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Abstract

In the present paper combinatorial identities involving q-dual sequences or polynomials with
coefficients that are q-dual sequences are derived. Further, combinatorial identities for q-binomial
coefficients (Gaussian coefficients), q-Stirling numbers and q-Bernoulli numbers and polynomials
are deduced.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Given a sequence a0, a1, a2, . . . , an, . . . of elements of a commutative ring R (for
example, the complex numbers, polynomials or rational functions), one usually describes
as the Euler–Seidel matrix associated with (an) the double sequence (ak

n) (n ≥ 0, k ≥ 0)
given by the recurrence [7]

a0
n = an, ak

n = ak−1
n + ak−1

n+1 (k ≥ 1, n ≥ 0).

The sequence (a0
n) of the first row of the matrix is the initial sequence. The sequence (an

0 )

of the first column of the matrix is the final sequence. Such a matrix is equivalent to the
table obtained by computing the finite difference of consecutive terms of (an

0 ) and iterating
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the procedure. One passes from the initial sequence to the last one and conversely through

an
0 =

n∑
i=0

(n

i

)
a0

i ⇐⇒ a0
n =

n∑
i=0

(−1)n−i
(n

i

)
ai

0. (1)

If one sets an = (−1)na0
n and a∗

n = (−1)nan
0 , then the above relations can be written as

a∗
n =

n∑
i=0

(−1)i
(n

i

)
ai ⇐⇒ an =

n∑
i=0

(−1)i
(n

i

)
a∗

i . (2)

In [12] the sequence (a∗
n ) is called the dual sequence of (an). It is well known that if

an = (−1)n Bn , where (Bn) = (1,−1/2, 1/6, 0,−1/30, . . .) is the sequence of Bernoulli
numbers, then a∗

n = an , that is ((−1)n Bn) is self-dual. Generalizing the results of
Kaneko [10] and Momiyama [11] on Bernoulli numbers, Sun [12] has recently proved
some remarkable identities on dual sequences. Other generalizations of Kaneko’s identity
have been obtained by Gessel [9] using umbral calculus.

The aim of this paper is to give a q-version of Sun’s results in [12]. In the last two
decades there has been an increasing interest in generalizing the classical results with a
generic parameter q , which is the so-called phenomenon of “q-disease”. As regards the
Euler–Seidel matrix, Clarke et al. [6] have given a q-analog of (1) with application to
q-enumeration of derangements.

We shall need some standard q-notation, which can be found in Gasper and Rahman’s
book [8]. The q-shifted factorial (a; q)n is defined by (a; q)0 = 1 and

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1)

if n is a positive integer. For k ∈ Z the k-integer [k]q is defined by [k]q = 1−qk

1−q , so

[−k]q = −q−k[k]q . For integer k, the q-binomial coefficient
[

α
k

]
is defined by

[
α
k

] = 0 if
k < 0 and[α

k

]
= (1 − qα)(1 − qα−1) · · · (1 − qα−k+1)

(q; q)k

if k is a positive integer. Let (an) be a sequence of a commutative ring. We call the sequence
(a∗

n) given by

a∗
n =

n∑
i=0

[n

i

]
(−1)iai q

(
i
2

)
(3)

the q-dual sequence of (an). By Gauss inversion [1, p. 96] we get

an =
n∑

r=0

[n

r

]
(−1)r a∗

r q

(
r+1

2

)
−nr

. (4)

We will need the following q-analog of the binomial formula [3, p. 36]:

(z; q)n =
n∑

j=0

[
n

j

]
(−1) j z j q

(
j
2

)
, (5)
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and the q-Chu–Vandermonde formula [8, p. 354]:

2Φ1

[
q−n, a

c
; q, q

]
:=

∞∑
k=0

(q−n; q)k(a; q)k

(c; q)k

zk

(q; q)k
= (c/a; q)n

(c; q)n
an. (6)

The following is our basic theorem.

Theorem 1. For k, l ∈ N the following identities hold true:

l∑
j=0

[
l

j

]
(−1) j a∗

k+ j+1

[k + j + 1]q
q

(
j+1

2

)
−l(k+ j+1) +

k∑
j=0

[
k

j

]
(−1) j al+ j+1

[l + j + 1]q
q

(
j+1

2

)

= a0

[k + l + 1]q

[
k+l

k

] , (7)

l∑
j=0

[
l

j

]
(−1) j a∗

k+ j q

(
j+1

2

)
−l(k+ j ) =

k∑
j=0

[
k

j

]
(−1) j al+ j q

(
j
2

)
, (8)

l+1∑
j=0

[
l + 1

j

]
(−1) j+1[k + j + 1]qa∗

k+ j q

(
j
2

)
−l(k+ j )−k

=
k+1∑
j=0

[
k + 1

j

]
(−1) j [l + j + 1]qal+ j q

(
j−1

2

)
. (9)

The above theorem is a q-analog of Theorem 2.1 in Sun [12]. Note also that Eq. (8) was
also a q-analog of Theorem 7.4 in Gessel [9].

The rest of this paper will be organized as follows: we prove Theorem 1 in Section 2
and present a q-analog of Sun’s main theorem in Section 3. In Section 4, we present some
interesting examples as applications of our Theorems 1 and 2.

2. Proof of Theorem 1

Plugging (3) into the first sum of the left-hand side of (7), we have

LHS = a0 B +
k∑

j=0

[
k

j

]
(−1) j al+ j+1

[l + j + 1]q
q

(
j+1

2

)
+ C, (10)

where

B =
l∑

j=0

[
l

j

]
(−1) j q

(
j+1

2

)
−l(k+ j+1)

[k + j + 1]q
,

and

C =
l∑

j=0

[
l

j

]
(−1) j q

(
j+1

2

)
−l(k+ j+1)

[k + j + 1]q

k+ j+1∑
i=1

[
k + j + 1

i

]
(−1)iai q

(
i
2

)
.

It is known (see [13] for further applications) that
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1

(x + a0)(x + a1) · · · (x + al)
=

l∑
j=0

l∏
i=0
i �= j

(ai − a j )
−1

x + a j
. (11)

Setting x = −q−k−1 and ai = qi (0 ≤ i ≤ l) in (11) we obtain

l∑
j=0

(−1) j q

(
j+1

2

)
−l(k+ j+1)

(q; q) j(q; q)l− j (1 − qk+ j+1)
= 1

(qk+1; q)l+1
. (12)

It follows that

B = (1 − q)(q; q)l

(qk+1; q)l+1
= 1

[k + l + 1]q

[
k+l

k

] .

Exchanging the order of summation we can rewrite C as follows:

C =
k+l+1∑

i=1

(−1)i ai

[i ]q
q

(
i
2

) l∑
j=i−k−1

(−1) j
[

l

j

] [
k + j

i − 1

]
q

(
j+1

2

)
−l j−(k+1)l

=
k∑

i=1

(−1)i ai

[i ]q
q

(
i
2

) [
k

i − 1

]
2Φ1

[
q−l , qk+1

qk−i+2 ; q, q

]
q−(k+1)l .

Applying the q-Chu–Vandermonde formula (6) we obtain

C =
k∑

i=1

(−1)i ai

[i ]q
q

(
i
2

) [
k

i − 1

]
(q−i+1; q)l

(qk−i+2; q)l

=
k∑

i=1

(−1)i+l
[

k

i − l − 1

]
ai

[i ]q
q

(
i
2

)
+
(

l+1
2

)
−il

=
k∑

j=0

[
k

j

]
(−1) j+1 al+ j+1

[l + j + 1]q
q

(
j+1

2

)
.

Substituting the values of B and C into (10) yields (7).
To derive (8) and (9) from (7) we define the linear operator δq by

δq(an) = −q1−n[n]qan−1 for n ≥ 0.

Then δq(a∗
n) = [n]qa∗

n−1. Indeed,

δq(a∗
n) =

n∑
i=0

[n

i

]
(−1)iδq(ai )q

(
i
2

)
=

n∑
i=0

[n

i

]
(−1)i+1q1−i [i ]qai−1q

(
i
2

)

= [n]q

n∑
i=0

(−1)i
[

n − 1

i − 1

]
(−1)i−1ai−1q

(
i−1

2

)
= [n]qa∗

n−1.

Now, applying δq to (7) yields (8). Furthermore, replacing k by k + 1 and l by l + 1 in (8)
then applying δq on both sides yields (9).
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Remark. We can also prove (8) and (9) directly by using the q-Chu–Vandermonde
formula.

3. A q-analog of Sun’s main theorem

In this section, we assume that x , y and z are commuting indeterminates. Define [x, y]n

by [x, y]0 = 1 and

[x, y]n =
n∑

i=0

[n

i

]
xi yn−i

for positive integer n. So [x, y]n = (x + y)n when q = 1. Similarly

[x, y, z]n = [x, [y, z]]n =
n∑

i=0

[n

i

]
xi [y, z]n−i =

∑
i, j,k≥0

i+ j+k=n

[n]q !
[i ]q ![ j ]q![k]q ! xi y j zk,

and hence [x, y, z]n is a symmetric polynomial of x, y, z and [x, y, z]n = (x + y + z)n

when q = 1.
Like the definition of Bernoulli polynomials, we introduce

An(x) =
n∑

i=0

(−1)i
[n

i

]
ai q

(
i
2

)
xn−i and A∗

n(x) =
n∑

i=0

(−1)i
[n

i

]
a∗

i xn−i .

The following is our q-analog of the main theorem of Sun [12, Th. 1.1].

Theorem 2. Let k, l ∈ N; then

(−1)l
l∑

j=0

[
l

j

]
xl− j

A∗
k+ j+1(z)

[k + j + 1]q
q

−kj−
(

k+1
2

)

+ (−1)k
k∑

j=0

[
k

j

]
xk− j Al+ j+1([1,−z,−x])

[l + j + 1]q
q

(
j+1

2

)
−k(l+ j+1)

= a0(−x)k+l+1

[k + l + 1]
[

k+l
k

] . (13)

(−1)l
l∑

j=0

[
l

j

]
xl− j A∗

k+ j (z)q
k(l− j )

= (−1)k
k∑

j=0

[
k

j

]
xk− j Al+ j ([1,−z,−x])q

(
k− j

2

)
. (14)

(−1)l+1
l+1∑
j=0

[
l + 1

j

]
xl+1− j [k + j + 1]q A∗

k+ j (z)q
(k+1)(l− j )+1

= (−1)k
k+1∑
j=0

[
k + 1

j

]
xk+1− j [l + j + 1]q Al+ j ([1,−z,−x])q

(
k− j

2

)
− j

. (15)
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Proof. We derive from (4) and (5) that

An([1,−x]) =
n∑

i=0

[n

i

]
(−1)i ai [1,−x]n−iq

(
i
2

)

=
n∑

i, j,s≥0

[n

i

] [ i

j

]
(−1)i− j a∗

j

[
n − i

s

]
(−x)sq

(
i− j

2

)

=
n∑

j=0

[
n

j

]
a∗

j

∑
i,s≥0

[
n − j

s

]
(−1)s xs

[
n − j − s

i − j

]
(−1)i− j q

(
i− j

2

)

= (−1)n
n∑

j=0

[
n

j

]
(−1) j a∗

j xn− j

= (−1)n A∗
n(x), (16)

and

An([1,−z,−x]) =
n∑

i=0

[n

i

]
(−1)i ai [1,−z,−x]n−iq

(
i
2

)

=
∑

i, j≥0

[n

i

] [n − i

j

]
(−1)i+ j x j ai [1,−z]n−i− j q

(
i
2

)

=
∑

i, j≥0

[
n

j

]
(−1) j x j

[
n − j

i

]
(−1)i ai [1,−z]n−i− j q

(
i
2

)

=
n∑

j=0

[
n

j

]
(−1) j x j An− j ([1,−z])

= (−1)n
n∑

j=0

[
n

j

]
x j A∗

n− j (z). (17)

Denote the first sum of the left-hand side in (13) by C. Applying (16) and (17), the left-hand
side of (13) is equal to

(−1)k
k∑

j=0

[
k

j

]
xk− j

[l + j + 1]q
q

(
j+1
2

)
−k(l+ j+1)

l+ j+1∑
i=0

[
l + j + 1

i

]

×Ai ([1,−z])(−x)l+ j+1−i + C = a0(−x)k+l+1B + S + C, (18)

where

B =
k∑

j=0

[
k

j

]
(−1) j q

(
j+1

2

)
−k(l+ j+1)

[l + j + 1]q
,

and

S = (−1)k+l+1
k∑

j=0

[
k

j

]
(−1) j q

(
j+1

2

)
−k(l+ j+1)

l+ j∑
i=1

[
l + j

i − 1

]
xk+l+1−i A∗

i (z)

[i ]q
.
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Exchanging k and l in (12) yields

B = 1

[k + l + 1]q

[
k+l

k

] .

Now, we show that S = −C. Exchanging the order of summation we have

S = (−1)k+l+1
l∑

i=1

[
l

i − 1

]
A∗

i (z)

[i ]q
xk+1+l−i

2Φ1

[
q−k, ql+1

ql−i+2 ; q, q

]
q−k(l+1)

= (−1)k+l+1
l∑

i=1

[
l

i − 1

]
A∗

i (z)

[i ]q
xk+l−i (q−i+1; q)k

(ql−i+2; q)k

(by q-Chu–Vandemonde)

= (−1)l+1
l∑

i=1

[
l

i − k − 1

]
A∗

i (z)

[i ]q
xk+1+l−i q

−ik+
(

k+1
2

)

= (−1)l+1
l∑

j=0

[
l

j

] A∗
k+ j+1(z)

[k + j + 1]q
xl− j q

− j k−
(

k+1
2

)
= −C.

Next, the right-hand side of (14) is equal to

(−1)k
k∑

j=0

[
k

j

]
xk− j

l+ j∑
i=0

[
l + j

i

]
(−x)l+ j−i Ai ([1,−z])q

(
k− j

2

)

= (−1)k+l
l∑

i=0

[
l

i

]
xk+l−i A∗

i (z) 2Φ1

[
q−k, ql+1

ql−i+1 ; q, q

]
q

(
k
2

)

= (−1)k+l
l∑

i=0

[
l

i

]
xk+l−i A∗

i (z)
(q−i ; q)k

(ql−i+1; q)k
q

(
k
2

)
+k(l+1)

= (−1)l
l∑

i=0

[
l

i − k

]
xk+l−i A∗

i (z)q
−ik+k2+kl

= (−1)l
l∑

j=0

[
l

j

]
xl− j A∗

k+ j (z)q
k(l− j ),

which is exactly the left-hand side of (14).
Finally, exchanging the order of summation, the right-hand side of (15) can be written

as

R = (−1)k
k+1∑
j=0

[
k + 1

j

]
xk+1− j [l + j + 1]q

×
l+ j∑
i=0

[
l + j

i

]
(−x)l+ j−i Ai ([1,−z])q

(
k− j

2

)
− j
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= (−1)k+l
∑

i, j≥0

[
k + 1

j

]
xk+l+1−i [i + 1]q(−1) j

[
l + j + 1

i + 1

]
A∗

i (z)q

(
k− j

2

)
− j

= (−1)k+l
l+1∑
i=0

[
l + 1

i

]
xk+l+1−i [i + 1]q A∗

i (z) 2Φ1

[
q−k−1, ql+2

ql−i+1 ; q, q

]
q

(
k
2

)
.

By the q-Chu–Vandermonde formula we have

R = (−1)k+l
l+1∑
i=0

[
l + 1

i

]
xk+l+1−i [i + 1]q A∗

i (z)
(q−i−1; q)k+1

(ql−i+1; q)k+1
q

(
k
2

)
+(k+1)(l+2)

= (−1)l+1
l+1∑
i=0

[
l + 1

i − k

]
xk+l+1−i [i + 1]q A∗

i (z)q
(k+1)(l+2−i)+k2−k−1

= (−1)l+1
l+1∑
j=0

[
l + 1

j

]
xl+1− j [k + j + 1]q A∗

k+ j (z)q
(k+1)(l− j )+1,

which is exactly the left-hand side of (15). �

Remark. When q = 1, Theorems 1 and 2, which correspond to Theorems 2.2 and 1.1 of
Sun [12], are actually equivalent. Indeed, in such a case, we have

(−1)n A∗
n(1 − x) = An(x), (19)

which can be verified as follows:
n∑

i=0

(n

i

)
a∗

i (x − 1)n−i =
n∑

i=0

(n

i

)
(−1)n−i

i∑
j=0

(
i

j

)
(−1) j a j (1 − x)n−i

=
n∑

j=0

(
n

j

)
(−1) j a j

n∑
i= j

(
n − j

i − j

)
(x − 1)n−i

=
n∑

j=0

(
n

j

)
(−1) j a j xn− j .

Now, taking an = (−1)l+k+n xk+l−n An(y) with q = 1,

a∗
n =

n∑
i=0

(n

i

)
(−1)l+k xk+l−i Ai (y)

=
n∑

i=0

(n

i

)
(−1)l+k xk+l−i

i∑
j=0

(
i

j

)
(−1) j a j yi− j

= (−1)l+k+n xk+l−n
n∑

j=0

(
n

j

)
a j (−1)n− j

n∑
i= j

(
n − j

i − j

)
xn−i yi− j

= (−1)l+k xk+l−n An(x + y).

It follows from (19) that

a∗
n = (−1)k+l+n xk+l−n A∗

n(1 − x − y).
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Substituting the above values of an and a∗
n in Theorem 1 we obtain Theorem 2. Conversely,

it is easy to see that Theorem 1 is a special case of Theorem 2 because

An(0) = (−1)nan, An(1) = a∗
n .

Hence we have proved that Theorems 1 and 2 are actually equivalent when q = 1.

4. Some applications

In this section we derive some examples from our main theorem; most of them are
q-analogs of results in Sun [12].

Example 1. For any fixed integer i ≥ 0 let an = (−1)n
[ n

i

]
tn−i q

(
i
2

)
; then it follows from

(3) and (5) that

a∗
n =

n∑
k=0

[n

k

] [k

i

]
tk−i q

(
i
2

)
+
(

k
2

)

=
[n

i

]
qi2−i

n∑
k=i

[
n − i

k − i

]
(tqi )k−i q

(
k−i

2

)

=
[n

i

]
(−tqi ; q)n−i q

i2−i .

Substituting the above values in (8) of Theorem 1 yields

l∑
j=0

[
l

j

] [
k + j

i

]
(−1)l− j (−qi t; q)k+ j−i q

j ( j+1)/2−l j+
(

i
2

)

=
k∑

j=0

[
k

j

] [
l + j

i

]
tl+ j−i qkl+ j ( j−1)/2. (20)

For variations of methods, we will give two more proofs of (20). Note that when q = 1
Eq. (20) reduces to a crucial result of Sun [12, Lemma 3.1], which was proved by using a
derivative operator.

We first q-generalize Sun’s proof by using a q-derivative operator. For any polynomial
f (t) in t , let Dq be the q-derivative operator with respect to t :

Dq f (t) = f (tq) − f (t)

(q − 1)t
.

Clearly we have

Dqtn = qn − 1

q − 1
tn−1, Dq ((−t; q)n) = [n]q(−qt; q)n−1.

For integer i ≥ 0 define [i ]q! = ∏i
j=0[ j ]q ; then

Di
q(tn) = [i ]q !

[n

i

]
tn−i , (21)

Di
q((−t; q)n) = qi(i−1)/2[i ]q !

[n

i

]
(−qi t; q)n−i . (22)
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By Gauss inversion, the q-binomial formula (5) is equivalent to

zn =
n∑

j=0

(−1) j q

(
j+1

2

)
−nj

[
n

j

]
(z; q) j .

Replacing z by −tqk we get

(tqk)n =
n∑

j=0

[
n

j

]
(−1)n− j q j ( j+1)/2−nj(−tqk; q) j . (23)

Now, using the q-derivative operator and (21)–(23), we can write the difference of the two
sides of (20) as follows:

1

[i ]q ! Di
q

(
(−t; q)k

l∑
j=0

[
l

j

]
(−1)l− j q j ( j+1)/2−l j(−tqk; q) j

− (tqk)l
k∑

j=0

[
k

j

]
q j ( j−1)/2t j

)

= 1

[i ]q ! Di
q

(
(−t; q)k(tq

k)l − (tqk)l(−t; q)k

)
,

which is clearly equal to 0.
Our second proof of (20) uses the machinery of basic hypergeometric functions.

Rewriting (20) in terms of basic hypergeometric functions, we have[
k

i

]
(−1)l(−qi t; q)k−i q

(
i
2

)
3Φ2

[
q−l, qk+1, −tqk

qk−i+1, 0
; q, q

]

=
[

l

i

]
tl−i qkl

2φ1

[
q−k, ql+1

ql−i+1 ; q,−tqk
]

. (24)

A standard proof of (24) goes then as follows:[
k

i

]
(−1)l(−tqi ; q)k−i q

(
i
2

)
(−tqk−i )l

3Φ2

[
q−l, q−i , (−tqi−1)−1

qk−i+1, 0
; q, q

]
(by [8, p. 241(III.11)])

=
[

k

i

]
tl q(k+i)lq

(
i
2

)
(−tqi ; q)k−i

(ql−i+1; q)i

(q−k; q)i
(tqk+l)−i

× 2Φ1

[
q−i , qk+l+1−i

ql−i+1 ; q,−tqi
]

(by [8, p. 241(III.6)])

=
[

l

i

]
qkl tl−i (−tqi ; q)k−i

(−tqk; q)∞
(−tqi ; q)∞ 2Φ1

[
q−k, ql−1

ql−i+1 ; q,−tqk
]

(by [8, p. 241(III.3)])

which is equal to the right-hand side of (24).
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Example 2. Let an = [ x+n
m

]
q−mn for n ∈ N. By the notation (3), we have

a∗
n =

n∑
i=0

[n

i

]
(−1)i

[
x + i

m

]
q

(
i
2

)
−im

=
⎧⎨
⎩(−1)n

[
x

m − n

]
q−mn+( n

2 ) if m ≥ n,

0 otherwise.

Theorem 1 implies that

k∑
j=0

[
k

j

]
(−1) j

[l + j + 1]q

[
x + l + j + 1

m

]
q

−m(l+ j+1)+
(

j
2

)

= (−1)k
∑

k≤ j≤m

1

[ j ]q

[
l

j − k − 1

] [
x

m − j

]
q

(
j−k

2

)
+
(

j
2

)
−l( j−1)−mj

+
[ x

m

]
[k + l + 1]q

[
k+l

k

] .

Example 3. Let cn = [ y
n

]
/
[ x

n

]
for n ∈ N. Then c∗

n = [ x−y
n

]
qny/

[ x
n

]
. In fact,

[n

k

]
= (−1)k

[−n + k − 1

k

]
q

nk−
(

k
2

)
.

[ x

n

]
c∗

n =
n∑

i=0

[
x − i

n − i

]
(−1)i

[ y

i

]
q

(
i
2

)

= (−1)n
n∑

i=0

[
x − n + 1

n − i

] [ y

i

]
q

(x−i)(n−i)−
(

n−i
2

)
+
(

i
2

)

= (−1)nqxn−( n
2 )
[

n − x − 1 + y

n

]
=
[

x − y

n

]
qny .

By the identities in Theorem 1, we obtain

k∑
j=0

[
k

j

] (−1) j
[

y
l+ j+1

]
[

x−1
l+ j

] q

(
j+1
2

)
+

l∑
j=0

(−1) j
[

x−y
k+ j+1

]
[

x−1
k+ j

] q
(k+ j+1)y+

(
j+1
2

)
−l(k+ j+1)

= [x]q

[k + l + 1]
[

k+l
k

]
and

k∑
j=0

[
k

j

]
(−1) j

[
y

l+ j

]
[

x
l+ j

]q

(
j
2

)
=

l∑
j=0

(−1) j

[
x−y
k+ j

]
[

x
k+ j

] q
(k+ j )y+

(
j+1

2

)
−l(k+ j )

.
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Example 4. Carlitz [4, (3.1)] defined the q-Stirling numbers of the second kind
{m

n

}
q by

[n]m
q =

m∑
i=0

{m

i

}
q
[i ]q !

[n

i

]
q

(
i
2

)
.

By Gauss inversion we get

{m

n

}
q

= q−( n
2 )

[n]q !
n∑

i=0

(−1)i q

(
i
2

) [n

i

]
[n − i ]m

q

= 1

[n]q !
n∑

i=0

(−1)n−i q

(
i+1

2

)
−ni

[n

i

]
[i ]m

q .

So we have the following q-dual sequences:

an = (−1)n[n]q !
{m

n

}
q
, a∗

n = [n]m
q .

Substituting these values in Theorem 1 yields corresponding identities. For example,
applying (8) we obtain

1

[l]q !
l∑

j=0

(−1)l− j q

(
j+1

2

)
−l(k+ j )

[
l

j

]
[k + j ]m

q

=
k∑

j=0

q

(
j
2

) [
l + j

j

] [k]q !
[k − j ]q !

{
m

l + j

}
q
.

The left-hand side of the above identity is called a non-central q-Stirling number of the
second kind, with non-centrality parameter k, by Charalambides [5]. This number was first
discussed by Carlitz [4, (3.8)] and recently by Charalambides [5, (3.5)]. Note that for k = 0
these numbers reduce to the usual q-Stirling numbers of the second kind, while for k �= 0
the above identity connects the non-central to the usual q-Stirling numbers of the second
kind.

Example 5. Taking e(t) = ∑∞
n=0

xn

[n]q ! as a q-analog of the exponential function ex ,
Al-Salam [2, 2.1] defined a q-analog of Bernoulli numbers Bn by

1

e(t) − 1
=

∞∑
n=0

tn

[n]q ! Bn.

These q-Bernoulli numbers Bn satisfy the following recurrence relation (see [2, 4.3]):

[1, B]n =
{

Bn n > 1,

1 + B1 n = 1.

Now, if a∗
0 = B0 = 1 and, for n ≥ 1, a∗

n = Bn = ∑n
i=0

[ n
i

]
Bi , then a0 = 1 and for n ≥ 1

an =
n∑

i=0

[n

i

]
(−1)iq

(
i+1

2

)
−in

i∑
j=0

[
i

j

]
B j
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=
n∑

j=0

[
n

j

]
B j

∑
i≥ j

[
n − j

i − j

]
(−1)iq

(
i+1

2

)
−ni

= (−1)n Bnq−( n
2 ).

Theorem 1 infers then the following identities, which are q-analogs of the identities of
Kaneko [10] and Momiyama [11] on Bernoulli numbers.

Proposition 1. For k, l ∈ N,

k∑
j=0

[
l

j

]
(−1) j Bk+ j+1

[k + j + 1]q
q

(
j+1
2

)
−l(k+ j+1) +

l∑
j=0

[
k

j

]
(−1)l+1 Bl+ j+1

[l + j + 1]q
q

−
(

l+1
2

)
−l j

= 1

[k + l + 1]q

[
k+l

k

] ,

l∑
j=0

[
l

j

]
(−1) j Bk+ j q

(
l− j

2

)
=

k∑
j=0

[
k

j

]
(−1)l Bl+ j q

l(k− j ),

l+1∑
j=0

[
l + 1

j

]
(−1) j+1[k + j + 1]q Bk+ j q

(
l− j

2

)
− j

=
k+1∑
j=0

[
k + 1

j

]
(−1)l[l + j + 1]q Bl+ j q

(k− j )(l+1)+1.

Example 6. Al-Salam [2] also defined the q-Bernoulli polynomials Bn(x) =∑n
k=0

[n
k

]
Bk xn−k . By Example 5, if an = (−1)n Bnq−( n

2 ) then a∗
n = Bn . Therefore

An(x) =
n∑

i=0

[n

i

]
Bi x

n−i = Bn(x) and A∗
n(x) =

n∑
i=0

[n

i

]
(−1)i Bi x

n−i = B∗
n (x).

If we replace An(x) and A∗
n(x) by Bn(x) and B∗

n (x), respectively, we get the following
result.

Proposition 2. For k, l ∈ N,

(−1)l
l∑

j=0

[
l

j

]
xl− j

B∗
k+ j+1(z)

[k + j + 1]q
q

−kj−
(

k+1
2

)

+ (−1)k
k∑

j=0

[
k

j

]
xk− j Bl+ j+1([1,−x,−z])

[l + j + 1]q
q

(
j+1
2

)
−k(l+ j+1)

= a0(−x)k+l+1

[k + l + 1]
[

k+l
k

] ,

(−1)l
l∑

j=0

[
l

j

]
xl− j B∗

k+ j (z)q
k(l− j )



S.J.X. Hou, J. Zeng / European Journal of Combinatorics 28 (2007) 214–227 227

= (−1)k
k∑

j=0

[
k

j

]
xk− j Bl+ j ([1,−x,−z])q

(
k− j

2

)
,

(−1)l+1
l+1∑
j=0

[
l + 1

j

]
xl+1− j [k + j + 1]q B∗

k+ j (z)q
(k+1)(l− j )+1

= (−1)k
k+1∑
j=0

[
k + 1

j

]
xk+1− j [l + j + 1]q Bl+ j ([1,−x,−z])q

(
k− j

2

)
− j

.

Remark. It is easy to see that Bn(0) = Bn and Bn(0)∗ = (−1)n Bn . Hence Proposition 1
can be derived from Proposition 2 by taking x = 1 and z = 0.
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