundary value problem

yDu y lu y g x , u s tw q h , in V ;Ž . 1 P , lŽ .t½ u s 0, on  V ,
where l and t are real parameters.

The case l - l is known as a superlinear Ambrosetti]Prodi problem,1
w x w xsee, for example, 1 . In this case, it is proved in 1 that under certain

Ž .conditions on g, for t large and negative, problem P , l has at least twot
solutions.

It is interesting to consider the question of existence of solutions of
Ž .P , l for t large and positive. For the case l - l one can show thatt 1

Ž . Žproblem P , l has no solutions for t large and positive see Proposition 2t
.under Preliminary Results . Hence, if we are looking for solutions of

Ž .P , l , for t large and positive, we must require that l G l .t 1
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w xIn an interesting paper of Ruf and Srikanth 7 the following problem is
considered

pqyDu y lu y u s tw q h , in V ;Ž . 1½ u s 0, on  V ,

q � 4 Ž . Ž .where u s max u, 0 , 1 - p - n q 2 r n y 2 if n G 3 and p ) 1 if
2Ž .n s 2, and h is orthogonal to w with respect to the L V inner product.1

w xIn 7 it is shown that if l ) l and l / l for all k ) 1, then for t large1 k
and positive the above problem has at least two solutions.

w xMotivated by the results in 7, 1 , in this paper we present a multiplicity
Ž .result for P , l in the case l ) l . Suppose thatt 1


lim g x , j s 0, uniformly in x g V , 1Ž . Ž .

jjªy`

and

g x , jŽ .
lim inf ) 0, uniformly in x g V , 2Ž .

jjªq`

Ž .where the limit on the left hand side of 2 could be ` on V, or on a subset
Ž . Ž .of V with positive measure. In addition, assume that rj g x, j

satisfies the growth condition

< < < < py1g x , j F C q C j for j g R and x g V , 3Ž . Ž .j 1 2

Ž . Ž .where 1 - p - n q 2 r n y 2 if n G 3 and p ) 1 if n s 2, for some
constants C and C . Suppose also that1 2

j g x , j y 2G x , jŽ . Ž .
lim inf ) 0, uniformly in x g V , 4Ž .1q1r p< <jªq` g x , jŽ .

Ž . j Ž .where G x, j s H g x, t dt. In Section 4 we prove that under these0
Ž .assumptions for l ) l with l / l for all k G 2 , there exists a positive1 k

Ž . Ž .number T s T h , such that, if t ) T , then problem P , l has at leastt
two solutions.

Ž .The existence of the first solution u to problem P , l is proved usingt t
Ž w x.the method of sub- and super-solutions see, for example, 8 , while the

second solution is obtained by means of the Mountain Pass Theorem of
w xAmbrosetti and Rabinowitz 6, Theorem 2.2 . Although the arguments in

w xthis paper are close to those of De Figueiredo in 1 , the techniques used
w xhere are also similar to those used by Lazer and McKenna in 4 for the

case of jumping nonlinearities which cross a finite number of eigenvalues
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Ž w x. w xsee also the related works 3, 5 . The multiplicity results in 3]5 are
obtained by means of a combination of degree theoretic calculations and
critical point theory techniques via a reduction method. The main differ-

w xence between this work and the work of Lazer and McKenna 4 is that in
Ž .this paper the nonlinearity g j is allowed to grow superlinearly in j for

Žj ) 0 and consequently the nonlinearity could cross infinitely many
. w x XŽ .eigenvalues , while in 4 it is assumed that lim g j exists and isj ªq`

XŽ .finite, and that l q lim g j is not an eigenvalue of yD with zeroj ªq`

Dirichlet boundary conditions. This allows one to obtain the a priori
bounds needed for the degree theoretic computations. If g is allowed to
grow superlinearly, those bounds are harder to obtain.

2. NOTATION, DEFINITIONS, AND SOME BASIC FACTS

1Ž . `Ž .Denote by H V the completion of C V with respect to the normo c
5 5 2 < < 2 1Ž .given by u s H =u . H V is then a real Hilbert space with innerV o

² : 1Ž .product u, ¨ s H =u ? =¨ for all u and ¨ in H V .V o
Ž . 1Ž .By a solution of the problem P , l we mean a function u g H Vt o

satisfying

=u ? =¨ y l u¨ y g x , u ¨ y t w ¨ y h¨ s 0,Ž .H H H H H1
V V V V V

;¨ g H 1 V .Ž .o

Since g is assumed to be continuously differentiable, standard regularity
2Ž . Ž . Ž .arguments imply that any solution of P , l is, in fact, in C V l C V .t

1Ž .For each t g R define a functional J : H V ª R byt o

1 l2 2< <J u s =u y u y G x , u y t w u y huŽ . Ž .H H H H Ht 12 2V V V V V

;u g H 1 V ,Ž .o

Ž . j Ž .where G x, j s H g x, t dt for j g R and all x g V. The growth condi-0
Ž . 2Ž 1Ž . .tion 3 can be used to prove that J g C H V , R with Frechet deriva-t o

1Ž .tives at u g H V given byo

J X u ¨ s =u ? =¨ y l u¨ y g x , u ¨ y t w ¨ y h¨ ,Ž . Ž .H H H H Ht 1
V V V V V

;¨ g H 1 V ,Ž .o
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and

JY u ¨ , w s =¨ ? =w y l ¨w y g x , u ¨wŽ . Ž . Ž .H H Ht j
V V V

for all ¨ , w g H 1 V .Ž .o

1Ž . Ž .For each u g H V let A u denote the linear self-adjoint operatoro t
1Ž .induced on H V by settingo

Y ² : 1J u ¨ , w s A u ¨ , w for all ¨ , w g H V .Ž . Ž . Ž . Ž .t t o

Ž .A critical point u of J is said to be nondegenerate if A u is invertible; ort t
² Ž . :equivalently, if there is no ¨ / 0 such that A u ¨ , w s 0 for all w gt

1Ž .H V .o
The functional J is said to satisfy the Palais]Smale condition ift

¡ 1� 4every sequence u ; H V satisfying:Ž .n o

i J u is bounded, andŽ . Ž .t n~PSŽ . Xii J u ª 0 in norm as n ª `,Ž . Ž .t n¢has a strongly convergent subsequence.

3. PRELIMINARY RESULTS

For the sake of comparison with the superlinear Ambrosetti]Prodi
Ž .problem, in this section we shall temporarily replace 2 with

g x , jŽ .
X� 4lim inf ) max l y l, 0 , 2Ž .1jjªq`

where the inequality holds uniformly in V.
Ž . Ž X.We first observe that conditions 1 and 2 imply the existence of

positive constants m and C such that l q m / l for any k, ando k

g x , j G mj y C for x g V , and j g R. 5Ž . Ž .o

Ž .We will now see how the condition in 5 implies the existence of a lower
Ž . Žbound for solutions on P , l with t G a for some a g R see Lemma 4 int

w x. 2, a Ž .1 . Recall that a function u g C V is said to be a subsolution of
Ž .P , l , ift

yDu y lu F g x , u q tw q h in VŽ . 1
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2, a Ž .and u F 0 on  V, and ¨ g C V is a supersolution if it satisfies the
above inequalities with F replaced by G .

Ž . Ž X.LEMMA 1. Assume 1 and 2 . Gï en a g R, there exists a function
2, a Ž . Ž .w g C V with w s 0 on  V, such that w is a subsolution of P , l fort

2, a Ž . Ž .all t G a, and, if ¨ g C V is a supersolution of P , l for t G a, thent
w F ¨ in V.

Proof. Let w be the unique solution of the linear Dirichlet problem

yDw y lw s mw y C q aw q h , in V ;o 1½ w s 0, on  V ,

Ž . Ž .then, by 5 , w is a subsolution of P for any t G a. The maximumt
principle yields the second part of the lemma.

Ž . Ž X.In the case l - l in P , l and g satisfying 2 , one can choose m so1 t
that m ) l y l. In this case we can get an upper bound for the values of1

Ž .t G 0 for which P , l has a solution. This result is essentially due tot
w x w xKazdan and Warner 2 ; see also Lemma 3 in 1 .

Ž . Ž X.PROPOSITION 2. Assume 1 and 2 for l - l . There exists a t g R1
Ž .such that P , l has no solutions for t ) t .t

Ž .Proof. Let u be a solution of P , l for t G 0. Apply Lemma 1 witht
2, a Ž .a s 0 to obtain a function w g C V satisfying w F u in V. Green’s

identity yields

0 s Dw u y Du wŽ . Ž .H 1 1
V

s y l y l uw q g x , u w q t w 2 .Ž . Ž .H H H1 1 1 1
V V V

Ž .Using 5 we then obtain

20 G m y l y l uw q t w y C w ,Ž . H H H1 1 1 o 1
V V V

Ž .and since m y l y l ) 0 in this case, we obtain1

20 G m y l y l ww q t w y C w ,Ž . H H H1 1 1 o 1
V V V

from which the result follows.
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Ž .In view of Proposition 2, if we are looking for solutions of P , l for tt
large and positive, we must require that l G l . In this paper we will1
consider the case l ) l and l / l for any k ) 1. We shall establish the1 k

Ž .existence of at least one solution of P , l for t large and positive byt
Ž .considering the following modified version of P , l :t

˜yDu y lu s g x , u y aw q h , in V ;Ž .1 P̃ , lŽ .a½ u s 0, on  V ,

y1 2, a 1˜ ˜Ž . Ž . Ž .where a g R, and h s yD y l h, so that h g C V l C V by
elliptic regularity theory.

Ž . Ž .PROPOSITION 3. Let l ) l and suppose that g satisfies 1 and 2 .1
a Ž .Assume also that l / l for any k ) 1. Gï en h g C V such thatk

Ž .H hw s 0, there exists a constant A s A h such that for a ) A problemV 1
˜Ž .P , l has at least one solution.a

Ž . Ž .Proof. By condition 1 , there exists K g R such that g x, j F K for
2 1Ž . Ž .all x g V and j F 0. Let V g C V l C V be the unique solution to

the Dirichlet problem

yDV y lV s K , in V ;½ V s 0, on  V .

˜Choose a so large and positive that V y aw q h - 0 in V. Then1

˜yDV y lV s K G g x , V y aw q h in V ,Ž .1

˜Ž .and so V is a supersolution of P , l .a
The argument in the proof of Lemma 1 yields now a subsolution w of

˜Ž .P , l satisfying w F V in V. The result then follows by the method ofa
w xmonotone iterations, see for instance 8 .

˜Ž .Remark. Observe that if u is a solution of P , l , then u s u y awa a a 1
˜ Ž . Ž .q h is a solution of P , l for t s l y l a. Thus Proposition 3 estab-t 1

Ž .lishes the existence of T s l y l A such that, for t ) T , problem1
˜Ž .P , l has at least one solution u s u y aw q h. By virtue of thet t a 1

method of monotone iterations, such a solution is minimal in the sense
Ž .that, if u is any other solution of P , l , then u F u in V. Furthermore,t t

for each t ) T ,

t ˜u F V y w q h - 0 in V ;t 1l y l1
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Ž .hence, u x ª y` as t ª ` for every x g V. We collect these facts int
the following

Ž . Ž .THEOREM 4. Let l ) l and suppose that g satisfies 1 and 2 . Assume1
a Ž .also that l / l for any k ) 1. Gï en h g C V with H hw s 0, therek V 1

Ž . Ž .exists a constant T s T h such that for t ) T problem P , l has a minimalt
Ž .solution u satisfying u - 0 in V. Furthermore, for each x g V, u x ª y`t t t

as t ª `.

Our next task is to prove that, for t sufficiently large, the solution ut
given by Theorem 4 is a nondegenerate critical point of J . We start out byt
stating the following lemma whose proof is similar to that of Lemma 7 in
w x1, p. 659 , and is therefore omitted.

Ž . Ž .LEMMA 5. Let l ) l and assume that g satisfies 1 and 2 . Suppose1
also that l / l for any k G 2. Let t ) T and u be the minimal solution ofk t
Ž .P , l gï en by Theorem 4. Then the first eigen¨alue g of the problemt 1

yD¨ y l q g x , u ¨ s g ¨ , in V ;Ž .Ž .j t½ ¨ s 0, on  V ,

is non-negatï e.

w xNext we show as in 4, Lemma 4.7, p. 145 that, for t sufficiently large
and positive, u is a nondegenerate critical point of J .t t

Ž . Ž .PROPOSITION 6. Let l ) l and assume that g satisfies 1 and 2 .1
Suppose also that l / l for any k G 2. There exists T g R such that, fork 2
t ) T , the critical point u of J gï en by Theorem 4 is nondegenerate.2 t t

Proof. Assume by way of contradiction that there exist t ª `, and an
1Ž . 2corresponding sequence of functions ¨ g H V with H ¨ s 1 for all n,n o V n

² Ž . : 1Ž .such that, for u s u , A u ¨ , w s 0 for all w g H V ; i.e.,n t n n on

=¨ ? =w y l q g x , u ¨ w s 0, for all w g H 1 V . 6Ž . Ž . Ž .Ž .H Hn j n n o
V V

< Ž . <Since u - 0 in V for all n, and g x, j F K for all j F 0 and x g V,n j

Ž . � 4 1Ž .replacing w by ¨ in 6 we conclude that ¨ is bounded in H V .n n o
Hence, passing to a subsequence if necessary, we may assume that there

1Ž . 1Ž .exists ¨ g H V such that ¨ © ¨ weakly in H V and ¨ ª ¨ stronglyo n o n
2Ž . 2 Ž .in L V ; so that H ¨ s 1. The fact that u x ª y` for all x g V asV n

Ž .n ª `, condition 1 , and the Dominated Convergence Theorem can now
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Ž .be used in 6 to get that

=¨ ? =w y l ¨w s 0, for all w g H 1 V ;Ž .H H o
V V

i.e., ¨ is a nontrivial solution of

yD¨ y l¨ s 0, in V :½ ¨ s 0, on  V ;

but l / l for all k, thus, ¨ ' 0, which is a contradiction. Hence, therek
must be a T ) T such that, for t ) T , u is a nondegenerate critical2 2 t
point of J .t

Remark. As a consequence of Proposition 6 we can conclude that the
g in Lemma 5, for t ) T , is in fact positive. Indeed, if g s 0, then there1 2 1
exists ¨ / 0 in V satisfying1

yD¨ y l q g x , u ¨ s 0, in V ;Ž .Ž .1 j t 1½ ¨ s 0, on  V ,1

so that

=¨ ? =w y l q g x , u ¨ w s 0, for all w g H 1 V ,Ž . Ž .Ž .H H1 j n 1 o
V V

which contradicts the fact that u is nondegenerate for t ) T . Wet 2
therefore have, for t ) T ,2

< < 2 2 2 1=¨ y l q g x , u ¨ G g ¨ , for all ¨ g H V , 7Ž . Ž . Ž .Ž .H H Hj t 1 o
V V V

where g ) 0. We also have that1

< < 2 2 < < 2 2=¨ y l q g x , u ¨ G =¨ y l q K ¨ ,Ž . Ž .Ž .H H H Hj t
V V V V

;¨ g H 1 V , 8Ž . Ž .o

< Ž . < Ž . Ž .where K is such that g x, j F K for all j F 0. Combining 7 and 8 we
obtain

< < 2 2 < < 2 1=¨ y l q g x , u ¨ G c =¨ , for all ¨ g H V , 9Ž . Ž . Ž .Ž .H H Hj t o
V V V

Ž Ž . .where c s 1r 1 q l q K rg .1
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4. EXISTENCE OF A SECOND SOLUTION

Ž .A solution of P , l can also be obtained by means of the mountain passt
Ž w x.theorem of Ambrosetti and Rabinowitz Theorem 2.2 in 6, p. 7 . For this

purpose we will need to verify that the functional J satisfies thet
Palais]Smale condition.

Lemma 7. Let l ) l be such that l / l for any k G 2, and suppose1 k
Ž . Ž . Ž .that g satisfies conditions 1 through 4 , then J satisfies PS .t

� 4 1Ž . < Ž . <Proof. Let u be a sequence in H V satisfying J u F M for alln o t n
XŽ . 1Ž . 1Ž .n, and J u ª 0 in norm as n ª `. Define =J : H V ª H V byt n t o o

XŽ . ² Ž . : 1Ž .J u ¨ s =J u , ¨ for all ¨ g H V . By virtue of the growth conditiont t o
Ž .in 3 and the Sobolev embedding theorem, =J is of the form I y N,t

1Ž .where N is a completely continuous operator on H V . Thus, it sufficeso
� 4 1Ž . Ž w x.to prove that u is bounded in H V see 9, Proposition 2.2, p. 71 .n o

5 5Suppose to the contrary that, for a subsequence if necessary, u ª ` asn
n ª `.

Ž .From the condition =J u ª 0 as n ª ` we get that, for all n and allt n
1Ž .¨ g H V .o

5 5=u ? =¨ y l u ¨ y g x , u ¨ y tw q h ¨ s o 1 ¨ , 10Ž . Ž . Ž . Ž .H H H Hn n n 1
V V V V

Ž . Ž .where o 1 ª 0 as n ª `. Thus, putting ¨ s u in 10 ,n

< < 2 2 5 5=u y l u y g x , u u y tw q h u s o 1 u . 11Ž . Ž . Ž . Ž .H H H Hn n n n 1 n n
V V V V

< Ž . <Using the condition J u F M we gett n

2 M y J u u G 2 J u y J u uŽ . Ž . Ž .t n n t n t n n

5 5G g x , u u y 2G x , u y C uŽ . Ž .Ž .H n n n 3 n
V

Ž .for some constant C ) 0. So that, using 11 ,3

5 52 M q C u G g x , u u y 2G x , u , 12Ž . Ž . Ž .Ž .H4 n n n n
V

for some constant C ) 0.4
< Ž . <From g x, j F K for all j F 0 we get that

5 5g x , u u y 2G x , u F C u ,Ž . Ž .Ž .H n n n 5 n
u F0n
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Ž .for some C ) 0. Combining this with 12 we get that5

5 5g x , u u y 2G x , u F 2 M q C u ,Ž . Ž .Ž .H n n n 6 n
u )0n

for some C ) 0. Hence6

g x , u u y 2G x , uŽ . Ž .Ž .n n n
lim s 0.H 1q1r p5 5nª` uu )0n n

Ž . Ž . Ž .Here we have used the fact that, by 4 , j g x, j y 2G x, j ) 0 for j
Ž .large and positive. Hence, by 4 again

< <1q1r pg x , uŽ .n ª 0 as n ª `.H 1q1r p5 5uu )0n n

< Ž .Now, since g x, j F K for all j F 0, we also get that

< <1q1r pg x , uŽ .n ª 0 as n ª `.H 1q1r p5 5uu F0n n

We therefore conclude that

g x , uŽ .n 1q1r pª 0 in L V as n ª `. 13Ž . Ž .
5 5un

Thus, by the Sobolev embedding theorem,

g x , uŽ .n y1ª 0 in H V as n ª `, 14Ž . Ž .
5 5un

y1Ž . 1Ž .where H V denotes the dual of H V .o
5 5 5 5Let w s u r u for all n. Then w s 1 for all n, and so we mayn n n n

1Ž . 1Ž .assume that there exists w g H V such that w © w weakly in H Vo n o
2Ž . Ž . 5 5and w ª w strongly in L V . Dividing 10 by u , letting n ª `, andn n

Ž .using 14 we obtain

=w ? =¨ y l w¨ s 0, for all ¨ g H 1 V ;Ž .H H o
V V
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i.e., w is a solution of

yDw y lw s 0, in V ;½ w s 0, on  V ;

2Ž .but l / l for all k, thus w ' 0. We then have that w ª 0 in L V .k n
XŽ . � 4Now, from the assumption that J u ª 0 in norm and the fact that wt n n

XŽ .is bounded, we get that J u w ª 0 as n ª `. So thatt n n

J X u wŽ .t n n ª 0 as n ª `,
5 5un

Ž . Ž . 5 5or, dividing 10 with ¨ s w by u , and letting n ª `,n n

g x , u wŽ .n n2 2< <=w y l w y ª 0 as n ª `, 15Ž .H H Hn n 5 5uV V V n

where, by Holder’s inequality,¨

g x , u w g ?, uŽ . Ž .n n n
5 5F w . 16Ž .H pq1n5 5 5 5u uV n n 1q1rp

Ž . �5 54Using 13 , the Sobolev embedding theorem, and the fact that w isn
Ž .uniformly bounded, we obtain from 16 that

g x , u wŽ .n n ª 0 as n ª `,H 5 5uV n

Ž .which, in combination with 15 , yields

< < 2 2lim =w s l lim w s 0.H Hn n
nª` nª`V V

5 5But this is in contradiction with the fact that w s 1 for all n. Hencen
� 4u must be bounded and the lemma is proved.n

THEOREM 8. Let l ) l be such that l / l for any k G 2, and suppose1 k
Ž . Ž .that g satisfies conditions 1 through 4 . Let T be as gï en by Proposition 6.2

Ž .Then, for t ) T , P , l has at least two solutions.2 t

Proof. One solution u is given by Theorem 4. By Proposition 6, u is at t
nondegenerate critical point of J . Moreover, there exists a constant c ) 0t

Ž .such that 9 holds:

< < 2 2 < < 2 1=¨ y l q g x , u ¨ G c =¨ , for all ¨ g H V .Ž . Ž .Ž .H H Hj t o
V V V
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w xWe will apply the Ambrosetti]Rabinowitz mountain pass theorem 6 to
obtain another critical point of J distinct from u . We have alreadyt t

Ž .established in Lemma 7 that J satisfies PS ; thus, it remains to show thatt

Ž . Ž . Ž .i there exist r ) 0 and b ) J u such that J u G b for allt t t
1Ž . 5 5u g H V with u y u s r, ando t

Ž . 1Ž . 5 5 Ž . Ž .ii there is w g H V such that w y u ) r and J w - J u .o t t t t

Ž . w xTo prove i we proceed as in De Figueiredo 1 . Using the fact that u ist
a critical point of J we obtaint

1 2 2< <J u q ¨ y J u s =¨ y l¨Ž . Ž . Ž .Ht t t t 2 V

y G x , u q ¨ y G x , u y g x , u ¨Ž . Ž . Ž .H t t t
V

1Ž .for all ¨ g H V . By Taylor’s theorem we haveo

1 2G x , u q j y G x , u y g x , u j s g x , u j q r x , jŽ . Ž . Ž . Ž . Ž .t t t j t2

< Ž . < 2where r x, j rj ª 0 as j ª 0, for all x g V.
Ž .Choose « ) 0 so small that « - l cr2, where c is the constant in 9 .1

< <Then there exists d ) 0 such that j F d implies

< < < < 2r x , j F « j for all x g V .Ž .

Ž .On the other hand, using 3 we obtain a constant C ) 0 such thatd

< < < < pq1 < <r x , j F C j for j G d and all x g V .Ž . d

Hence

< < < < 2 < < pq1r x , j F « j q C j for all j g R and x g V ,Ž . d

and therefore

< < 2 < < pq1r x , ¨ F « ¨ q C ¨Ž .H H Hd
V V V

which, by the Sobolev embedding theorem, yields

« 2 pq1< < 5 5 5 5r x , ¨ F ¨ q C ¨Ž .H 7lV 1

for some constant C ) 0.7
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We then have that

1 2 2< <J u q ¨ y J u G =¨ y l q g x , u ¨Ž . Ž . Ž .Ž .H ž /t t t t j t2 V

« 2 pq15 5 5 5y ¨ y C ¨7l1

Ž .and, using 9 ,

c « py1 25 5 5 5J u q ¨ y J u G y y C ¨ ¨ .Ž . Ž .t t t t 7ž /2 l1

Now choose r ) 0 so small that cr2 y «rl y C r py1 ) 0. Then for1 7
1Ž . 5 5all ¨ g H V with ¨ s r,o

J u q ¨ G b ,Ž .t t

where

c «
py1 2b s J u q y y C r r ) J u ,Ž . Ž .t t 7 t tž /2 l1

Ž .which yields i .
Ž .To see ii , consider

1
2 2 2J rw s l y l r w y G x , rw y tr wŽ . Ž . Ž .H H Ht 1 1 1 1 12 V V V

Ž .for r ) 0. Using 5 we obtain

m
2G x , j G j y C j for j G 0,Ž . o2

and some m ) 0. Then

1
2 2 2J rw F l y l y m r w y r C w q tw ,Ž . Ž . Ž .H Ht 1 1 1 o 1 12 V V

Ž .which shows that J rw ª y` as r ª `. Therefore, taking w s rw fort 1 1
Ž .r large enough, we obtain ii .

The proof now follows by a straightforward application of the mountain
pass theorem of Ambrosetti and Rabinowitz.

Ž .Remark. Observe that if we assume that G x, j ) 0 for j sufficiently
Ž .large and positive and all x g V, then condition 2 actually follows from
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Ž .4 . Consequently, one can obtain the same multiplicity result of Theorem
Ž .8 with 2 replaced by this assumption, or by the condition

lim inf G x , j ) 0, uniformly in x g V . 2YŽ . Ž .
jªq`
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