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1. INTRODUCTION

Let Q) be a bounded domain in R”, for n > 2, with smooth boundary
dQ, and denote by {A,} the increasing sequence of eigenvalues of —A
over Q) with Dirichlet boundary conditions. Let g:Q X R > R be a C!
function satisfying: (i) g(x, ¢) is bounded for ¢ large and negative, (ii)
g(x, &) may grow superlinearly in ¢ for ¢ large and positive. Denote by ¢,
a positive eigenfunction corresponding to A, and let &7 € C*(Q), for some
a > 0, be orthogonal to ¢, with respect to the L2(Q) inner product. In
this paper we are concerned with the existence of multiple solutions of the
semilinear elliptic boundary value problem

—Au — Au—g(x,u) =te, +h, in Q;
u=20, on 41,

where A and ¢ are real parameters.

The case A < A; is known as a superlinear Ambrosetti—Prodi problem,
see, for example, [1]. In this case, it is proved in [1] that under certain
conditions on g, for ¢ large and negative, problem (P,, A) has at least two
solutions.

It is interesting to consider the question of existence of solutions of
(P, ») for ¢ large and positive. For the case A < A; one can show that
problem (P,, A) has no solutions for ¢ large and positive (see Proposition 2
under Preliminary Results). Hence, if we are looking for solutions of
(P, M), for ¢ large and positive, we must require that A > A,.

(P, 2)
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In an interesting paper of Ruf and Srikanth [7] the following problem is
considered

—Au—)\u—(u+)p=t<pl+h, in Q;
u=0, on 9Q,

where ut=max{u,0}, 1<p<mm+2/(n—2)if n=3 and p>1if
n = 2, and h is orthogonal to ¢, with respect to the L?({)) inner product.
In [7] it is shown that if A > A, and A # A, for all kK > 1, then for ¢ large
and positive the above problem has at least two solutions.

Motivated by the results in [7, 1], in this paper we present a multiplicity
result for (P, A) in the case A > A;. Suppose that

0
lim (?_gg(x' &) =0, uniformly in x € (2, (1)
> —
and
xy
liminf 8(x.£) > 0, uniformly in x € Q, (2)
ga +4 o0

where the limit on the left hand side of (2) could be e« on Q, or on a subset
of Q with positive measure. In addition, assume that (9/d¢)g(x, &)
satisfies the growth condition

lge(x, €)l < C, + C,l€1P™" forée Rand x € Q, (3)

where 1<p<(n+2)/(n—2)if n>3 and p>1if n =2, for some
constants C, and C,. Suppose also that

liminf >0, uniformlyin x € Q,  (4)
g te |g(x, E)TTHP

where G(x, ¢) = [fg(x,t)dt. In Section 4 we prove that under these
assumptions for A > A, (with A # A, for all k > 2), there exists a positive
number T = T(h), such that, if + > T, then problem (P,, A) has at least
two solutions.

The existence of the first solution u, to problem (P,, A) is proved using
the method of sub- and super-solutions (see, for example, [8]), while the
second solution is obtained by means of the Mountain Pass Theorem of
Ambrosetti and Rabinowitz [6, Theorem 2.2]. Although the arguments in
this paper are close to those of De Figueiredo in [1], the techniques used
here are also similar to those used by Lazer and McKenna in [4] for the
case of jumping nonlinearities which cross a finite number of eigenvalues
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(see also the related works [3, 5]). The multiplicity results in [3-5] are
obtained by means of a combination of degree theoretic calculations and
critical point theory techniques via a reduction method. The main differ-
ence between this work and the work of Lazer and McKenna [4] is that in
this paper the nonlinearity g(¢) is allowed to grow superlinearly in ¢ for
&> 0 (and consequently the nonlinearity could cross infinitely many
eigenvalues), while in [4] it is assumed that lim, , , g'(£¢) exists and is
finite, and that A + lim,_, , .g'(£) is not an eigenvalue of —A with zero
Dirichlet boundary conditions. This allows one to obtain the a priori
bounds needed for the degree theoretic computations. If g is allowed to
grow superlinearly, those bounds are harder to obtain.

2. NOTATION, DEFINITIONS, AND SOME BASIC FACTS

Denote by H}(Q) the completion of C*() with respect to the norm
given by Null> = jQIVuIZ. H!(Q) is then a real Hilbert space with inner
product {u,v) = [, Vu - Vv for all u and v in H}(Q).

By a solution of the problem (P, A) we mean a function u € HX((Q)
satisfying

fQVu -Vu — )\fﬂuv — ng(x, u)v — tfnqplu — thU =0,

Vv e H}(Q).
Since g is assumed to be continuously differentiable, standard regularity

arguments imply that any solution of (P, A) is, in fact, in C?(Q) N C(Q).
For each ¢ € R define a functional J,: H}(Q) — R by

1 A
J(u) = EJ;Z|VM|2 - E'/;2MZ - fQG(x,u) - tf;)golu - fnhu

Yu € H}(Q),

where G(x, ¢) = [{g(x,t)dt for £ € R and all x € Q. The growth condi-
tion (3) can be used to prove that J, € C2(HX(Q), R) with Frechet deriva-
tives at u € HX(Q) given by

J(u)v = fQVu Vo — A/Quu - fng(x,u)u - t/ﬂ@lu - fnhu,

Vv e H}{(Q),
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and

J(u)(v,w) = fQVU “Vw — )\fﬂvw - fﬂgf(x,u)vw
forall v,w € H}(Q).

For each u € HX(Q) let A,(u) denote the linear self-adjoint operator
induced on HX(Q)) by setting

J(u)(v,w) ={A,(u)v,w)y  forallv,w € H}(Q).

A critical point u of J, is said to be nondegenerate if A4,(x) is invertible; or
equivalently, if there is no v # 0 such that {A4,(w)v,w) =0 for all w
H}(Q).

The functional J, is said to satisfy the Palais—Smale condition if

every sequence {u,} C H}(Q) satisfying:
(i) J,(u,) is bounded, and

(i) J/(u,) » 0innormas n — =,

has a strongly convergent subsequence.

(PS)

3. PRELIMINARY RESULTS

For the sake of comparison with the superlinear Ambrosetti—Prodi
problem, in this section we shall temporarily replace (2) with

g(x, ¢)
3

liminf > max{A, — A, 0}, (2")
E— +»
where the inequality holds uniformly in .
We first observe that conditions (1) and (2') imply the existence of
positive constants u and C, such that A + u # A, for any &, and

g(x,é)=pué—C, forxe,and {€R. (5)

We will now see how the condition in (5) implies the existence of a lower
bound for solutions on (P,, A) with ¢ > a for some a € R (see Lemma 4 in
[1]). Recall that a function u € C*>*(Q) is said to be a subsolution of
(P, M), if

—Au — Au<g(x,u) +to, +h in Q
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and u <0 on 4Q, and v € C*%(Q) is a supersolution if it satisfies the
above inequalities with < replaced by > .

LEMMA 1. Assume (1) and (2'). Given a € R, there exists a function
w € C**(Q) withw =0 on dQ, such that w is a subsolution of (P,, \) for
all t > a, and, if v € C**(Q) is a supersolution of (P,, \) for t > a, then
w < vin (.

Proof. Let w be the unique solution of the linear Dirichlet problem

—Aw —w=uw —-C, +ag, +h, in Q;
w =0, on 4Q,

then, by (5), w is a subsolution of (P,) for any ¢ > a. The maximum
principle yields the second part of the lemma. |

In the case A < A, in (P, A) and g satisfying (2'), one can choose u so
that w > A; — A. In this case we can get an upper bound for the values of
t > 0 for which (P, A) has a solution. This result is essentially due to
Kazdan and Warner [2]; see also Lemma 3 in [1].

PROPOSITION 2.  Assume (1) and (2') for A < A,. There exists a T € R
such that (P,, A\) has no solutions for t > 7.

Proof. Let u be a solution of (P, A) for ¢t > 0. Apply Lemma 1 with
a = 0 to obtain a function w € C?“(Q) satisfying w < u in Q. Green’s
identity yields

0= [ [(Ag)u — (Au)ey]
Q
=—(A =2 + , + 1| @l
(= 2) [ ues + [ g(xu)oy + 1 of
Using (5) we then obtain
_ _ 2 _
0>[p—(n )‘)]fﬂu% + tfﬂ@l Cofﬂﬁol’
and since w — (A, — A) > 0 in this case, we obtain

0=[p—(A- A)]fQW(Pl + tfﬂsof - Co[ﬂ()ol!

from which the result follows. |
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In view of Proposition 2, if we are looking for solutions of (P,, A) for ¢
large and positive, we must require that A > A;. In this paper we will
consider the case A > A; and A # A, for any k > 1. We shall establish the
existence of at least one solution of (P,, A) for ¢ large and positive by
considering the following modified version of (P,, A):

—Au—/\u=g(x,u—agol+z), in Q; (ﬁ )\)
u=0, on 4Q, “

where ¢ € R, and % = (=A — A)"!h, so that 1 € C2(Q) N CX(Q) by
elliptic regularity theory.

PROPOSITION 3. Let A > A, and suppose that g satisfies (1) and (2).
Assume also that A # A, for any k> 1. Given h € C*(Q) such that
Johe, = 0, there exists a constant A = A(h) such that for a > A problem

(P,, \) has at least one solution.

Proof. By condition (1), there exists K € R such that g(x, ¢) < K for
all x € Q and £ < 0. Let Ve C3(Q) N CHQ) be the unique solution to
the Dirichlet problem

—AV — AWV =K, in Q;
V=0, on 4Q).

Choose a so large and positive that V' — a¢, + h <0in Q. Then
—AV - W =Kz=g(x,V—ag +h) inQ,

and so I is a supersolution of (P,, A).

_The argument in the proof of Lemma 1 yields now a subsolution w of
(P,, A) satisfying w <V in Q. The result then follows by the method of
monotone iterations, see for instance [8]. |

Remark. Observe that if u, is a solution of (P, ), then u=u, —ag,
+ h is a solution of (P, A) for t = (A — Aj)a. Thus Proposition 3 estab-
lishes the existence of 7 = (A — A))A such that, for ¢+ > T, problem
(P, M) has at least one solution u, =u, —a¢p, + h. By virtue of the
method of monotone iterations, such a solution is minimal in the sense
that, if u is any other solution of (P, A), then u, < u in Q. Furthermore,
foreach ¢t > T,

t ~
M<V——/\g01+h<0 in Q;
!

' A
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hence, u,(x) » —« as t — o for every x € . We collect these facts in
the following

THEOREM 4. Let A > A, and suppose that g satisfies (1) and (2). Assume
also that X # X, for any k > 1. Given h € C*(Q) with [ohe, = 0, there
exists a constant T = T(h) such that for t > T problem (P,, \) has a minimal
solution u, satisfyingu, < 0 in Q. Furthermore, foreachx € Q, u,(x) - —o
ast — o,

Our next task is to prove that, for ¢ sufficiently large, the solution u,
given by Theorem 4 is a nondegenerate critical point of J,. We start out by
stating the following lemma whose proof is similar to that of Lemma 7 in
[1, p. 659], and is therefore omitted.

LEMMA 5. Let A > A, and assume that g satisfies (1) and (2). Suppose
also that A # A, forany k > 2. Let t > T and u, be the minimal solution of
(P, M) given by Theorem 4. Then the first eigenvalue vy, of the problem

—Av — (A + g (x,u,))v = yv, in Q;
v =0, on 9Q),

is non-negative.

Next we show as in [4, Lemma 4.7, p. 145] that, for ¢ sufficiently large
and positive, u, is a nondegenerate critical point of J,.

PROPOSITION 6. Let A > A, and assume that g satisfies (1) and (2).
Suppose also that A # A, for any k > 2. There exists T, € R such that, for
t > T,, the critical point u, of J, given by Theorem 4 is nondegenerate.

Proof. Assume by way of contradiction that there exist ¢, — %, and a
corresponding sequence of functions v, € HX(Q) with [,v? = 1 for all n,

such that, for u, = u, , (A(u,)v,,w) = 0 forall w € H,(Q); i.e.,

J Vo, Yw = [ (A +ge(x,u,))o,w =0, forallwe HX(Q). (6)
Q Q

Since u, < 01in Q for all n, and [g,(x, §)l < K forall §<0and x € Q,
replacing w by v, in (6) we conclude that {v,} is bounded in H(Q).
Hence, passing to a subsequence if necessary, we may assume that there
exists v € H}(Q) such that v, — v weakly in H}(Q) and v, — v strongly
in L*(Q); so that [,v® = 1. The fact that u,(x) > —« for all x € Q as
n — oo, condition (1), and the Dominated Convergence Theorem can now
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be used in (6) to get that

[ Vo-vw—afow=0, forallweH(Q);
Q Q

i.e., v is a nontrivial solution of

—Av — A =0, in Q:
v =0, on 9Q);

but A # A, for all k, thus, v = 0, which is a contradiction. Hence, there

must be a 7, > T such that, for # > T,, u, is a nondegenerate critical
point of J,. |

Remark. As a consequence of Proposition 6 we can conclude that the
v, in Lemma5, for ¢ > T, is in fact positive. Indeed, if y;, = 0, then there
exists v, # 0 in ( satisfying

—Aul—()\+g§(x,u,))ul=0, in Q;
v, =0, on 99,

so that
[ Vo Ww = [ (A +ge(xu,))ow =0, forallw e H(Q),
Q Q

which contradicts the fact that u, is nondegenerate for ¢ > T,. We
therefore have, for ¢ > T,

fﬂlvm2 ~ /Q(/\ + g (x,u,))0? = ylfﬂuz, forall v € HX(Q), (7)
where y, > 0. We also have that
2 2 ,
/Q|VU| - fﬂ()\ +ge(x,u,))v? = fQ|VU| — (A + K)fﬂlﬂ,

Vv e H(Q), (8)

where K is such that |g(x, £)| < K for all £ < 0. Combining (7) and (8) we
obtain

fﬂwmz - fﬂ()\ + g (x,u,))0? > cfQ|vU|2, forall v € HX(Q), (9)

where ¢ = 1/(1 + (A + K)/y)).
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4. EXISTENCE OF A SECOND SOLUTION

A solution of (P,, A) can also be obtained by means of the mountain pass
theorem of Ambrosetti and Rabinowitz (Theorem 2.2 in [6, p. 7]). For this
purpose we will need to verify that the functional J, satisfies the
Palais—Smale condition.

Lemma 7. Let A > A, be such that A # A, for any k > 2, and suppose
that g satisfies conditions (1) through (4), then J, satisfies (PS).

Proof. Let {u,} be a sequence in H}(Q) satisfying |J,(u,)| < M for all
n, and J/(u,) - 0 in norm as n — «. Define VJ: H}(Q) — H}(Q) by
J/(wv = (VJ(w),v) for all v € HX(Q). By virtue of the growth condition
in (3) and the Sobolev embedding theorem, VJ, is of the form I — N,
where N is a completely continuous operator on HX(Q). Thus, it suffices
to prove that {u,} is bounded in H!(Q) (see [9, Proposition 2.2, p. 71]).
Suppose to the contrary that, for a subsequence if necessary, ||lu,|| — « as
n — %,

From the condition VJ,(u,) — 0 as n — % we get that, for all » and all
v € HXQ).

f Vu, - Vo — )\f u,v — fg(x,un)u - f (te, + h)v = o(D)llvll, (10)
Q Q Q Q
where 0(1) — 0 as n — . Thus, putting v = u, in (10),
JIVu P = af u = [ g(xow)u, = [ (1o + hu, = o(L)llu,l. (1)
Q Q Q Q

Using the condition |J,(x,)l < M we get
2M _Jz(”n)”n = 2Jt(un) _Jz(un)un

2 f (g(x,u,)u, —2G(x,u,)) — Cyllu,ll
Q
for some constant C, > 0. So that, using (11),
2M + Cyllu,ll = f (g(x,u,)u, —2G(x,u,)), (12)
Q

for some constant C, > 0.
From |g(x, &)l < K for all ¢ < 0 we get that

J

u

< Gsllu, |,

_(&(xu)u, ~ 2G(x,u,))

n=
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for some C; > 0. Combining this with (12) we get that

f (g(x,u,)u, —2G(x,u,)) <2M + Cgllu,ll,
>0

u,

for some Cy; > 0. Hence

x,u)u, —2G(x,u,
T G, (ru) _
n—wJy >0 ||un||1+l/p

Here we have used the fact that, by (4), &g(x, £€) — 2G(x, £) > 0 for &
large and positive. Hence, by (4) again

lg(x,u,) "7

f —— >0 asn — »,
>0l M7

Now, since |g(x, £) < K for all £ < 0, we also get that

lg (o, u, )M TP
2o ||1+1/p -0 as n — oo,
We therefore conclude that
g(x,u,) i1
el -0 inL (Q)asn — o, (13)

Thus, by the Sobolev embedding theorem,

g(x,u,) R
Hu—,,H_)o in H-*(Q) asn — =, (14)
where H () denotes the dual of HX(Q).

Let w, = u,/llu,ll for all n. Then [lw,|l =1 for all n, and so we may
assume that there exists w € HX(Q) such that w, — w weakly in HX(Q)
and w, — w strongly in L?(). Dividing (10) by [lu,ll, letting n — c«, and
using (14) we obtain

J Vw-Vo—2afwo=0, forallveHQ);
Q Q
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i.e., w is a solution of

—Aw — A =0, in Q;
w =0, on 9();

but A # A, for all k, thus w = 0. We then have that w, — 0 in L?(Q).
Now, from the assumption that J;/(x,) — 0 in norm and the fact that {w,}

is bounded, we get that J/(u,)w, — 0 as n — . So that
i (u,)w,
————— >0 asn—>»,
llue, I

or, dividing (10) (with v = w,) by |lu,ll, and letting n — o,

g(‘x' un)wn
Vw2 —Afw2— [ """ 50 asn— o, 15
J, S = (1%)
where, by Holder’s inequality,
g uy,)
llue, I

Using (13), the Sobolev embedding theorem, and the fact that {[lw,l} is
uniformly bounded, we obtain from (16) that

w,llp+ 1. (16)
1+1/p

g(x,u,)w,
Jy

llu, I

-0 as n — oo,

§(x,u,)w,
Jy

llu, I

which, in combination with (15), yields

lim [ [Vw,|"= A lim | w; =0,

n— o / | | n— o '/(2

But this is in contradiction with the fact that [lw,|| = 1 for all n. Hence
{u,,} must be bounded and the lemma is proved. |

THEOREM 8. Let A > A, be such that A # A, for any k > 2, and suppose
that g satisfies conditions (1) through (4). Let T, be as given by Proposition 6.
Then, fort > T,, (P,, A) has at least two solutions.

Proof. One solution u, is given by Theorem 4. By Proposition 6, u, is a
nondegenerate critical point of J,. Moreover, there exists a constant ¢ > 0
such that (9) holds:

f|VU| —f A+ ge(x, ut) v? > chVU|2 forall v € HX(Q).
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We will apply the Ambrosetti—-Rabinowitz mountain pass theorem [6] to
obtain another critical point of J, distinct from u,. We have already
established in Lemma 7 that J, satisfies (PS); thus, it remains to show that

(i) there exist p >0 and B> J,(u,) such that J(u) > B for all
u € HX(Q) with |lu — u,|l = p, and

(ii) there is w € HX(Q) such that [lw — u,|l > p and J,(w) < J(u,).

To prove (i) we proceed as in De Figueiredo [1]. Using the fact that u, is
a critical point of J, we obtain

1 2
Jt(ut + U) _Jt(ut) = Efg(|VU| - /\UZ)

[ [GCu +0) = G(xu) = g(xu)0]
for all v € HX(Q). By Taylor’s theorem we have
G(xu, +¢&) = G(xu,) —g(xu)é= %gg(x,u,)fz +r(x, §)
where |r(x, £)|/€2 > 0as £ > 0, for all x € Q.
Choose & > 0 so small that & < A;c/2, where ¢ is the constant in (9).
Then there exists § > 0 such that |£| < & implies
Ir(x, &)l < elél> forall x € Q.

On the other hand, using (3) we obtain a constant C; > 0 such that

Ir(x, &)l < Csl€1P* for |¢] = s andall x € Q.

Hence
Ir(x, )l < elé]” + C4l¢17*t forall ¢ Rand x € Q,

and therefore

fﬂlr(x,u)l < afﬂuz + Cgfﬂlulerl

which, by the Sobolev embedding theorem, yields
TR Pl
[Ir(e,0)l < —ll + G vl
Q /\1

for some constant C,; > 0.
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We then have that

1
J(u,+v) —J(u,) = Ef (|VU|2 — (A +g§(x,u,))vz)

Q

&
2 1
——llll* = Clloll”*
1

and, using (9),

¢ € p—1 2
J(u, +v) =J(u,) = |z - — — Clvll lloll”.
2 N

Now choose p > 0 so small that ¢/2 — /A, — C,p?~* > 0. Then for
all v € HX(Q) with [v]l = p,

J(u, +v) = B,

where

c & C. ot
2 AL 7P

B =][(ut) + p2 > Jt(ut)’

which yields (i).
To see (ii), consider

1
T(re) = 5 =Nt of = [ Glxirey) —rr[ ¢f
for r > 0. Using (5) we obtain
s 2
G(x, &)= 55 —-C, ¢ foré=0,

and some w > 0. Then

1 2 2 2
J(re)) < S (A = A= p)r fﬂ‘Pl - er(Cole +1¢7),

which shows that J,(r¢,) - —o as r — «. Therefore, taking w = ro, for
r large enough, we obtain (ii).

The proof now follows by a straightforward application of the mountain
pass theorem of Ambrosetti and Rabinowitz. i

Remark. Observe that if we assume that G(x, ¢) > 0 for ¢ sufficiently
large and positive and all x € Q, then condition (2) actually follows from
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(4). Consequently, one can obtain the same multiplicity result of Theorem
8 with (2) replaced by this assumption, or by the condition

liminfG(x, §) > 0, uniformly in x € Q. (2")
E—> + o
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