CHARACTERISTICS OF NEOINTIMAL HYPERPLASIA COMPARED WITH DES AND BMS IN EARLY- AND LATE-PHASE ANALYSIS OF OPTICAL COHERENCE TOMOGRAPHY

Kenji Goto, Hideo Takebayashi, Hideki Nishiyama, Yasukazu Fujiwara, Yuetsu Kikuta, Katsumasa Sato, Sunao Kodama, Masahito Taniguchi, Shigeki Hiramatsu, Seiichi Haruta, Fukuyama Cardiovascular Hospital, Fukuyama, Japan

Background- The features of neointimal hyperplasia (NIH) after BMS or DES implantation have not yet been fully characterized. We sought to examine the neointimal characteristics of bare-metal stents (BMS) and drug-eluting stents (DES) by using optical coherence tomography (OCT) focusing on timing of restenosis.

Methods- The study included 47 consecutive patients undergoing target lesion revascularization for in-stent restenosis evaluated by OCT during the early-phase (<1 year, n=26) and late-phase (>2 years, n=21) after stent implantation. NIH was categorized into 1) normal neointima, characterized by a homogeneous or layered tissue with predominant high backscatter, 2) layered structure with significant signal attenuation, or 3) lipid-laden intima, with marked signal attenuation and a diffuse border.

Results- Normal neointima with a predominant high backscatter was observed in the early phase, regardless of the stent type (BMS 94% vs. DES 75%, p=ns). Lipid-laden intima was frequently found in the late-phase after BMS implantation, compared with the early-phase after BMS implantation or the late-phase after DES implantation (64% vs. 0% vs. 10%, respectively; p <0.05). In contrast, layered tissue with significant signal attenuation was detected in 60% of patients in the late phase after DES implantation.

Conclusion- The different pattern of NIH according to the different stents and phases could help to understand the mechanism of atherosclerotic progression of neointima.