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Abstract

Using the theory of fixed point index, we establish new results for the existence of
nonzero solutions of integral equations of the formu(t) = ∫

G k(t, s)f (s,u(s)) ds, where
G is a compact set inRn andk changes sign, so positive solutions may not exist,f satisfies
Carathéodory conditions andk may be discontinuous. We apply our results to prove the
existence of nontrivial solutions of some nonlocal boundary value problems.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

One approach to finding solutions to a semilinear boundary value problem
(BVP) for some differential equation is to write the BVP as an equivalent Ham-
merstein integral equation

u(t) =
1∫

0

k(t, s)f
(
s, u(s)

)
ds := T u(t) (1.1)
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and find a solution as a fixed point of the operatorT . In particular, it is possible
to use the classical theory of fixed point index in cones to establish the existence
of positive solutions.

Lan and Webb [8] proved that at least one positive solution existed for
some boundary conditions of separated type, under some conditions onf which
strictly includedf being either sublinear or superlinear. These results have been
improved by Lan [6] to yield existence of multiple positive solutions under
suitable conditions onf for the separated BCs.

Webb [11] used Lan’s results for the Hammerstein integral equation to
establish the existence of multiple positive solutions for some nonlocal BCs,
known as three-point BCs, when a parameterα satisfies 0< α < 1. Webb’s results
improved some of Ma’s [9] who dealt with the existence of one positive solution
for one of the BVPs studied in [11] in the sublinear and superlinear cases only, by
different methods.

Recently, Infante and Webb [5] have studied the same three-point BVPs but
for other values of the parameter, by an extension of the methods of Lan [6].
Existence theory in these cases had been given in a number of papers by Gupta
and some co-authors; see, for example, [2,3] and references therein. In some of
these cases positive solutions do not exist but, by considering a suitable cone, it
was proved in [5] that there exist one or multiplenonzerosolutions that change
sign, under suitable conditions off .

In the present paper we extend [5] to allow for discontinuities in the kernel and
more general functionsf . One motivation is that certain nonlocal boundary value
problems lead to precisely this situation. We shall study in detail the problem

u′′(t) + f
(
t, u(t)

)= 0 (0 < t < 1), (1.2)

with boundary condition

u(1) = αu′(η), u(0) = 0, 0 < η < 1. (1.3)

In this case the kernel of the corresponding integral equation has a discontinuity.
We shall use our theory to show that multiple nonzero (but not necessarily
positive) solutions exist, under suitable conditions onf , when either 0� α <

1− η or α < 0. These results are completely new.

2. Existence of nontrivial solutions of Hammerstein integral equations

We begin by giving some new results for the following Hammerstein integral
equation:

u(t) =
∫
G

k(t, s)f
(
s, u(s)

)
ds := T u(t), (2.1)
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whereG is a compact set inRn of positive measure. We will work in the space
C(G) of continuous functions endowed with the usual supremum norm. We shall
make the following assumptions onf,g and the kernelk. Recall thatf is said to
satisfy the Carathéodory conditions if for eachu, s �→ f (s,u) is measurable and
for almost everys, u �→ f (s,u) is continuous.

(C1) Suppose that for everyr > 0, f :G × [−r, r] → [0,∞) satisfies Cara-
théodory conditions onG × [−r, r] and there exists a measurable function
gr :G → [0,∞) such that

f (s,u) � gr(s) for almost alls ∈ G and allu ∈ [−r, r].
(C2) k :G × G → R is measurable, and for everyτ ∈ G we have

lim
t→τ

∫
G

∣∣k(t, s) − k(τ, s)
∣∣gr(s) ds = 0.

(C3) There exist a closed subsetG0 ⊂ G with meas(G0) > 0, a measurable
functionΦ :G → [0,∞) and a constantc ∈ (0,1] such that

∣∣k(t, s)
∣∣� Φ(s) for t ∈ G and almost everys ∈ G,

cΦ(s) � k(t, s) for t ∈ G0 and almost everys ∈ G.

(C4) For eachr there isMr < ∞ such that
∫
G Φ(s)gr (s) ds � Mr.

The hypothesis(C3) means finding upper bounds for|k| on G and lower
bounds of the same form fork for t ∈ G0. In applications we have some freedom
of choice in determiningG0 but we are constrained by needingk(t, s) to be
positive fort ∈ G0 and almost everys ∈ G.

These hypotheses allow us to work in the cone

K = {
u ∈ C(G): min

{
u(t): t ∈ G0

}
� c‖u‖}.

This is similar to but larger than the cone used by Lan [7], which type of cone is
apparently due to Guo [4]. Note that functions inK are positive on the subsetG0

but may change sign onG.
In order to use the well-known fixed point index for compact maps, we need to

prove thatT :K → K is compact; that is,T is continuous andT (Q) is compact
for each bounded subsetQ ⊂ K.

We writeKr = {u ∈ K: ‖u‖ < r} andKr = {u ∈ K: ‖u‖ � r}.

Theorem 2.1. Assume that(C1)–(C4) hold for somer > 0. ThenT mapsKr into
K and is compact.
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Proof. The compactness ofT follows from Proposition 3.1 of [10] since, asG is
compact, the limit in(C2) is readily shown to be uniform inτ ∈ G. To see that
T :Kr → K, for u ∈ Kr andt ∈ G, we have∣∣T u(t)

∣∣� ∫
G

∣∣k(t, s)
∣∣f (s, u(s)

)
ds

so that

‖T u‖ �
∫
G

Φ(s)f
(
s, u(s)

)
ds.

Also

min
t∈G0

{
T u(t)

}
� c

∫
G

Φ(s)f
(
s, u(s)

)
ds.

HenceT u ∈ K for everyu ∈ Kr . ✷
Remark 2.2. In Theorem 2.1, if the hypotheses hold for eachr > 0, thenT maps
K into K and is compact. We shall only consider this case in this paper.

We require some knowledge of the classical fixed point index for compact
maps; see, for example, [1] or [4] for further information.

Let K be a cone in a Banach spaceX. If Ω is a bounded open subset ofK

(in the relative topology) we denote byΩ and∂Ω the closure and the boundary
relative toK. WhenD is an open bounded subset ofX we writeDK = D ∩ K,
an open subset ofK. The following result is a well-known consequence of fixed
point index theory.

Lemma 2.3. Let D be an open bounded set withDK �= ∅ andDK �= K. Assume
that T :DK → K is a compact map such thatx �= T x for x ∈ ∂DK . Then the
fixed point indexiK(T ,DK) has the following properties:

(1) If there existse ∈ K \ {0} such thatx �= T x + λe for all x ∈ ∂DK and all
λ > 0, theniK(T ,DK) = 0.

(2) If ‖T x‖ � ‖x‖ for x ∈ ∂DK , theniK(T ,DK) = 1.
(3) Let D1 be open inX with D1 ⊂ DK . If we haveiK(T ,DK) = 1 and

iK(T ,D1
K) = 0, thenT has a fixed point inDK \ D1

K . The same result holds
if iK(T ,DK) = 0 andiK(T ,D1

K) = 1.

Let q :C(G) → R denote the continuous functionq(u) = min{u(t): t ∈ G0}.
Following Lan [6], forρ > 0, we shall use the setΩρ = {u ∈ K: q(u) < cρ}.
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Lemma 2.4. Ωρ defined above has the following properties:

(a) Ωρ is open relative toK.
(b) Kcρ ⊂ Ωρ ⊂ Kρ .
(c) u ∈ ∂Ωρ if and only ifq(u) = cρ.
(d) If u ∈ ∂Ωρ , thencρ � u(t) � ρ for t ∈ G0.

We omit the simple proof as it is exactly similar to the one in [6].
We now prove a lemma which implies the index is zero.

Lemma 2.5. Assume that there existsρ > 0 such thatu �= T u for u ∈ ∂Ωρ and
the following conditions hold:

(H
�
ρ ) There exists a measurable functionψρ :G0 → R+ such that

f (s,u) � cρψρ(s) for all u ∈ [cρ,ρ] and almost alls ∈ G0,

and inft∈G0

∫
G0

k(t, s)ψρ(s) ds � 1.

TheniK(T ,Ωρ) = 0.

Proof. Let e(t) ≡ 1 for t ∈ G. Thene ∈ K. We prove that

u �= T u + λe for u ∈ ∂Ωρ andλ > 0.

In fact, if not, there existu ∈ ∂Ωρ andλ > 0 such thatu = T u + λe. By (H
�
ρ ),

we have fort ∈ G0

u(t) =
∫
G

k(t, s)f
(
s, u(s)

)
ds + λ �

∫
G0

k(t, s)f
(
s, u(s)

)
ds + λ

� cρ

∫
G0

k(t, s)ψρ(s) ds + λ � cρ + λ.

This impliesq(u) � cρ + λ > cρ, contradicting (c) of Lemma 2.4. Hence (1) of
Lemma 2.3 impliesiK(T ,Ωρ) = 0. ✷

Note that if strict inequality holds in(H�
ρ ), takingλ = 0 we see thatu �= T u

for u ∈ ∂Ωρ .

Remark 2.6. A commonly used assumption in place of(1) of Lemma 2.3
is ‖T u‖ � ‖u‖ for ‖u‖ = ρ. We observe that this follows from a somewhat
different version of(H�

ρ ), namelyf (s,u) � ρψρ(s) for cρ � u � ρ, where
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supt∈G0

∫
G0

k(t, s)ψρ(s) ds � 1. Indeed, fort ∈ G0 andu ∈ K with ‖u‖ = ρ we
have ∣∣T u(t)

∣∣= ∫
G

k(t, s)f
(
s, u(s)

)
ds �

∫
G0

k(t, s)ρψρ(s) ds � ρ = ‖u‖.

This remark shows that using the open setΩρ and (1) of Lemma 2.3 gives a
stronger result.

We now give a result which implies the index is 1.

Lemma 2.7. Assume that there existsρ > 0 such thatu �= T u for u ∈ ∂Kρ and
f satisfies the following condition:

(H
�
ρ ) There exists a measurable functionφρ :G → R+ such that

f (s,u) � ρφρ(s) for all u ∈ [−ρ,ρ] and almost alls ∈ G,

andsupt∈G

∫
G

|k(t, s)|φρ(s) ds � 1.

TheniK(T ,Kρ) = 1.

Proof. By (H
�
ρ ) we have foru ∈ ∂Kρ andt ∈ G

∣∣T u(t)
∣∣=

∣∣∣∣∣
∫
G

k(t, s)f
(
s, u(s)

)
ds

∣∣∣∣∣�
∫
G

∣∣k(t, s)
∣∣f (s, u(s)

)
ds

� ρ

∫
G

∣∣k(t, s)
∣∣φρ(s) ds � ρ = ‖u‖.

This implies‖T u‖ � ‖u‖ for u ∈ ∂Kρ . By (2) of Lemma 2.3, we haveiK(T ,

Kρ) = 1. ✷
Note that if strict inequality holds in(H�

ρ ), thenu �= T u for u ∈ ∂Kρ .
We now give our new result which asserts that Eq. (2.1) has at least one or at

least two nonzero solutions which are positive on the subsetG0 of G.

Theorem 2.8. The integral equation Eq.(2.1) has a nonzero solution inK if
either of the following conditions hold:

(H1) There existρ1, ρ2 ∈ (0,∞) with ρ1 < cρ2 such that(H�
ρ1 ), (H

�
ρ2), u �= T u

for u ∈ ∂Ωρ2.

(H2) There existρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that(H�
ρ1 ), (H

�
ρ2 ), u �= T u

for u ∈ ∂Kρ2.
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Eq. (2.1)has two nonzero solutions inK if one of the following conditions hold:

(S1) There existρ1, ρ2, ρ3 with ρ1 < cρ2 and ρ2 < ρ3 such that(H�
ρ1 ), (H

�
ρ2 ),

u �= T u for u ∈ ∂Ωρ2 and(H
�
ρ3 ) hold.

(S2) There existρ1, ρ2, ρ3 with ρ1 < ρ2 < cρ3 such that(H�
ρ1 ), (H

�
ρ2 ), u �= T u

for u ∈ ∂Kρ2 and(H
�
ρ3 ) hold.

Moreover, if in(S1), strict inequality holds in(H�
ρ1 ), then Eq.(2.1) has a third

solutionu0 ∈ Kρ1 .

Proof. Assume that(S1) holds. We show that eitherT has a fixed pointu1 in
Ωρ2 \ Kρ1 or on its boundary. Ifu �= T u for u in the boundary, by Lemmas 2.5
and 2.7, we haveiK(T ,Kρ1) = 1, iK(T ,Ωρ2) = 0. By (b) of Lemma 2.4, we have
Kρ1 ⊂ Kcρ2 ⊂ Ωρ2 sinceρ1 < cρ2. It follows from (3) of Lemma 2.3 thatT has
a fixed pointu1 in Ωρ2 \ Kρ1. Similarly, T has a fixed pointu2 in Kρ3 \ Ωρ2

or on its boundary. When strict inequality holds thenu �= T u for u ∈ ∂Kρ1, so
iK(T ,Kρ1) = 1 andT has a fixed pointu0 in Kρ1. The other assertions are proved
similarly. ✷
Remark 2.9. It is possible to give results for more than two solutions by merely
adding more conditions of the same type to the list in(S1) or (S2). We do not do
state such results leaving them to the reader who may refer to [6] for the type of
result that may be stated.

Remark 2.10. Note that the third solutionu0 ∈ Kρ1 might be zero. Although the
statement and proof of Theorem 2.8 is almost identical to the similar result in
[7] which deals with positive solutions, our new result allows solutions that are
only positive on a subset and may change sign, and indeed this happens in the
differential equation we consider below.

In the particular case whenf (t, u) = g(t)h(u), whereΦg ∈ L1 and h is
continuous, it is possible to give conditions that are more easily verified.

Definition 2.11. We define the following numbers:

m =
(

max
t∈G

∫
G

∣∣k(t, s)
∣∣g(s) ds

)−1

, M =
(

min
t∈G0

∫
G0

k(t, s)g(s) ds

)−1

h−ρ,ρ = sup
u∈[−ρ,ρ]

h(u)

ρ
, h0 = lim sup

u→0

h(u)

|u| , h∞ = lim sup
|u|→∞

h(u)

|u| ,

hcρ,ρ = inf
u∈[cρ,ρ]

h(u)

ρ
, h0 = lim inf

u→0+
h(u)

u
, h∞ = lim inf

u→∞
h(u)

u
.
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Lemma 2.12. We have the following implications:

(1) h0 < m impliesh−ρ,ρ < m for someρ (small) andh−ρ,ρ � m implies(H
�
ρ ).

(2) h∞ < m impliesh−ρ,ρ < m holds for someρ (large).
(3) h0 > M implieshcρ,ρ > cM for someρ andhcρ,ρ � cM implies(H

�
ρ ).

(4) h∞ > M implieshcρ,ρ > cM holds for someρ.

Proof. (1) For ε > 0 there isρε > 0 such thath(u)/|u| < h0 + ε for |u| � ρε

which implies there isρ > 0 such thath0,ρ < m whenh0 < m. Also h0,ρ � m

implies h(u)g(s) � mρg(s) so that(H�
ρ ) holds with φρ(s) = mg(s). (2) Let

β > m. There isr such thath(u)/|u| < β for |u| � r. As h is continuous there
existsγ such thath(u) < β|u|+ γ for all u. Let ρ = γ /(m −β); thenh(u) < mρ

for |u| � ρ. The proofs of(3) and(4) are straightforward. ✷
We now give a more easily checked version of Theorem 2.8.

Theorem 2.13. Let f (t, u) = g(t)h(u) be as above and assume that
∫
G0

Φ(s) ×
g(s) ds > 0. Then Eq.(2.1) has a nonzero solution inK if one of the following
conditions hold:

(H ′
1) There existρ1, ρ2 ∈ (0,∞) with ρ1 < cρ2 such that

h−ρ1,ρ1 � m and hcρ2,ρ2 � cM.

(H ′
2) There existρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that

hcρ1,ρ1 � cM and h−ρ2,ρ2 � m.

Eq. (2.1)has two nonzero solutions inK if there isρ > 0 such that either of the
following conditions hold:

(S′
1) 0 � h0 < m, hcρ,ρ � cM, u �= T u for u ∈ ∂Ωρ and0� h∞ < m.

(S′
2) M < h0 � ∞, h−ρ,ρ � m, u �= T u for u ∈ ∂Kρ andM < h∞ � ∞.

Theorem 2.13 generalises Theorem 2.9 of [5] by allowing discontinuous ker-
nels and generalises Theorem 2.2 of [7] by allowing kernels that are not positive
everywhere hence giving existence of solutions that change sign.

3. Multiple nonzero solutions of Eq. (1.2)

We now investigate the BVP

u′′ + f
(
t, u(t)

)= 0, a.e. on[0,1], (3.1)
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with boundary conditions

u(1) = αu′(η), u(0) = 0, 0< η < 1, α < 1− η. (3.2)

By a solution of this BVP we will mean a solution of the corresponding Ham-
merstein integral equation

u(t) =
1∫

0

k(t, s)f
(
s, u(s)

)
ds. (3.3)

The kernel (Green’s function) in (3.3) is

k(t, s) = t

1− α
(1− s) −

{ αt
1−α

, s � η,

0, s > η,
−
{

t − s, s � t,

0, s > t.

Note that the kernel is discontinuous on the lines = η but does satisfy(C2).
We shall study separately the casesα > 0 andα < 0. In the special caseα = 0,
existence of one positive solution is covered by the results of [8]. The results we
obtain are new.

3.1. The caseα > 0

In this case we shall suppose that 0< α < 1 − η. This is necessary for our
method in order to obtain appropriate lower bounds. We have to exhibitΦ(s), a
subinterval[a, b] ⊂ [0,1] and a constantc < 1 such that∣∣k(t, s)

∣∣� Φ(s) for everyt ∈ [0,1] and almost everys ∈ [0,1],
k(t, s) � cΦ(s) for everyt ∈ [a, b] and almost everys ∈ [0,1].

We show that we may take

Φ(s) = max

{
1,

α

η

}
s(1− s)

1− α
.

Upper bounds
Case 1.s > η. If t < s thenk(t, s) � 0 and

k(t, s) = t

1− α
(1− s) � s(1− s)

1− α
.

If t � s then

k(t, s) = t

1− α
(1− s) − (t − s) = s(1− α) + t (α − s)

1− α
.

The minimum/maximum occur whent = 1 or t = s. Thusk � 0. If s > α then

k(t, s) = s(1− α) + t (α − s)

1− α
� s(1− α) + s(α − s)

1− α
= s(1− s)

1− α
.
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If s � α then

k(t, s) = s(1− α) + t (α − s)

1− α
� s(1− α) + α − s

1− α
= α(1− s)

1− α

<
α

η

s(1− s)

(1− α)
.

Case 2.s � η. If t < s

k(t, s) = t

1− α
(1− s) − αt

1− α
= t (1− s − α)

1− α
.

Whens � 1− α we havek(t, s) � 0 and

k(t, s) � s(1− s − α)

1− α
� s(1− s)

1− α
.

The caseη � s > 1− α cannot occur since we have 0< α < 1− η.

If t � s then

k(t, s) = t

1− α
(1− s) − αt

1− α
− (t − s) = s(1− t − α)

1− α
.

If t � 1− α thenk(t, s) � 0 and

k(t, s) � s(1− t)

1− α
� s(1− s)

1− α
.

If t > 1− α thenk(t, s) � 0 and

−k(t, s) = s(−1+ t + α)

1− α
� αs

1− α
<

s(1− η)

1− α
� s(1− s)

1− α
.

Lower bounds
We show that we may take an arbitrary[a, b] ⊂ (0,1− α).
Case 1.s > η. If t < s then

k(t, s) = t

1− α
(1− s) � a

(1− s)

1− α
� a

s(1− s)

1− α
.

If t � s

k(t, s) = s + αt − αs − st

1− α
� s

(1− b)

1− α
� (1− b)

s(1− s)

1− α
.

Case 2.s � η. If t < s then

k(t, s) = t
1− s − α

1− α
� a

(1− η − α)

1− α
� a(1− η − α)4

s(1− s)

1− α
.

If t � s then

k(t, s) = t

1− α
(1− s) − αt

1− α
− (t − s) = s − st − αs

1− α

� s(1− b − α)

1− α
� (1− b − α)

s(1− s)

1− α
.
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The conclusion is that we may take

c = min{4a(1− η − α), (1− b − α)}
max{1, α/η} .

We state a result whenf (t, u) = g(t)h(u); of course, there is a more general result
analogous to Theorem 2.8.

Theorem 3.1. Let [a, b] ⊂ (0,1− α) and suppose that
∫ b

a
Φ(s)g(s) ds > 0. Let

c be as given above. Letm,M be as defined previously. Then for0 < α < 1 − η

the BVP(3.1), (3.2)has at least one nonzero solution, positive on[a, b], if either

(h′
1) 0� h0 < m andM < h∞ � ∞, or

(h′
2) 0� h∞ < m andM < h0 � ∞,

and has two nonzero solutions, positive on[a, b], if there isρ > 0 such that either

(S′
1) 0 � h0 < m, hcρ,ρ � cM, u �= T u for u ∈ ∂Ωρ , and0 � h∞ < m, or

(S′
2) M < h0 � ∞, h−ρ,ρ � m, u �= T u for u ∈ ∂Kρ , andM < h∞ � ∞.

We give a simple example to illustrate the theorem.

Example 3.2. Setf (t, u) ≡ 2. In this case the solution is

u(s) = −s

(
s − 1− 2αη

1− α

)
.

For η � 1/2 andη + α < 1, the solution is actually positive on all of[0,1]. For
η > 1/2 the solution is negative fort > t0 = (1− 2αη)/(1− α), but is positive on
(0,1− α).

3.2. The caseα < 0

To simplify the calculations we write−β in place ofα, so thatβ > 0. We show
that for these BCs we can take

Φ(s) = max

{
(1− η + β)

1− η
,
β

η

}
s(1− s)

1+ β
.

Upper bounds
Case 1.s > η. If t < s thenk(t, s) � 0 and

k(t, s) = t

1+ β
(1− s) � s(1− s)

1+ β
.

If t � s then

k(t, s) = s − βt + βs − st

1+ β
� s − βs + βs − st

1+ β
= s(1− t)

1+ β
� s(1− s)

1+ β
.
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If t � s(1+ β)/(β + s), k(t, s) � 0 and we are done. Ift > s(1+ β)/(β + s) we
have

−k(t, s) = ts + βt − s − sβ

1+ β
� s + β − s − sβ

1+ β
� β

η

s(1− s)

1+ β
.

Case 2.s � η. Note that in this case(1 − s)/(1 − η) � 1. If t < s then
k(t, s) � 0 and

k(t, s) = t

1+ β
(1− s) + βt

1+ β
= t

1− s + β

1+ β

� s(1− s + β)

1+ β
� s(1− s + β(1− s)/(1− η))

1+ β

� (1− η + β)

1− η

s(1− s)

1+ β
.

If t � s thenk(t, s) � 0 and

k(t, s) = t

1+ β
(1− s) + βt

1+ β
− (t − s) = s − st + βs

1+ β

� s(1− s + β)

1+ β
� (1− η + β)

1− η

s(1− s)

1+ β
.

Lower bounds
We show that we may take an arbitrary[a, b] ⊂ (0, η].
Case 1.s > η. If t < s then

k(t, s) = t

1+ β
(1− s) � a

(1− s)

1+ β
� a

s(1− s)

1+ β
.

Since we takeb � η the (awkward) caset � s does not occur.
Case 2.s � η. If t < s then

k(t, s) = t − st + βt

1+ β
= t

1− s + β

1+ β
� a

s(1− s)

1+ β
.

If t � s then

k(t, s) = s − st + βs

1+ β
� β

s

1+ β
� β

s(1− s)

1+ β
.

The conclusion is that we may take

c = min{a,β}
max{(1− η + β),β/η} .

Remark 3.3. In this case it is possible to take a somewhat largerb, namely any
b < b0 whereb0 := η(1 + β)/(η + β), but the correspondingc is more com-
plicated.



42 G. Infante, J.R.L. Webb / J. Math. Anal. Appl. 272 (2002) 30–42

For the case whenf (t, u) = g(t)h(u) we have the following result.

Theorem 3.4. Let [a, b] ⊂ (0, η] and suppose that
∫ b

a
Φ(s)g(s) ds > 0. Let c be

as given above. Letm,M be as defined previously. Then forα < 0 the BVP(3.1),
(3.2) has at least one nonzero solution, positive on[a, b], if either (h′

1) or (h′
2)

of Theorem3.1 is satisfied. There are two nonzero solutions, positive on[a, b], if
there isρ > 0 such that either(S′

1) or (S′
2) of Theorem3.1holds.

The following example illustrates the result.

Example 3.5. Let g(t) = 1 and

h(u) =
{

2 if |u| � 3/m,

up for u very large,

wherep > 1. Thenh0 = ∞ andh∞ = ∞ and choosingρ with 2/m < ρ < 3/m

we haveh−ρ,ρ < m. Hence(S′
2) holds and the BVP has two nonzero solutions

which are positive on(0, η], the ‘small’ solution being as written in Example 3.2.
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