European Journal of Combinatorics

ELSEVIER

A q-analog of dual sequences with applications

Sharon J.X. Hou ${ }^{\text {a }}$, Jiang Zeng ${ }^{\text {b }}$
${ }^{a}$ Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, People's Republic of China
${ }^{\mathrm{b}}$ Institut Camille Jordan, Université Claude Bernard (Lyon I), F-69622 Villeurbanne Cedex, France

Received 5 March 2005; accepted 21 July 2005
Available online 22 August 2005

Abstract

In the present paper combinatorial identities involving q-dual sequences or polynomials with coefficients that are q-dual sequences are derived. Further, combinatorial identities for q-binomial coefficients (Gaussian coefficients), q-Stirling numbers and q-Bernoulli numbers and polynomials are deduced.

© 2005 Elsevier Ltd. All rights reserved.
MSC: primary 05A30; secondary 33D99

1. Introduction

Given a sequence $a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$ of elements of a commutative ring R (for example, the complex numbers, polynomials or rational functions), one usually describes as the Euler-Seidel matrix associated with $\left(a_{n}\right)$ the double sequence $\left(a_{n}^{k}\right)(n \geq 0, k \geq 0)$ given by the recurrence [7]

$$
a_{n}^{0}=a_{n}, \quad a_{n}^{k}=a_{n}^{k-1}+a_{n+1}^{k-1} \quad(k \geq 1, n \geq 0)
$$

The sequence $\left(a_{n}^{0}\right)$ of the first row of the matrix is the initial sequence. The sequence $\left(a_{0}^{n}\right)$ of the first column of the matrix is the final sequence. Such a matrix is equivalent to the table obtained by computing the finite difference of consecutive terms of (a_{0}^{n}) and iterating

[^0]the procedure. One passes from the initial sequence to the last one and conversely through
\[

$$
\begin{equation*}
a_{0}^{n}=\sum_{i=0}^{n}\binom{n}{i} a_{i}^{0} \Longleftrightarrow a_{n}^{0}=\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i} a_{0}^{i} . \tag{1}
\end{equation*}
$$

\]

If one sets $a_{n}=(-1)^{n} a_{n}^{0}$ and $a_{n}^{*}=(-1)^{n} a_{0}^{n}$, then the above relations can be written as

$$
\begin{equation*}
a_{n}^{*}=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} a_{i} \Longleftrightarrow a_{n}=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} a_{i}^{*} . \tag{2}
\end{equation*}
$$

In [12] the sequence $\left(a_{n}^{*}\right)$ is called the dual sequence of $\left(a_{n}\right)$. It is well known that if $a_{n}=(-1)^{n} B_{n}$, where $\left(B_{n}\right)=(1,-1 / 2,1 / 6,0,-1 / 30, \ldots)$ is the sequence of Bernoulli numbers, then $a_{n}^{*}=a_{n}$, that is $\left((-1)^{n} B_{n}\right)$ is self-dual. Generalizing the results of Kaneko [10] and Momiyama [11] on Bernoulli numbers, Sun [12] has recently proved some remarkable identities on dual sequences. Other generalizations of Kaneko's identity have been obtained by Gessel [9] using umbral calculus.

The aim of this paper is to give a q-version of Sun's results in [12]. In the last two decades there has been an increasing interest in generalizing the classical results with a generic parameter q, which is the so-called phenomenon of " q-disease". As regards the Euler-Seidel matrix, Clarke et al. [6] have given a q-analog of (1) with application to q-enumeration of derangements.

We shall need some standard q-notation, which can be found in Gasper and Rahman's book [8]. The q-shifted factorial $(a ; q)_{n}$ is defined by $(a ; q)_{0}=1$ and

$$
(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)
$$

if n is a positive integer. For $k \in \mathbb{Z}$ the k-integer $[k]_{q}$ is defined by $[k]_{q}=\frac{1-q^{k}}{1-q}$, so $[-k]_{q}=-q^{-k}[k]_{q}$. For integer k, the q-binomial coefficient $\left[\begin{array}{l}\alpha \\ k\end{array}\right]$ is defined by $\left[\begin{array}{l}\alpha \\ k\end{array}\right]=0$ if $k<0$ and

$$
\left[\begin{array}{l}
\alpha \\
k
\end{array}\right]=\frac{\left(1-q^{\alpha}\right)\left(1-q^{\alpha-1}\right) \cdots\left(1-q^{\alpha-k+1}\right)}{(q ; q)_{k}}
$$

if k is a positive integer. Let $\left(a_{n}\right)$ be a sequence of a commutative ring. We call the sequence $\left(a_{n}^{*}\right)$ given by

$$
a_{n}^{*}=\sum_{i=0}^{n}\left[\begin{array}{l}
n \tag{3}\\
i
\end{array}\right](-1)^{i} a_{i} q^{\binom{i}{2}}
$$

the q-dual sequence of $\left(a_{n}\right)$. By Gauss inversion [1, p. 96] we get

$$
a_{n}=\sum_{r=0}^{n}\left[\begin{array}{l}
n \tag{4}\\
r
\end{array}\right](-1)^{r} a_{r}^{*} q^{\binom{r+1}{2}-n r .} \text {. }
$$

We will need the following q-analog of the binomial formula [3, p. 36]:

$$
(z ; q)_{n}=\sum_{j=0}^{n}\left[\begin{array}{l}
n \tag{5}\\
j
\end{array}\right](-1)^{j} z^{j} q^{\binom{j}{2}},
$$

and the q-Chu-Vandermonde formula [8, p. 354]:

$$
{ }_{2} \Phi_{1}\left[\begin{array}{c}
q^{-n}, a \tag{6}\\
c
\end{array} ; q, q\right]:=\sum_{k=0}^{\infty} \frac{\left(q^{-n} ; q\right)_{k}(a ; q)_{k}}{(c ; q)_{k}} \frac{z^{k}}{(q ; q)_{k}}=\frac{(c / a ; q)_{n}}{(c ; q)_{n}} a^{n}
$$

The following is our basic theorem.
Theorem 1. For $k, l \in \mathbb{N}$ the following identities hold true:

$$
\begin{align*}
& \sum_{j=0}^{l}\left[\begin{array}{l}
l \\
j
\end{array}\right] \frac{(-1)^{j} a_{k+j+1}^{*}}{[k+j+1]_{q}} q^{\binom{j+1}{2}-l(k+j+1)}+\sum_{j=0}^{k}\left[\begin{array}{l}
k \\
j
\end{array}\right] \frac{(-1)^{j} a_{l+j+1}}{[l+j+1]_{q}} q^{\binom{j+1}{2}} \\
& =\frac{a_{0}}{[k+l+1]_{q}\left[\begin{array}{c}
k+l \\
k
\end{array}\right]}, \tag{7}\\
& \sum_{j=0}^{l}\left[\begin{array}{l}
l \\
j
\end{array}\right](-1)^{j} a_{k+j}^{*} q^{\binom{j+1}{2}-l(k+j)}=\sum_{j=0}^{k}\left[\begin{array}{l}
k \\
j
\end{array}\right](-1)^{j} a_{l+j} q^{\binom{j}{2}}, \tag{8}\\
& \sum_{j=0}^{l+1}\left[\begin{array}{c}
l+1 \\
j
\end{array}\right](-1)^{j+1}[k+j+1]_{q} a_{k+j}^{*} q^{\binom{j}{2}-l(k+j)-k} \\
& \quad=\sum_{j=0}^{k+1}\left[\begin{array}{c}
k+1 \\
j
\end{array}\right](-1)^{j}[l+j+1]_{q} a_{l+j} q^{\binom{j-1}{2}} \tag{9}
\end{align*}
$$

The above theorem is a q-analog of Theorem 2.1 in Sun [12]. Note also that Eq. (8) was also a q-analog of Theorem 7.4 in Gessel [9].

The rest of this paper will be organized as follows: we prove Theorem 1 in Section 2 and present a q-analog of Sun's main theorem in Section 3. In Section 4, we present some interesting examples as applications of our Theorems 1 and 2.

2. Proof of Theorem 1

Plugging (3) into the first sum of the left-hand side of (7), we have

$$
L H S=a_{0} B+\sum_{j=0}^{k}\left[\begin{array}{c}
k \tag{10}\\
j
\end{array}\right](-1)^{j} \frac{a_{l+j+1}}{[l+j+1]_{q}} q^{\binom{j+1}{2}}+C,
$$

where

$$
B=\sum_{j=0}^{l}\left[\begin{array}{l}
l \\
j
\end{array}\right](-1)^{j} \frac{q^{\binom{j+1}{2}-l(k+j+1)}}{[k+j+1]_{q}}
$$

and

$$
C=\sum_{j=0}^{l}\left[\begin{array}{l}
l \\
j
\end{array}\right](-1)^{j} \frac{q^{\binom{j+1}{2}-l(k+j+1)}}{[k+j+1]_{q}} \sum_{i=1}^{k+j+1}\left[\begin{array}{c}
k+j+1 \\
i
\end{array}\right](-1)^{i} a_{i} q^{\binom{i}{2}} .
$$

It is known (see [13] for further applications) that

$$
\begin{equation*}
\left.\frac{1}{\left(x+a_{0}\right)\left(x+a_{1}\right) \cdots\left(x+a_{l}\right)}=\sum_{j=0}^{\substack{l \\ i=0 \\ i \neq j}} \right\rvert\, \frac{\prod_{i}\left(a_{i}-a_{j}\right)^{-1}}{x+a_{j}} \tag{11}
\end{equation*}
$$

Setting $x=-q^{-k-1}$ and $a_{i}=q^{i}(0 \leq i \leq l)$ in (11) we obtain

$$
\begin{equation*}
\sum_{j=0}^{l}(-1)^{j} \frac{q^{\binom{j+1}{2}-l(k+j+1)}}{(q ; q)_{j}(q ; q)_{l-j}\left(1-q^{k+j+1}\right)}=\frac{1}{\left(q^{k+1} ; q\right)_{l+1}} \tag{12}
\end{equation*}
$$

It follows that

$$
B=\frac{(1-q)(q ; q)_{l}}{\left(q^{k+1} ; q\right)_{l+1}}=\frac{1}{[k+l+1]_{q}\left[\begin{array}{c}
k+l \\
k
\end{array}\right]}
$$

Exchanging the order of summation we can rewrite C as follows:

$$
\begin{aligned}
C & =\sum_{i=1}^{k+l+1}(-1)^{i} \frac{a_{i}}{[i]_{q}} q^{\binom{i}{2}} \sum_{j=i-k-1}^{l}(-1)^{j}\left[\begin{array}{l}
l \\
j
\end{array}\right]\left[\begin{array}{c}
k+j \\
i-1
\end{array}\right] q^{\binom{j+1}{2}-l j-(k+1) l} \\
& =\sum_{i=1}^{k}(-1)^{i} \frac{a_{i}}{[i]_{q}} q^{\binom{i}{2}}\left[\begin{array}{c}
k \\
i-1
\end{array}\right]{ }_{2} \Phi_{1}\left[\begin{array}{c}
q^{-l}, q^{k+1} ; q, q \\
q^{k-i+2} ; q
\end{array}\right] q^{-(k+1) l} .
\end{aligned}
$$

Applying the q-Chu-Vandermonde formula (6) we obtain

$$
\begin{aligned}
C & =\sum_{i=1}^{k}(-1)^{i} \frac{a_{i}}{[i]_{q}} q^{\binom{i}{2}}\left[\begin{array}{c}
k \\
i-1
\end{array}\right] \frac{\left(q^{-i+1} ; q\right)_{l}}{\left(q^{k-i+2} ; q\right)_{l}} \\
& =\sum_{i=1}^{k}(-1)^{i+l}\left[\begin{array}{c}
k \\
i-l-1
\end{array}\right] \frac{a_{i}}{[i]_{q}} q^{\binom{i}{2}+\binom{l+1}{2}-i l} \\
& =\sum_{j=0}^{k}\left[\begin{array}{c}
k \\
j
\end{array}\right](-1)^{j+1} \frac{a_{l+j+1}}{[l+j+1]_{q}} q^{\binom{j+1}{2} .}
\end{aligned}
$$

Substituting the values of B and C into (10) yields (7).
To derive (8) and (9) from (7) we define the linear operator δ_{q} by

$$
\delta_{q}\left(a_{n}\right)=-q^{1-n}[n]_{q} a_{n-1} \quad \text { for } n \geq 0
$$

Then $\delta_{q}\left(a_{n}^{*}\right)=[n]_{q} a_{n-1}^{*}$. Indeed,

$$
\begin{aligned}
\delta_{q}\left(a_{n}^{*}\right) & =\sum_{i=0}^{n}\left[\begin{array}{l}
n \\
i
\end{array}\right](-1)^{i} \delta_{q}\left(a_{i}\right) q^{\binom{i}{2}}=\sum_{i=0}^{n}\left[\begin{array}{l}
n \\
i
\end{array}\right](-1)^{i+1} q^{1-i}[i]_{q} a_{i-1} q^{\binom{i}{2}} \\
& =[n]_{q} \sum_{i=0}^{n}(-1)^{i}\left[\begin{array}{c}
n-1 \\
i-1
\end{array}\right](-1)^{i-1} a_{i-1} q^{\binom{i-1}{2}}=[n]_{q} a_{n-1}^{*} .
\end{aligned}
$$

Now, applying δ_{q} to (7) yields (8). Furthermore, replacing k by $k+1$ and l by $l+1$ in (8) then applying δ_{q} on both sides yields (9).

Remark. We can also prove (8) and (9) directly by using the q-Chu-Vandermonde formula.

3. A \boldsymbol{q}-analog of Sun's main theorem

In this section, we assume that x, y and z are commuting indeterminates. Define $[x, y]^{n}$ by $[x, y]^{0}=1$ and

$$
[x, y]^{n}=\sum_{i=0}^{n}\left[\begin{array}{l}
n \\
i
\end{array}\right] x^{i} y^{n-i}
$$

for positive integer n. So $[x, y]^{n}=(x+y)^{n}$ when $q=1$. Similarly

$$
[x, y, z]^{n}=[x,[y, z]]^{n}=\sum_{i=0}^{n}\left[\begin{array}{c}
n \\
i
\end{array}\right] x^{i}[y, z]^{n-i}=\sum_{\substack{i, j, k \geq 0 \\
i+j+k=n}} \frac{[n]_{q}!}{[i]_{q}![j]_{q}![k]_{q}!} x^{i} y^{j} z^{k}
$$

and hence $[x, y, z]^{n}$ is a symmetric polynomial of x, y, z and $[x, y, z]^{n}=(x+y+z)^{n}$ when $q=1$.

Like the definition of Bernoulli polynomials, we introduce

$$
A_{n}(x)=\sum_{i=0}^{n}(-1)^{i}\left[\begin{array}{l}
n \\
i
\end{array}\right] a_{i} q^{\binom{i}{2}} x^{n-i} \quad \text { and } \quad A_{n}^{*}(x)=\sum_{i=0}^{n}(-1)^{i}\left[\begin{array}{l}
n \\
i
\end{array}\right] a_{i}^{*} x^{n-i}
$$

The following is our q-analog of the main theorem of Sun [12, Th. 1.1].
Theorem 2. Let $k, l \in \mathbb{N}$; then

$$
\begin{align*}
& (-1)^{l} \sum_{j=0}^{l}\left[\begin{array}{l}
l \\
j
\end{array}\right] x^{l-j} \frac{A_{k+j+1}^{*}(z)}{[k+j+1]_{q}} q^{-k j-\binom{k+1}{2}} \\
& \quad+(-1)^{k} \sum_{j=0}^{k}\left[\begin{array}{l}
k \\
j
\end{array}\right] x^{k-j} \frac{A_{l+j+1}([1,-z,-x])}{[l+j+1]_{q}} q^{\binom{j+1}{2}-k(l+j+1)} \\
& =\frac{a_{0}(-x)^{k+l+1}}{[k+l+1]}\left[\begin{array}{c}
k+l \\
k
\end{array}\right] . \tag{13}\\
& (-1)^{l} \sum_{j=0}^{l}\left[\begin{array}{l}
l \\
j
\end{array}\right] x^{l-j} A_{k+j}^{*}(z) q^{k(l-j)} \\
& =(-1)^{k} \sum_{j=0}^{k}\left[\begin{array}{c}
k \\
j
\end{array}\right] x^{k-j} A_{l+j}([1,-z,-x]) q^{\binom{k-j}{2}} . \tag{14}\\
& (-1)^{l+1} \sum_{j=0}^{l+1}\left[\begin{array}{c}
l+1 \\
j
\end{array}\right] x^{l+1-j}[k+j+1]_{q} A_{k+j}^{*}(z) q^{(k+1)(l-j)+1} \\
& =(-1)^{k} \sum_{j=0}^{k+1}\left[\begin{array}{c}
k+1 \\
j
\end{array}\right] x^{k+1-j}[l+j+1]_{q} A_{l+j}([1,-z,-x]) q^{\binom{k-j}{2}-j} . \tag{15}
\end{align*}
$$

Proof. We derive from (4) and (5) that

$$
\begin{align*}
A_{n}([1,-x]) & =\sum_{i=0}^{n}\left[\begin{array}{l}
n \\
i
\end{array}\right](-1)^{i} a_{i}[1,-x]^{n-i} q^{\binom{i}{2}} \\
& =\sum_{i, j, s \geq 0}^{n}\left[\begin{array}{l}
n \\
i
\end{array}\right]\left[\begin{array}{l}
i \\
j
\end{array}\right](-1)^{i-j} a_{j}^{*}\left[\begin{array}{c}
n-i \\
s
\end{array}\right](-x)^{s} q^{\binom{i-j}{2}} \\
& =\sum_{j=0}^{n}\left[\begin{array}{l}
n \\
j
\end{array}\right] a_{j}^{*} \sum_{i, s \geq 0}\left[\begin{array}{c}
n-j \\
s
\end{array}\right](-1)^{s} x^{s}\left[\begin{array}{c}
n-j-s \\
i-j
\end{array}\right](-1)^{i-j} q^{\binom{i-j}{2}} \\
& =(-1)^{n} \sum_{j=0}^{n}\left[\begin{array}{l}
n \\
j
\end{array}\right](-1)^{j} a_{j}^{*} x^{n-j} \\
& =(-1)^{n} A_{n}^{*}(x), \tag{16}
\end{align*}
$$

and

$$
\begin{align*}
A_{n}([1,-z,-x]) & =\sum_{i=0}^{n}\left[\begin{array}{l}
n \\
i
\end{array}\right](-1)^{i} a_{i}[1,-z,-x]^{n-i} q^{\binom{i}{2}} \\
& =\sum_{i, j \geq 0}\left[\begin{array}{l}
n \\
i
\end{array}\right]\left[\begin{array}{c}
n-i \\
j
\end{array}\right](-1)^{i+j} x^{j} a_{i}[1,-z]^{n-i-j} q^{\binom{i}{2}} \\
& =\sum_{i, j \geq 0}\left[\begin{array}{c}
n \\
j
\end{array}\right](-1)^{j} x^{j}\left[\begin{array}{c}
n-j \\
i
\end{array}\right](-1)^{i} a_{i}[1,-z]^{n-i-j} q^{\binom{i}{2}} \\
& =\sum_{j=0}^{n}\left[\begin{array}{c}
n \\
j
\end{array}\right](-1)^{j} x^{j} A_{n-j}([1,-z]) \\
& =(-1)^{n} \sum_{j=0}^{n}\left[\begin{array}{c}
n \\
j
\end{array}\right] x^{j} A_{n-j}^{*}(z) . \tag{17}
\end{align*}
$$

Denote the first sum of the left-hand side in (13) by \mathcal{C}. Applying (16) and (17), the left-hand side of (13) is equal to

$$
\begin{gather*}
(-1)^{k} \sum_{j=0}^{k}\left[\begin{array}{c}
k \\
j
\end{array}\right] \frac{x^{k-j}}{[l+j+1]_{q}} q^{\binom{j+1}{2}-k(l+j+1)} \sum_{i=0}^{l+j+1}\left[\begin{array}{c}
l+j+1 \\
i
\end{array}\right] \\
\times A_{i}([1,-z])(-x)^{l+j+1-i}+\mathcal{C}=a_{0}(-x)^{k+l+1} \mathcal{B}+S+\mathcal{C}, \tag{18}
\end{gather*}
$$

where

$$
\mathcal{B}=\sum_{j=0}^{k}\left[\begin{array}{l}
k \\
j
\end{array}\right](-1)^{j} \frac{q^{\binom{j+1}{2}-k(l+j+1)}}{[l+j+1]_{q}}
$$

and

$$
S=(-1)^{k+l+1} \sum_{j=0}^{k}\left[\begin{array}{l}
k \\
j
\end{array}\right](-1)^{j} q^{\binom{j+1}{2}-k(l+j+1)} \sum_{i=1}^{l+j}\left[\begin{array}{l}
l+j \\
i-1
\end{array}\right] x^{k+l+1-i} \frac{A_{i}^{*}(z)}{[i]_{q}} .
$$

Exchanging k and l in (12) yields

$$
\mathcal{B}=\frac{1}{[k+l+1]_{q}\left[\begin{array}{c}
k+l \\
k
\end{array}\right]}
$$

Now, we show that $S=-\mathcal{C}$. Exchanging the order of summation we have

$$
\begin{aligned}
S= & (-1)^{k+l+1} \sum_{i=1}^{l}\left[\begin{array}{c}
l \\
i-1
\end{array}\right] \frac{A_{i}^{*}(z)}{[i]_{q}} x^{k+1+l-i}{ }_{2} \Phi_{1}\left[\begin{array}{c}
q^{-k}, q^{l+1} \\
q^{l-i+2} ; q, q
\end{array}\right] q^{-k(l+1)} \\
= & (-1)^{k+l+1} \sum_{i=1}^{l}\left[\begin{array}{c}
l \\
i-1
\end{array}\right] \frac{A_{i}^{*}(z)}{[i]_{q}} x^{k+l-i} \frac{\left(q^{-i+1} ; q\right)_{k}}{\left(q^{l-i+2} ; q\right)_{k}} \\
& (\text { by } q \text {-Chu-Vandemonde) } \\
= & (-1)^{l+1} \sum_{i=1}^{l}\left[\begin{array}{c}
l \\
i-k-1
\end{array}\right] \frac{A_{i}^{*}(z)}{[i]_{q}} x^{k+1+l-i} q^{-i k+\binom{k+1}{2}} \\
= & (-1)^{l+1} \sum_{j=0}^{l}\left[\begin{array}{l}
l \\
j
\end{array}\right] \frac{A_{k+j+1}^{*}(z)}{[k+j+1]_{q}} x^{l-j} q^{-j k-\binom{k+1}{2}}=-\mathcal{C} .
\end{aligned}
$$

Next, the right-hand side of (14) is equal to

$$
\begin{aligned}
& (-1)^{k} \sum_{j=0}^{k}\left[\begin{array}{l}
k \\
j
\end{array}\right] x^{k-j} \sum_{i=0}^{l+j}\left[\begin{array}{c}
l+j \\
i
\end{array}\right](-x)^{l+j-i} A_{i}([1,-z]) q^{\binom{k-j}{2}} \\
& =(-1)^{k+l} \sum_{i=0}^{l}\left[\begin{array}{l}
l \\
i
\end{array}\right] x^{k+l-i} A_{i}^{*}(z)_{2} \Phi_{1}\left[\begin{array}{c}
q^{-k}, q^{l+1} \\
q^{l-i+1}
\end{array} ; q, q\right] q^{\binom{k}{2}} \\
& =(-1)^{k+l} \sum_{i=0}^{l}\left[\begin{array}{l}
l \\
i
\end{array}\right] x^{k+l-i} A_{i}^{*}(z) \frac{\left(q^{-i} ; q\right)_{k}}{\left(q^{l-i+1} ; q\right)_{k}} q^{\binom{k}{2}+k(l+1)} \\
& =(-1)^{l} \sum_{i=0}^{l}\left[\begin{array}{c}
l \\
i-k
\end{array}\right] x^{k+l-i} A_{i}^{*}(z) q^{-i k+k^{2}+k l} \\
& =(-1)^{l} \sum_{j=0}^{l}\left[\begin{array}{l}
l \\
j
\end{array}\right] x^{l-j} A_{k+j}^{*}(z) q^{k(l-j)},
\end{aligned}
$$

which is exactly the left-hand side of (14).
Finally, exchanging the order of summation, the right-hand side of (15) can be written as

$$
\begin{aligned}
& R=(-1)^{k} \sum_{j=0}^{k+1}\left[\begin{array}{c}
k+1 \\
j
\end{array}\right] x^{k+1-j}[l+j+1]_{q} \\
& \times \sum_{i=0}^{l+j}\left[\begin{array}{c}
l+j \\
i
\end{array}\right](-x)^{l+j-i} A_{i}([1,-z]) q^{\binom{k-j}{2}-j}
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{k+l} \sum_{i, j \geq 0}\left[\begin{array}{c}
k+1 \\
j
\end{array}\right] x^{k+l+1-i}[i+1]_{q}(-1)^{j}\left[\begin{array}{c}
l+j+1 \\
i+1
\end{array}\right] A_{i}^{*}(z) q^{\binom{k-j}{2}-j} \\
& =(-1)^{k+l} \sum_{i=0}^{l+1}\left[\begin{array}{c}
l+1 \\
i
\end{array}\right] x^{k+l+1-i}[i+1]_{q} A_{i}^{*}(z)_{2} \Phi_{1}\left[\begin{array}{c}
q^{-k-1}, q^{l+2} \\
q^{l-i+1}
\end{array} ; q, q\right] q^{\binom{k}{2} .}
\end{aligned}
$$

By the q-Chu-Vandermonde formula we have

$$
\begin{aligned}
R & =(-1)^{k+l} \sum_{i=0}^{l+1}\left[\begin{array}{c}
l+1 \\
i
\end{array}\right] x^{k+l+1-i}[i+1]_{q} A_{i}^{*}(z) \frac{\left(q^{-i-1} ; q\right)_{k+1}}{\left(q^{l-i+1} ; q\right)_{k+1}} q^{\binom{k}{2}+(k+1)(l+2)} \\
& =(-1)^{l+1} \sum_{i=0}^{l+1}\left[\begin{array}{c}
l+1 \\
i-k
\end{array}\right] x^{k+l+1-i}[i+1]_{q} A_{i}^{*}(z) q^{(k+1)(l+2-i)+k^{2}-k-1} \\
& =(-1)^{l+1} \sum_{j=0}^{l+1}\left[\begin{array}{c}
l+1 \\
j
\end{array}\right] x^{l+1-j}[k+j+1]_{q} A_{k+j}^{*}(z) q^{(k+1)(l-j)+1},
\end{aligned}
$$

which is exactly the left-hand side of (15).
Remark. When $q=1$, Theorems 1 and 2, which correspond to Theorems 2.2 and 1.1 of Sun [12], are actually equivalent. Indeed, in such a case, we have

$$
\begin{equation*}
(-1)^{n} A_{n}^{*}(1-x)=A_{n}(x), \tag{19}
\end{equation*}
$$

which can be verified as follows:

$$
\begin{aligned}
\sum_{i=0}^{n}\binom{n}{i} a_{i}^{*}(x-1)^{n-i} & =\sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} \sum_{j=0}^{i}\binom{i}{j}(-1)^{j} a_{j}(1-x)^{n-i} \\
& =\sum_{j=0}^{n}\binom{n}{j}(-1)^{j} a_{j} \sum_{i=j}^{n}\binom{n-j}{i-j}(x-1)^{n-i} \\
& =\sum_{j=0}^{n}\binom{n}{j}(-1)^{j} a_{j} x^{n-j} .
\end{aligned}
$$

Now, taking $a_{n}=(-1)^{l+k+n} x^{k+l-n} A_{n}(y)$ with $q=1$,

$$
\begin{aligned}
a_{n}^{*} & =\sum_{i=0}^{n}\binom{n}{i}(-1)^{l+k} x^{k+l-i} A_{i}(y) \\
& =\sum_{i=0}^{n}\binom{n}{i}(-1)^{l+k} x^{k+l-i} \sum_{j=0}^{i}\binom{i}{j}(-1)^{j} a_{j} y^{i-j} \\
& =(-1)^{l+k+n} x^{k+l-n} \sum_{j=0}^{n}\binom{n}{j} a_{j}(-1)^{n-j} \sum_{i=j}^{n}\binom{n-j}{i-j} x^{n-i} y^{i-j} \\
& =(-1)^{l+k} x^{k+l-n} A_{n}(x+y) .
\end{aligned}
$$

It follows from (19) that

$$
a_{n}^{*}=(-1)^{k+l+n} x^{k+l-n} A_{n}^{*}(1-x-y) .
$$

Substituting the above values of a_{n} and a_{n}^{*} in Theorem 1 we obtain Theorem 2. Conversely, it is easy to see that Theorem 1 is a special case of Theorem 2 because

$$
A_{n}(0)=(-1)^{n} a_{n}, \quad A_{n}(1)=a_{n}^{*}
$$

Hence we have proved that Theorems 1 and 2 are actually equivalent when $q=1$.

4. Some applications

In this section we derive some examples from our main theorem; most of them are q-analogs of results in Sun [12].
Example 1. For any fixed integer $i \geq 0$ let $a_{n}=(-1)^{n}\left[\begin{array}{c}n \\ i\end{array}\right] t^{n-i} q^{\binom{i}{2}}$; then it follows from (3) and (5) that

$$
\begin{aligned}
a_{n}^{*} & =\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]\left[\begin{array}{l}
k \\
i
\end{array}\right] t^{k-i} q^{\binom{i}{2}+\binom{k}{2}} \\
& =\left[\begin{array}{c}
n \\
i
\end{array}\right] q^{i^{2}-i} \sum_{k=i}^{n}\left[\begin{array}{c}
n-i \\
k-i
\end{array}\right]\left(t q^{i}\right)^{k-i} q^{\binom{k-i}{2}} \\
& =\left[\begin{array}{c}
n \\
i
\end{array}\right]\left(-t q^{i} ; q\right)_{n-i} q^{i^{2}-i} .
\end{aligned}
$$

Substituting the above values in (8) of Theorem 1 yields

$$
\begin{gather*}
\sum_{j=0}^{l}\left[\begin{array}{l}
l \\
j
\end{array}\right]\left[\begin{array}{c}
k+j \\
i
\end{array}\right](-1)^{l-j}\left(-q^{i} t ; q\right)_{k+j-i} q^{j(j+1) / 2-l j+\binom{i}{2}} \\
=\sum_{j=0}^{k}\left[\begin{array}{l}
k \\
j
\end{array}\right]\left[\begin{array}{c}
l+j \\
i
\end{array}\right] t^{l+j-i} q^{k l+j(j-1) / 2} \tag{20}
\end{gather*}
$$

For variations of methods, we will give two more proofs of (20). Note that when $q=1$ Eq. (20) reduces to a crucial result of Sun [12, Lemma 3.1], which was proved by using a derivative operator.

We first q-generalize Sun's proof by using a q-derivative operator. For any polynomial $f(t)$ in t, let D_{q} be the q-derivative operator with respect to t :

$$
D_{q} f(t)=\frac{f(t q)-f(t)}{(q-1) t}
$$

Clearly we have

$$
D_{q} t^{n}=\frac{q^{n}-1}{q-1} t^{n-1}, \quad D_{q}\left((-t ; q)_{n}\right)=[n]_{q}(-q t ; q)_{n-1}
$$

For integer $i \geq 0$ define $[i]_{q}!=\prod_{j=0}^{i}[j]_{q}$; then

$$
\begin{align*}
& D_{q}^{i}\left(t^{n}\right)=[i]_{q}!\left[\begin{array}{c}
n \\
i
\end{array}\right] t^{n-i}, \tag{21}\\
& D_{q}^{i}\left((-t ; q)_{n}\right)=q^{i(i-1) / 2}[i]_{q}!\left[\begin{array}{c}
n \\
i
\end{array}\right]\left(-q^{i} t ; q\right)_{n-i} \tag{22}
\end{align*}
$$

By Gauss inversion, the q-binomial formula (5) is equivalent to

$$
z^{n}=\sum_{j=0}^{n}(-1)^{j} q^{\binom{j+1}{2}-n j}\left[\begin{array}{c}
n \\
j
\end{array}\right](z ; q)_{j}
$$

Replacing z by $-t q^{k}$ we get

$$
\left(t q^{k}\right)^{n}=\sum_{j=0}^{n}\left[\begin{array}{l}
n \tag{23}\\
j
\end{array}\right](-1)^{n-j} q^{j(j+1) / 2-n j}\left(-t q^{k} ; q\right)_{j}
$$

Now, using the q-derivative operator and (21)-(23), we can write the difference of the two sides of (20) as follows:

$$
\begin{aligned}
& \frac{1}{[i]_{q}!} D_{q}^{i}\left((-t ; q)_{k} \sum_{j=0}^{l}\left[\begin{array}{l}
l \\
j
\end{array}\right](-1)^{l-j} q^{j(j+1) / 2-l j}\left(-t q^{k} ; q\right)_{j}\right. \\
& \left.\quad-\left(t q^{k}\right)^{l} \sum_{j=0}^{k}\left[\begin{array}{c}
k \\
j
\end{array}\right] q^{j(j-1) / 2} t^{j}\right) \\
& =\frac{1}{[i]_{q}!} D_{q}^{i}\left((-t ; q)_{k}\left(t q^{k}\right)^{l}-\left(t q^{k}\right)^{l}(-t ; q)_{k}\right),
\end{aligned}
$$

which is clearly equal to 0 .
Our second proof of (20) uses the machinery of basic hypergeometric functions. Rewriting (20) in terms of basic hypergeometric functions, we have

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
k \\
i
\end{array}\right](-1)^{l}\left(-q^{i} t ; q\right)_{k-i} q^{\binom{i}{2}}{ }_{3} \Phi_{2}\left[\begin{array}{c}
q^{-l}, q^{k+1},-t q^{k} \\
q^{k-i+1}, 0
\end{array}, q, q\right]} \\
\quad=\left[\begin{array}{l}
l \\
i
\end{array}\right] t^{l-i} q^{k l}{ }_{2} \phi_{1}\left[\begin{array}{c}
q^{-k}, q^{l+1} \\
q^{l-i+1}
\end{array} ; q,-t q^{k}\right. \tag{24}
\end{array}\right] .
$$

A standard proof of (24) goes then as follows:

$$
\begin{aligned}
& {\left[\begin{array}{c}
k \\
i
\end{array}\right](-1)^{l}\left(-t q^{i} ; q\right)_{k-i} q^{\binom{i}{2}}\left(-t q^{k-i}\right)_{3}^{l} \Phi_{2}\left[\begin{array}{c}
q^{-l}, q^{-i},\left(-t q^{i-1}\right)^{-1} \\
q^{k-i+1}, 0
\end{array} ; q, q\right]} \\
& \text { (by [8, p. 241(III.11)]) } \\
& =\left[\begin{array}{c}
k \\
i
\end{array}\right] t^{l} q^{(k+i) l} q^{\binom{i}{2}}\left(-t q^{i} ; q\right)_{k-i} \frac{\left(q^{l-i+1} ; q\right)_{i}}{\left(q^{-k} ; q\right)_{i}}\left(t q^{k+l}\right)^{-i} \\
& \times{ }_{2} \Phi_{1}\left[\begin{array}{c}
q^{-i}, q^{k+l+1-i} \\
q^{l-i+1}
\end{array} ; q,-t q^{i}\right] \quad \text { (by [8, p. 241(III.6)]) } \\
& =\left[\begin{array}{l}
l \\
i
\end{array}\right] q^{k l} t^{l-i}\left(-t q^{i} ; q\right)_{k-i} \frac{\left(-t q^{k} ; q\right)_{\infty}}{\left(-t q^{i} ; q\right)_{\infty}} 2 \Phi_{1}\left[\begin{array}{c}
q^{-k}, q^{l-1} \\
q^{l-i+1} ; q,-t q^{k}
\end{array}\right] \\
& \text { (by [8, p. 241(III.3)]) }
\end{aligned}
$$

which is equal to the right-hand side of (24).

Example 2. Let $a_{n}=\left[\begin{array}{c}x+n \\ m\end{array}\right] q^{-m n}$ for $n \in \mathbb{N}$. By the notation (3), we have

$$
\begin{aligned}
a_{n}^{*} & =\sum_{i=0}^{n}\left[\begin{array}{l}
n \\
i
\end{array}\right](-1)^{i}\left[\begin{array}{c}
x+i \\
m
\end{array}\right] q^{\binom{i}{2}-i m} \\
& = \begin{cases}(-1)^{n}\left[\begin{array}{c}
x \\
m-n
\end{array}\right] q^{-m n+\binom{n}{2}} & \text { if } m \geq n \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Theorem 1 implies that

$$
\begin{aligned}
& \sum_{j=0}^{k} {\left[\begin{array}{l}
k \\
j
\end{array}\right] \frac{(-1)^{j}}{[l+j+1]_{q}}\left[\begin{array}{c}
x+l+j+1 \\
m
\end{array}\right] q^{-m(l+j+1)+\binom{j}{2}} } \\
&=(-1)^{k} \sum_{k \leq j \leq m} \frac{1}{[j]_{q}}\left[\begin{array}{c}
l \\
j-k-1
\end{array}\right]\left[\begin{array}{c}
x \\
m-j
\end{array}\right] q^{\binom{j-k}{2}+\binom{j}{2}-l(j-1)-m j} \\
& \quad+\frac{\left[\begin{array}{c}
x \\
m
\end{array}\right]}{[k+l+1]_{q}\left[\begin{array}{c}
k+l \\
k
\end{array}\right]} .
\end{aligned}
$$

Example 3. Let $c_{n}=\left[\begin{array}{l}y \\ n\end{array}\right] /\left[\begin{array}{l}x \\ n\end{array}\right]$ for $n \in \mathbb{N}$. Then $c_{n}^{*}=\left[\begin{array}{c}x-y \\ n\end{array}\right] q^{n y} /\left[\begin{array}{l}x \\ n\end{array}\right]$. In fact,

$$
\begin{aligned}
{\left[\begin{array}{l}
n \\
k
\end{array}\right]=} & (-1)^{k}\left[\begin{array}{c}
-n+k-1 \\
k
\end{array}\right] q^{n k-\binom{k}{2}} . \\
{\left[\begin{array}{l}
x \\
n
\end{array}\right] c_{n}^{*} } & =\sum_{i=0}^{n}\left[\begin{array}{c}
x-i \\
n-i
\end{array}\right](-1)^{i}\left[\begin{array}{l}
y \\
i
\end{array}\right] q^{\binom{i}{2}} \\
& =(-1)^{n} \sum_{i=0}^{n}\left[\begin{array}{c}
x-n+1 \\
n-i
\end{array}\right]\left[\begin{array}{l}
y \\
i
\end{array}\right] q^{(x-i)(n-i)-\binom{n-i}{2}+\binom{i}{2}} \\
& =(-1)^{n} q^{x n-\binom{n}{2}}\left[\begin{array}{c}
n-x-1+y \\
n
\end{array}\right]=\left[\begin{array}{c}
x-y \\
n
\end{array}\right] q^{n y} .
\end{aligned}
$$

By the identities in Theorem 1, we obtain

$$
\begin{aligned}
& \sum_{j=0}^{k}\left[\begin{array}{l}
k \\
j
\end{array}\right] \frac{(-1)^{j}\left[\begin{array}{c}
y \\
l+j+1
\end{array}\right]}{\left[\begin{array}{c}
x-1 \\
l+j
\end{array}\right]} q^{\binom{j+1}{2}}+\sum_{j=0}^{l} \frac{(-1)^{j}\left[\begin{array}{c}
x-y \\
k+j+1
\end{array}\right]}{\left[\begin{array}{c}
x-1 \\
k+j
\end{array}\right]} q^{(k+j+1) y+\binom{j+1}{2}-l(k+j+1)} \\
& \quad=\frac{[x]_{q}}{[k+l+1]\left[\begin{array}{c}
k+l \\
k
\end{array}\right]}
\end{aligned}
$$

and

$$
\sum_{j=0}^{k}\left[\begin{array}{c}
k \\
j
\end{array}\right](-1)^{j} \frac{\left[\begin{array}{c}
y \\
l+j
\end{array}\right]}{\left[\begin{array}{c}
x \\
l+j
\end{array}\right]} q^{\binom{j}{2}}=\sum_{j=0}^{l}(-1)^{j} \frac{\left[\begin{array}{c}
x-y \\
k+j
\end{array}\right]}{\left[\begin{array}{c}
x \\
k+j
\end{array}\right]} q^{(k+j) y+\binom{j+1}{2}-l(k+j)}
$$

Example 4. Carlitz [4, (3.1)] defined the q-Stirling numbers of the second kind $\left\{\begin{array}{l}m \\ n\end{array}\right\}_{q}$ by

$$
[n]_{q}^{m}=\sum_{i=0}^{m}\left\{\begin{array}{c}
m \\
i
\end{array}\right\}_{q}[i]_{q}!\left[\begin{array}{l}
n \\
i
\end{array}\right] q^{\binom{i}{2}} .
$$

By Gauss inversion we get

$$
\begin{aligned}
\left\{\begin{array}{l}
m \\
n
\end{array}\right\}_{q} & =\frac{q^{-\binom{n}{2}}}{[n]_{q}!} \sum_{i=0}^{n}(-1)^{i} q^{\binom{i}{2}}\left[\begin{array}{l}
n \\
i
\end{array}\right][n-i]_{q}^{m} \\
& =\frac{1}{[n]_{q}!} \sum_{i=0}^{n}(-1)^{n-i} q^{\binom{i+1}{2}-n i}\left[\begin{array}{l}
n \\
i
\end{array}\right][i]_{q}^{m} .
\end{aligned}
$$

So we have the following q-dual sequences:

$$
a_{n}=(-1)^{n}[n]_{q}!\left\{\begin{array}{c}
m \\
n
\end{array}\right\}_{q}, \quad a_{n}^{*}=[n]_{q}^{m} .
$$

Substituting these values in Theorem 1 yields corresponding identities. For example, applying (8) we obtain

$$
\begin{aligned}
& \frac{1}{[l]_{q}!} \sum_{j=0}^{l}(-1)^{l-j} q^{\binom{j+1}{2}-l(k+j)}\left[\begin{array}{l}
l \\
j
\end{array}\right][k+j]_{q}^{m} \\
& \quad=\sum_{j=0}^{k} q^{\binom{j}{2}}\left[\begin{array}{c}
l+j \\
j
\end{array}\right] \frac{[k]_{q}!}{[k-j]_{q}!}\left\{\begin{array}{c}
m \\
l+j
\end{array}\right\}_{q} .
\end{aligned}
$$

The left-hand side of the above identity is called a non-central q-Stirling number of the second kind, with non-centrality parameter k, by Charalambides [5]. This number was first discussed by Carlitz [4, (3.8)] and recently by Charalambides [5, (3.5)]. Note that for $k=0$ these numbers reduce to the usual q-Stirling numbers of the second kind, while for $k \neq 0$ the above identity connects the non-central to the usual q-Stirling numbers of the second kind.

Example 5. Taking $e(t)=\sum_{n=0}^{\infty} \frac{x^{n}}{[n]_{q}!}$ as a q-analog of the exponential function e^{x}, Al-Salam [2, 2.1] defined a q-analog of Bernoulli numbers B_{n} by

$$
\frac{1}{e(t)-1}=\sum_{n=0}^{\infty} \frac{t^{n}}{[n]_{q}!} B_{n} .
$$

These q-Bernoulli numbers B_{n} satisfy the following recurrence relation (see [2, 4.3]):

$$
[1, B]^{n}= \begin{cases}B_{n} & n>1, \\ 1+B_{1} & n=1 .\end{cases}
$$

Now, if $a_{0}^{*}=B_{0}=1$ and, for $n \geq 1, a_{n}^{*}=B_{n}=\sum_{i=0}^{n}\left[\begin{array}{c}n \\ i\end{array}\right] B_{i}$, then $a_{0}=1$ and for $n \geq 1$

$$
a_{n}=\sum_{i=0}^{n}\left[\begin{array}{c}
n \\
i
\end{array}\right](-1)^{i} q^{\binom{i+1}{2}-i n} \sum_{j=0}^{i}\left[\begin{array}{l}
i \\
j
\end{array}\right] B_{j}
$$

$$
\begin{aligned}
& =\sum_{j=0}^{n}\left[\begin{array}{l}
n \\
j
\end{array}\right] B_{j} \sum_{i \geq j}\left[\begin{array}{l}
n-j \\
i-j
\end{array}\right](-1)^{i} q^{\binom{i+1}{2}-n i} \\
& =(-1)^{n} B_{n} q^{-\binom{n}{2}} .
\end{aligned}
$$

Theorem 1 infers then the following identities, which are q-analogs of the identities of Kaneko [10] and Momiyama [11] on Bernoulli numbers.

Proposition 1. For $k, l \in \mathbb{N}$,

$$
\begin{aligned}
& \sum_{j=0}^{k}\left[\begin{array}{l}
l \\
j
\end{array}\right] \frac{(-1)^{j} B_{k+j+1}}{[k+j+1]_{q}} q^{\binom{j+1}{2}-l(k+j+1)}+\sum_{j=0}^{l}\left[\begin{array}{l}
k \\
j
\end{array}\right] \frac{(-1)^{l+1} B_{l+j+1}}{[l+j+1]_{q}} q^{-\binom{l+1}{2}-l j} \\
& \quad=\frac{1}{[k+l+1]_{q}\left[\begin{array}{c}
k+l \\
k
\end{array}\right]}, \\
& \sum_{j=0}^{l}\left[\begin{array}{l}
l \\
j
\end{array}\right](-1)^{j} B_{k+j} q^{\binom{l-j}{2}}=\sum_{j=0}^{k}\left[\begin{array}{l}
k \\
j
\end{array}\right](-1)^{l} B_{l+j} q^{l(k-j)}, \\
& \sum_{j=0}^{l+1}\left[\begin{array}{c}
l+1 \\
j
\end{array}\right](-1)^{j+1}[k+j+1]_{q} B_{k+j} q^{\binom{l-j}{2}-j} \\
& \quad=\sum_{j=0}^{k+1}\left[\begin{array}{c}
k+1 \\
j
\end{array}\right](-1)^{l}[l+j+1]_{q} B_{l+j} q^{(k-j)(l+1)+1} .
\end{aligned}
$$

Example 6. Al-Salam [2] also defined the q-Bernoulli polynomials $B_{n}(x)=$ $\sum_{k=0}^{n}\left[\begin{array}{l}n \\ k\end{array}\right] B_{k} x^{n-k}$. By Example 5, if $a_{n}=(-1)^{n} B_{n} q^{-\binom{n}{2}}$ then $a_{n}^{*}=B_{n}$. Therefore

$$
A_{n}(x)=\sum_{i=0}^{n}\left[\begin{array}{c}
n \\
i
\end{array}\right] B_{i} x^{n-i}=B_{n}(x) \text { and } A_{n}^{*}(x)=\sum_{i=0}^{n}\left[\begin{array}{l}
n \\
i
\end{array}\right](-1)^{i} B_{i} x^{n-i}=B_{n}^{*}(x)
$$

If we replace $A_{n}(x)$ and $A_{n}^{*}(x)$ by $B_{n}(x)$ and $B_{n}^{*}(x)$, respectively, we get the following result.

Proposition 2. For $k, l \in \mathbb{N}$,

$$
\begin{aligned}
& (-1)^{l} \sum_{j=0}^{l}\left[\begin{array}{l}
l \\
j
\end{array}\right] x^{l-j} \frac{B_{k+j+1}^{*}(z)}{[k+j+1]_{q}} q^{-k j-\binom{k+1}{2}} \\
& \quad+(-1)^{k} \sum_{j=0}^{k}\left[\begin{array}{l}
k \\
j
\end{array}\right] x^{k-j} \frac{B_{l+j+1}([1,-x,-z])}{[l+j+1]_{q}} q^{\binom{j+1}{2}-k(l+j+1)} \\
& \quad=\frac{a_{0}(-x)^{k+l+1}}{[k+l+1]\left[\begin{array}{c}
k+l \\
k
\end{array}\right]} \\
& (-1)^{l} \sum_{j=0}^{l}\left[\begin{array}{l}
l \\
j
\end{array}\right] x^{l-j} B_{k+j}^{*}(z) q^{k(l-j)}
\end{aligned}
$$

$$
\begin{aligned}
& \quad=(-1)^{k} \sum_{j=0}^{k}\left[\begin{array}{l}
k \\
j
\end{array}\right] x^{k-j} B_{l+j}([1,-x,-z]) q^{\binom{k-j}{2}}, \\
& (-1)^{l+1} \sum_{j=0}^{l+1}\left[\begin{array}{c}
l+1 \\
j
\end{array}\right] x^{l+1-j}[k+j+1]_{q} B_{k+j}^{*}(z) q^{(k+1)(l-j)+1} \\
& \quad=(-1)^{k} \sum_{j=0}^{k+1}\left[\begin{array}{c}
k+1 \\
j
\end{array}\right] x^{k+1-j}[l+j+1]_{q} B_{l+j}([1,-x,-z]) q^{(k-j)-j} 2 .
\end{aligned}
$$

Remark. It is easy to see that $B_{n}(0)=B_{n}$ and $B_{n}(0)^{*}=(-1)^{n} B_{n}$. Hence Proposition 1 can be derived from Proposition 2 by taking $x=1$ and $z=0$.

Acknowledgements

This work was done under the auspices of the National Science Foundation of China. The second author thanks Sun Zhi-Wei for asking a q-question about the results in [12], and was also supported by the EC's IHRP Programme, within Research Training Network "Algebraic Combinatorics in Europe", grant HPRN-CT-2001-00272.

References

[1] M. Aigner, Combinatorial Theory, Grundlehren der mathematischen Wissenschaften, vol. 234, SpringerVerlag, 1979.
[2] W.A. Al-Salam, q-Bernoulli numbers and polynomials, Math. Nachr. 17 (1959) 239-260.
[3] G.E. Andrews, The Theory of Partitions, Cambridge University Press, 1984.
[4] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. 15 (1948) 987-1000.
[5] Ch.A. Charalambides, Non-central generalized q-factorial coefficients and q-Stirling numbers, Discrete Math. 275 (2004) 67-85.
[6] R.J. Clarke, G.N. Han, J. Zeng, A combinatorial interpretation of Seidel generation of q-derangement numbers, Ann. Comb. 1 (1997) 313-327.
[7] D. Dumont, Matrices d'Euler-Seidel, Sém. Lothar. Combin. B05c (1981).
[8] G. Gasper, M. Rahman, Basic Hypergeometric Series, second ed., in: Encyclopedia of Math. and its Applications, vol. 96, 2004.
[9] I. Gessel, Applications of classical umbral calculus, Algebra Universalis 49 (2003) 397-434.
[10] M. Kaneko, A recurrence formula for the Bernoulli numbers, Proc. Japan Acad. Ser. A. Math. Sci 71 (1995) 192-193.
[11] H. Momiyama, A new recurrence formula for Bernoulli numbers, Fibonacci Quart. 39 (2001) 324-333.
[12] Z.W. Sun, Combinatorial identities in dual sequences, European J. Combin. 24 (6) (2003) 709-718.
[13] J. Zeng, On some q-identities related to divisor functions, Adv. Appl. Math. 34 (2005) 313-315.

[^0]: E-mail addresses: houjx @ mail.nankai.edu.cn (S.J.X. Hou), zeng @math.univ-lyon1.fr (J. Zeng).

