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Abstract 

The aim of this paper is to propose an augmented framework for verifying and validating the static aspect of safety critical 
systems by analysing the UML class diagrams and the relationship between them. Since UML is a semi formal language 
which is provn to ambiguities due to its various graphical notations, hence Formal analysis of UML class diagram is 
required. Moreover, class diagram play an important role in system designing phase especially in safety critical systems.  
Any ambiguity or inconsistency in design can result in potential failure. Formal methods are the mathematical tools and 
methodology which are sandwiched at various stages of software development process to ensure the correctness, consistency 
and completeness of software artifacts such as requirement specifications, design etc. In this article, Z notation is used for 
the purpose of analysis formally and later on verified by the Z/EVES tool.  
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1.  Introduction 

Nevertheless, in software development process, all the phases have their own importance, but the requirement 
and implementation phase are most critical one. Unified modelling language which is a semi formal modelling 
language, used to analyse requirements and visualise the design of software artefacts. Although UML is used as 
a de facto standard for designing the software, but due to semiformal in nature, chances are that ambiguities 
might be introduced.  Some of the issues with UML are mentioned below [2]: 

 1) UML structures are based on graphical notations and are prone to causing errors,  
2) The hidden semantics of UML allows ambiguities at design level, 
 3) The same system needed can be described by multiple notations or diagrams which may cause 
inconsistencies or ambiguities  
 4) UML model may have multiple interpretations 

One way of resolving these issues is to use a formal model in integration with UML. Formal methods use the 
discrete mathematics which includes set theory, first order predicates, logics and graphs.  
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The lack of preciousness in UML semantics can be covered by the rigorous mathematics used by the formal 
methods by integrating UML with formal model, the expressiveness of graphical notation increases which 
ultimate enhance the modeling power of UML diagrams especially at analysis and designing part. The UML 
class diagrams play an important role at designing part of system. By making formal model of UML class 
diagrams, inconsistency and ambiguities can be reduced to a large extent which will ultimately reduced the cost 
of re implementation due to incompleteness and ambiguities in system design specifications. However due to 
having rigorous mathematics use, formal methods are not warm welcomed by industry’s peoples, although 
formal methods are highly recommended for safety critical real time application [3] [7].  Moreover, formal 
methods are equipped with tool, which can be used for both the prospective i.e. for describing a system and later 
on for analyzing their functionalities. Although, formal methods do not guarantee correctness, but their use 
emphasize to increase understanding of a system by divulging errors or facets of incompleteness that might be 
expensive to correct them at any later point of time. 
Various formal languages are used for this purpose like VDM, B-Methods, Petri Net, and Z Notation etc.  
 Z notation is a model based formal specification language which uses the set theory and first order predicates 
and having a strong tool support. In this paper, the relationships of the UML class diagrams are recognized and 
mapped to Z schema. The class diagram is composed of classes and their relations with other classes in the 
system.  
The organization of the rest paper is as follow: In Section 2, Literature review has been discussed. Methodology 
and tool used are briefly described in section 3. In section 4, the proposed work i.e. integration of Class Diagram 
and Z notation is given. Result analysis is done by formal model in section 5. In last, the section 6, wind up with 
conclusion and future scope.  

2. Literature Review 

A lot of work exists in the field of the integration of UML with formal methods [4-9] [10] [31]. In [4], a 
framework is proposed which explain how by using Z notation in inventory system, the design and development 
can improve the quality effectively and reduce cost. A comparative case study is done for formal languages i.e. 
Z Notation, UML, SDL, LOTOS and UML and compared their key characteristics by designing a particular 
system for each formal language in article [5].in paper [6], a tool is developed which takes UML class diagram 
in the form of petal files, ASCII format files generated by Rational Rose, and evaluates it automatically and 
produces a list of comments. In an article [7], the safety critical systems are modelled by combine two formal 
language i .e. Z notation and Perti net.  The paper [8] advocate a Formal Approach to Validating and Verifying 
Functional Design for Unmanned Aerial System Remote Sense, Department of Defence Federal Initiative, Joint 
Unmanned Aircraft Systems Center of Excellence at Creech Air Force Base, Nevada, DoD Contract Number 
FA4861-07-R-C003 which is a complex safety critical system. [15] Gives an overview of tool RoZ in which the 
transition between the UML world and the Z world: from an annotated class diagram, it automatically generates 
a complete Z specification. In paper [20], a comparative study has been done for various formal languages based 
upon various parameters. Some more related work mentioned in [9] [16] [17] [18] [19] [10-14]. 

3. Methodology and Tool 

The proposed framework is shown in figure 1:  

The methodologies used in this paper are UML and Z notation which are disused as follow: 

3.1 UML: Unified Modeling Language [1] is the de-facto standard for analysis, constructing and visualizing the 
artifacts in object oriented paradigm.  UML diagrams are broadly divided into two categories which further 
consist of fourteen diagrams as: 

 a. Structural Diagrams: Composite structure diagram, Deployment Diagram, Package diagram, Profile 
diagram, Class diagram, Object diagram, Component diagram 

b. Behavioral Diagram: State machine diagram, Communication diagram, Use case diagram, Activity diagram, 
Sequence diagram, Timing diagram, Interaction diagram. 
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The UML class diagram comes under the category, Structural Diagrams which in turn represents the static view 
of system. As Class diagram represents the object orientation view of a system therefore it is widely used at 
construction. Any ambiguities at design level can result into hazard. In this paper, a formal model for class 
diagram is proposed to avoid such ambiguities. 

                                                                                  UML MODEL    

 

Initial specification                                                                                                            Formal Transformation 

  

                                                                                                                                                                 Formal        

                                                                                                                                                                   Model 

                                     Update/Revise UML Model 

 

  

                                                

                                                               YES 

                                                                                                      NO 

 

 

Fig 1: UML+Z  Framwork for validating the static aspect 

3.2 Formal method 

Formal methods [24-28] are methodologies based upon mathematical techniques and equipped with tool for 
enhancing the quality of system or software by incorporating accuracy, completeness, and consistency in 
specifications. In other words, formal methods provide a structure which help engineers to specify, develop and 
verify the system in a systematic way. Formal methods are grouped into two types: 

Model-oriented methods: In model oriented methods , the system’s specification are defined as a model by using 
mathematical notion such as set , relation, sequences and functions.  VDM, B, and Z notation, Petri net, 
Communicating Sequential processes (CSP), Calculus of Communicating Systems (CCS), and I/O automata. 

Property-oriented methods: On the other hand, the property oriented methods make use of axioms to satisfy the 
system properties. OBJ, LOTOS is formal languages that belong to this category. 
The Z notation [29-30] is used for the purpose of formal analysis of class diagrams in this paper. 
The use of formal methods in system development is derived by the fact that proper analysis by mathematical 
theorems leads to the correctness, consistency and completeness in proposed system’s specifications. Moreover, 
the relationship between class diagram and Z notation is found good as classes in class diagram can be described 
in terms of relationship between schemas of Z. The generic schema structure is shown in figure 2:                                                  

Class Diagram Sequence Diagram

(Static View) (Dynamic View)

Z Schema
Formation

Error
Occurred

Code Construction
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 Schema Name  
Variables Declared 
 

Invariant 

(relationship between the values of variables 
 

Fig. 2: Z Notation Schema Structure 

The Z specification is further verified with the tool Z/EVES. By using Z/EVES, following can be done: 1) 
syntax and type checking, 2) schema expansion, 3) precondition calculation, 4) domain checking, and 5) general 
theorem prove.  

4. Formal Model of Class Diagram 

The class diagram [21] is a collection of classes and the existing relationship between these classes.  A class 
must have attributes and type of attribute can be public, private or protected. Therefore the set of all classes, 
type and relation are considered as basic type of specification.  .   

[N, Type, Rel]                                      

 Class  
name : N
type: Type 

rel: Rel 
 

Type::= base class    subclass 
Attribute Type::= public     private    protected 

The collection of classes is represented by the schema Class Diagram which composes of three variables i.e. 
base class, sub class and relat. The mapping relat from base class to power set of Class describes types of the 
class. 

 ClassDiagram  
Base class: Class 

Subclass: S Class 

relat: Class S Class 
 

base class class class subclasses 

base class  dom subclasses  subclasses 

 c: Class c dom subclasses c classes c: Class c classes 

 c base class  c subclass c dom subclasses  base class dom subclasses 
 

 Since the below part of central line of schema are invariants, therefore the invariants in class diagrams are: 

(i) The base class is not in the power set of classes (ii) The base class and the subclass should not be identical 
(iii) The base class should not belong to the domain of subclasses to prove that it is not a subclass (iv) The 
power set of classes is non-empty (v) for any class s. t it lies in domain of subclasses, it belongs to the collection 
of classes.  

To move from one class to another, relation must be established between the base class and the subclasses.  The 
relation consists of three components i.e.  type, cardinality and location. Location is the values of those two 
classes between whom the relation exists.  The relation is defined by a schema Relationship in Z which consists 
of three variables that are type, cardinality and location as given blow: 
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  Relation Name::=association  aggregation    generalization     dependency  

Cardinality::= (0 ....1)  (1.....1)    (1*......n) 

Location::= (Base class to subclass)   (subclass to subclass) (base class to base class) (subclass to sub class) 

                                           

 Relation  
relname : RN 

cardinality: Cardinality 

location: Location  
 

The Relationship between the different classes is represented by the schema Relationship. The relationship 
function takes a class and relation and returns the same or a new class. 

The set of different type of relation is represented by the schema RelName which further consist of 
ClassDiagram and Relationship schemas. . The ClassDiagram presents the set of classes and Relationship 
presents all possible relations among the classes. The invariants of schema Relationship are following: 

(i) For every relation in the set all possible relationship, there exits two classes and relation between these 
classes s. t. The relname is in the set of relation (ii) for any two classes and a relation over the classes, there 
exists relation name (relname), cardinality and location s. t. the relation is in the domain of relationship and must 
be mapped from one class to another after once the relation is defined. 

 Relationship  
relname: RN 

relationship: Class    Relation  Class 
 

 re: RN re relname

 c1, c2 : Class ; rel : Relation, (c1, rel) dom relationship 

 c2  ran relationship  relationship (c1, rel) = c2  re = rel  relanme  re ran rel location 

 re: RN re relname  c3, c4: Class; rel: Relation 

(c3, rel)  dom relationship  c4 ran  relationship  relationship (c3, rel) = c4 
 re = rel  relanme  re ran rel location 

 

 The set of relation type of the class diagram is represented by the schema RelName which consists of 
ClassDiagram and Relationship schemas. The ClassDiagram corresponds to set of classes and Relationship 
corresponds to all the possible relations among the classes defined in class diagram. 

 RelName  
ClassDiagram 

Relationship 
 

c1 : Class c1 classes  classes  c1  Baseclass 

 c2 : Class; rel: Relation (c2, rel)  dom relationship  c1 = c2 
 c3 : Class; ; rel: Relation (c3, rel)  dom relationship  c4 : Class c4 classes  c3 = c4 
 c5 : Class; rel : Relation (c5, rel) dom relationship  c5  type  Baseclass 

 c6: Class c6  classes  relationship (c5, rel) = c6
 

 In the Relationship diagram, it is possible that when a relation is exits, it results in to the same class for 
example, the Association Relation. The Equivalence property for Association relation is shown here in this 
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section one by one. A relation is said to have an equivalence property if and only if it has 1) Reflexive, 2) 
Symmetric and 3) Transitive property. Therefore, there exists a set of classes over which the equivalence 
relation is satisfied. The reflexive relation over the set of classes is defined in terms of the schema 
ReflexiciveRelations. It takes the Relation schema as input and verifies the reflexive property over the 
association relation. The invariants in the schema Reflexcive Relation are as follow: 

(i) For every subclass, there is a relation which can be mapped over it. (ii) For every class with a relation, must 
be in the domain relationship. (iii) For every subclass there is a relation who acts on this subclass and results the 
same or a new subclass.  

 Reflexcive Relation  
 Relation 

refeRel: Class  Class 
 

 c: Class; rels: Location c  classes ran rels  relation 

(location, location)  refeRel (  rel: Relation (c, rel)  dom relationship 

relationship (c, rel) = c  1  # location  rel. relname = location 1  ( x : N, x 1…..# location -1 
1+ 1  # location (rel, location, x)  appliesto  location (x+1) = rel  class x))

 

 
A Symmetric relation R is defined over a set X if for all x, y in the set X if (x, y) is in the relation R then (y, x) is 
also in R. In class diagrams, it is possible that when a base class to subclass or any subclass to subclass, the 
order in which the classes are connected and control progress from one class C1 to other C2 subsequently 
symmetry forces and there exists an inverse of the order of connected classes which results C2 to C1. The 
schema Symmetric Relation defines the symmetric relation over the set of relation of class diagram which 
captures the schema Relation and validates the symmetric property.  

The invariants for symmetric relation are as follow: 
 
(i) For any two classes c1 and c2, and a sequence of location which move the state c1 to c2 after mapping in 
class diagram, for another class c3, and a sequence of locations which move the class c2 to class c3, there exists 
another sequence of relation which is amended form of the above sequences and it proceeds the class c1 to c3.  

 Symmetric Relation  
Relation 

symRel: Class Class
 

 c1, c2: Class; loc1, loc2 : Location c1  classes  c2  classes ran loc1  relation 

ran loc2  relation (loc1, loc2)  symRel 

(  rel1, rel2: Relation (c1, rel1)  dom relationship (c2, rel2) dom relationship  relationship  

(c1, loc1) = c2  relationship (c2, rel2) – c1  1  # loc1  1  #loc2  rel1  location = loc1 
( k:N, k 1….#loc1-1 ((rel1. Location, k)  appliesto loc1 (k+1) = rel1. Location = loc2   

( k: N, k 1….# loc1-1 ((rel2.location,k)  appliesto  loc2(k+1) = rel2.locationk))) 
 

 A relation R over X is said to be transitive if for any i, j, k in X, and (i, j) in R and (j, k) in R the order pair (i, k) 
in the relation R. To show transitivity in class diagrams, if a relation is mapped from one class C1 to another 
class C2 and then a new relation is mapped from C2 to C3 then an amalgamated relation can be mapped from 
C1 to C3 which implies that the transitive relation exits over the association relations in class diagram. The 
formal definition of transitivity over the set of relations of the class diagram is defined by using the schema 
Transitive Relation which includes the schema Relation for verification of transitivity. 
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 Transitive Relation  
Relation 

transRel: Class  Class 
 

c1, c3: Class; loc1, loc2: Location, c1  classes  c3  classes 1 # loc1  1  #loc2  
 ran loc1  location ran loc2  location (loc1, loc2) transRel 

(  c2:Class; rel1, rel2: Relation, c2 classes (c1, rel1)  dom relationship (c2, rel2)  dom relationship 

relationship (c1, rel1) = c2  relationship (c2, rel2) = c3  rel1. Relname= loc1  ( k:N, k 1….#loc1-1 
((rel1.location,k)  appliesto  loc1(k+1) = rel. location k)) 
 rel2. Relname= loc2  ( k:N, k 1….#loc2-1 ((rel2.location,k)  appliesto  loc2(k+1) = rel. location k))

 

 The list of invariants is as follow: 

(i) For any two classes c1 and c2, and a sequence of relations which maps the class c1 to c2 in the class diagram, 
for other state c3, and a sequence of relations which maps the class c2 to class c3, there exists one more 
sequence of relations which is aggregation of the above sequences and their maps from class c1 to c3. 

5. Case Study & Result Analysis 

The Z specification of class diagrams are written by using the schema notion [30]. Further, the specifications are 
verified for syntax and consistency by the computer tool Z/EVEV [22]. Z/EVES present two type of interface: 
Graphical user interface and the Command line interface [22] [29-30]. In this paper, we used the Graphical user 
interface for verifying and composing the specification which were written in Z notation language. Moreover, 
Z/EVES propose two mode of operations i.e. “Eager” and “Lazy”. In our article we use the “Eager” mode since 
in this mode a paragraph is checked if and only if all the previous ones are checked which is highly 
recommended for safety critical real time application. The snapshots of results of formal analysis of class 
diagram are shown in figure 3. 
The left most first column is for syntax checking and the second left most columns is for correctly implementing 
the proof. If the values in both the column is Y, that mean the given z specification having correct syntax and 
the proof is also correctly implemented.   
Moreover, domain checking is also provided by the Z/EVES tool. In context to domain checking, Z/EVES allow 
one to write only meaningful statements. In Z/EVES the action point for proof provided by theorem prover to 
perform the domain checking may be from one of the following:  reduce, normal, quantifier, case and equality. 
The action point in this paper is “prove by reduce”.  

 

Fig 3: The snapshots of formal analysis of Class diagrams with Z/EVES tool
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To implement this formal model however, Road traffic management system (RTMS) is taken as a case study in 
this paper. The UML class diagram of Road traffic management system is shown in figure 4: 

 

Fig 4: UML Class Diagram of road traffic management system 

The main classes are: Traffic Police, Vehicle Owner Admin. The Vehicle owner class is considered for analysis 
here.  The schema consists of two variables: 

Vowner  is the set of names with RTMS registered and  
registVowner is the function which when implemented on a particular Vehicle Owner name, provides 
the unique registration number associated with the person.  

 In fig.5, the schema for Vehicle Owner with basic data type is given: 

[Name, Seqchar] 

 VehicleOwner  
Vowner:  Name 

Age:   
Phno: Seqchar 

registVowner: Name Seqchar 
 

Vowner = dom registVowner 
 

                                          Fig 5: State Space of Vehicle Owner schema  

In VehicleOwner schema, we define a partial function named “registVowner” which maps the corresponding 
vehicle owner with a registration number i.e.     

registVowner: Name Seqchar 

Moreover, “registVowner” is a one-to-one function which maps vehicle Owner name with registration number. 
Since it is a One-to-one function, therefore every Vehicle Owner has a unique registration number and 
consequently, would be no ambiguity.  
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 The schema of Vehicle Owner is further verified by Z/EVES tool in fig. 5.  The left most columns’ value “Y” 
shows that the schema is implemented using correct syntax. If there would be any syntax error, it shows “N” 
instead of “Y” in syntax column [22]. Z/EVES also provide the schema expansion facility which help to 
understand the abstract semantics of schema which is shown in figure 6:

 

Fig 6: Snapshot of Formal Analysis of Vehicle owner with Z/EVES tool

The result of analysis for syntax and domain checking is shown in Table 1 as follow: 

Table1. Result of analysis by Z/EVES Toolset 

Schema Name Syntax & Type checking Domain Checking Proof Reduction 
Class Y Y Y Y 
Class Diagram Y Y Y Y# 
Relation Y Y Y Y 
Relationship Y Y N Y# 
Reflexcive Relation Y Y Y Y 
Symmetric Relation Y Y Y Y 
Transitive Relation  Y Y Y Y 
 

The “#” symbol is used to show that the proof is done by reduction action point   one of the facility available in 
Z/EVES toolset 

6. Conclusions & Future work 

The Behavioural specification, i.e. describing how things change is the core characteristic of Z specification but 
at the same times the loss part of UML. In UML, we can articulate state changes, collaboration, and workflow, 
but we cannot illustrate how objects change in terms of transformations. The positive part of UML is simplicity 
and the negative side of Z is a lack of graphical notation. Therefore, combining the two approaches is required 
for a better understanding of proposed system to cover ambiguity, identifying consistency and enhancing 
completeness. The UML class diagrams having their importance in designing phase of system development. The 
formalization of UML class diagrams for syntax and hidden semantics is indeed. Further, the formal model is 
verified by Z/EVES toolset which in turn provide the facilities of schema expansion, domain checking, syntax 
and type checking. In future, the formal model of sequence diagram will be proposed in order to capture the 
dynamic aspect of system.  
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