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Abstract

In the present paper combinatorial identities involving g-dual sequences or polynomials with
coefficients that are g-dual sequences are derived. Further, combinatorial identities for g-binomial
coefficients (Gaussian coefficients), g-Stirling numbers and g-Bernoulli numbers and polynomials
are deduced.
© 2005 Elsevier Ltd. All rights reserved.

MSC: primary 05A30; secondary 33D99

1. Introduction

Given a sequence ag, di,d2, ...,dy, ... of elements of a commutative ring R (for
example, the complex numbers, polynomials or rational functions), one usually describes
as the Euler—Seidel matrix associated with (a,) the double sequence (a,’i) (n>0k=>0)
given by the recurrence [7]

0 k k—1 k—1
a, =an, a,=a, +a, (k>=1,n=>0).

The sequence (ag) of the first row of the matrix is the initial sequence. The sequence (aj)
of the first column of the matrix is the final sequence. Such a matrix is equivalent to the
table obtained by computing the finite difference of consecutive terms of (a;) and iterating
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the procedure. One passes from the initial sequence to the last one and conversely through

agzi(':)a = a" _Z( 1" ’( ) a. (1

i=0

If one sets a, = (— 1)”a2 and a,; = (—1)"ay, then the above relations can be written as

Z( (% )al<:>an—2< D' (7). @)

In [12] the sequence (a;) is called the dual sequence of (a,). It is well known that if
ap = (—1)" By, where (B,) = (1,—1/2,1/6,0, —1/30, .. ) is the sequence of Bernoulli
numbers, then af = a,, that is ((—1)"B,) is self-dual. Generalizing the results of
Kaneko [10] and Momiyama [11] on Bernoulli numbers, Sun [12] has recently proved
some remarkable identities on dual sequences. Other generalizations of Kaneko’s identity
have been obtained by Gessel [9] using umbral calculus.

The aim of this paper is to give a g-version of Sun’s results in [12]. In the last two
decades there has been an increasing interest in generalizing the classical results with a
generic parameter g, which is the so-called phenomenon of “g-disease”. As regards the
Euler—Seidel matrix, Clarke et al. [6] have given a g-analog of (1) with application to
g-enumeration of derangements.

We shall need some standard g-notation, which can be found in Gasper and Rahman’s
book [8]. The g-shifted factorial (a; q), is defined by (a; g)o = 1 and

@ qh=>0—-a)1—aq)---(1—ag"™"

if n is a positive integer. For k € Z the k-integer [k], is defined by [k], = 1=

T—q
[—k]; = —q_k[k]q. For integer k, the g-binomial coefficient [Z] is defined by [ ]
k < 0and

1=q
q’
=0if

a—k+1)

[a] _(—¢90 —q*H.--(1—¢q
k (q; 9k

if k is a positive integer. Let (a,) be a sequence of a commutative ring. We call the sequence
(a}) given by

n i
0 =3 [ iag) 3
i=0 !
the g-dual sequence of (a,). By Gauss inversion [1, p. 96] we get
n r+lY)_
aFZ[n](—l)’ai‘q( ) @)
r=0 r
We will need the following g-analog of the binomial formula [3, p. 36]:

@G = m (—1yzig(3), 5)

=0
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and the g-Chu—Vandermonde formula [8, p. 354]:

o [q_”,a,q q} :i @ @rla; ¥ _ (c/a; @)n n ©)
SRR = Gor @k (Cgn
The following is our basic theorem.
Theorem 1. For k,l € N the following identities hold true:
Xl: [1} (_1)’“:+j+1q(’+') ke+j+1) +Zk: [k} (—l)faz+j+1q(-f;')
r=ANANCEEaIR Zlilu+i+n,
ao
(N

M+H4]P”]

_ K Tk
|: i|( 1)]ak+] 1) 1(k+]) Z[ i|( 1)]Cl1+]6]<) 8)

J

MN

~ .
+
(=}

[Hi :|( 1)]+1[k+J+1]qak+] ( ) 1(k+j)—k

~.
Il
S

k+1 i
:Zﬂ f}(lwuq+uwum<) ©)
j=oL J

The above theorem is a g-analog of Theorem 2.1 in Sun [12]. Note also that Eq. (8) was
also a g-analog of Theorem 7.4 in Gessel [9].

The rest of this paper will be organized as follows: we prove Theorem 1 in Section 2
and present a g-analog of Sun’s main theorem in Section 3. In Section 4, we present some
interesting examples as applications of our Theorems 1 and 2.

2. Proof of Theorem 1

Plugging (3) into the first sum of the left-hand side of (7), we have

k .

k a1 (73

LHS = agB + L}enh——f——qz +c. (10)
j;, J (+j+1]

where

- (1“) I(k+j+1)

l
= -
Z '_( ) k+j+1lg °

j=

(=]
T
~

and

L Fi .i+1)_1(k+j+1) ktj+1 . ‘
[ .q(2 |:k+J+1i| l_ (,)
= E BT R B e
i=0 [ J ] =D [k+]+l]q ; i (=1 aq .

It is known (see [13] for further applications) that
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I
[T —ap~!
i=0

1 l i#‘
N — (11

x+ao)x +a)---(x+a) =z xta;

Setting x = —g%Vanda; = ¢ (0 <i <) in(11) we obtain
+1

Sy ey (12)

= (¢: @) (g5 Qi—j (1 = g*+H+h — (gF 1 g
It follows that

=9 1

@ [k+l+1]q[";’]'

Exchanging the order of summation we can rewrite C as follows:

c—kﬂil( 1)z ] /) Z - 1)’[ Hﬂﬂq(m) =G+l
i=1 q Jj=i—

-1 _k+1

O k] 9 ".q -
—Z( 1)’[]q () i 2451[ s ;q,q}q DL

Applying the g-Chu—Vandermonde formula (6) we obtain

Sooa () k] @
€= ;(_1) ! Li-1] @ g

k ) k ai (D))
_ 1N i + i
=) (-1 [i_l_l}[i]qq(z) (')

N[k i1 wrj (1)
=3[

Substituting the values of B and C into (10) yields (7).
To derive (8) and (9) from (7) we define the linear operator §, by

8q(an) = —ql_”[n]qan_l forn > 0.

Then 6, (a;y) = [nlga;_,. Indeed,

sy = 3 [M] - 0iagana®) = 30 [M] -0 itgai 1)
i=0 i=0

=[n1qZ(—1)i[ }( D a1g(?) = alar,
i=0

Now, applying §, to (7) yields (8). Furthermore, replacing k by k +1 and / by [ + 1 in (8)
then applying 8, on both sides yields (9).
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Remark. We can also prove (8) and (9) directly by using the g-Chu—Vandermonde
formula.

3. A g-analog of Sun’s main theorem

In this section, we assume that x, y and z are commuting indeterminates. Define [x, y]"
by [x, y]O =1and

n

n __ I’l] i . n—i
[x7 y] - Z [l X y
i=0
for positive integer n. So [x, y]* = (x + y)"” when ¢ = 1. Similarly
" rn ] ) [n],! Pk
byl =yl = o[ llyar = et x y 2
; l i,;o [l]q![J]q![k]q!

i+j+k=n

and hence [x, y, z]" is a symmetric polynomial of x, y,z and [x, y,z]" = (x + y + 2)"
wheng = 1.
Like the definition of Bernoulli polynomials, we introduce

n i )
Anr) =Y (=) [',l]a,-q(z)x”—’ and  A*(x) = Z( 1)i [ ] n i,
. i
i=0
The following is our g-analog of the main theorem of Sun [12, Th. 1.1].

Theorem 2. Let k,l € N; then
. () ki <k+1)
1 ﬂ& ]
- )Z[ } k+J+1]qq

+ (=1 Z [’;} k=i Aprj(1, —z, —x])q(f“) k(+j+1)

U+j+1l
ao(_x)k-f—H-l
LS VA (13)
e+1+ 1[4
!
(—I)IZ[”xl_fAzH(Z)qk(l_j)
=0
Kok .
=(—1>"ZM A (01— —xDgl ). (14)
=0

I+1
(=p! Z [ }x’“—f [kt j + g A7 (@)g DD

k+1 ) (k—j)_-
= (=DF Z[ }x"+1—f[l+j+quH,-([l,—z,—x])q 2)7 )
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Proof. We derive from (4) and (5) that

n

Al =) = 3 ("] vatn, —xr=iqld)
s 1] m (—1)"—f'a;f[”s_i}(—x)Sq<i2j)
i,j,s>0
= Zm% 2 [nlj} (—1)'’ [n:]_s} 1y q()
j=0 i,s>0
=(—1)”Z[ }( D aixnI
P
= (=" A5, (16)

and

An(ll =z, —x) = ) [’:] 1Y aill, —z, —x7"g ()

2

n

e

e
Z[ }( DY An—j (1, 2D

- (—1)n2[ﬂxm; @, .

j=0

Denote the first sum of the left-hand side in (13) by C. Applying (16) and (17), the left-hand
side of (13) is equal to

k —j I4j+1 .
(_l)kZ k xk=i q(”‘) k(+j+1) i I+j+1
J1U+j+ 1], i

j=0 =0
X Ai([1, =z (—x)! T 4 ¢ = ap(—x) B+ S+ C, (18)
where
D) —k(+j+1)
' L)
B= Z[ } SR EAR—
=L [+ j+1l,
and

S=(— 1)k+l+12|: }( g (2) k(l+/+1)Z[l+J} k+l+1—iA;-k(Z).

lilg
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Exchanging k and / in (12) yields
1

B= k+
[k+1+ 1]q[ i ]
Now, we show that S = —C. Exchanging the order of summation we have
A ) q—k ql+1
kH+1 o= g 4 g | gk
= (=D Z i1 l]q 2%1 ql—z+2 q.49\49

I 1A% (@7 g
_ ( 1)k+l+1 Z I:l B 1} l]q xk-H (ql_i+2; q)k

(by g -Chu—Vandemonde)

( 1)l+1 Z |: el 1:| A?(Z)xk+1+l—iq_ik+(k§1)

i ]q

— (—1yH! Z[ :| Al @ i I () _ —C.

[k+Jj+ 14

Next, the right-hand side of (14) is equal to

k I+ j
<—1>k2u . ’Z][H]} oA, —zg ()

j=0

1 —k _I+1 k
l _ )
= (Y ka*’ A 59, I:qql—ic{l—l quI}q@)

i=0
— (= 1)t L1 AR () (@' (§)+k(1+1)
B i @ g
i=0 )
I
— (_1)1 Z [ l k} xk+l—iA;_|<(Z)q—ik+k2+kl
" 1 —
i=0

[ . .
= (1) |:j:|xl TA; (g7,
0

which is exactly the left-hand side of (14).
Finally, exchanging the order of summation, the right-hand side of (15) can be written
as
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= (=D Z [k—]i- 1i|xk+l+l—i[l- 1l (=1 |:l +j+ 1i| AT(Z)q(k;j)_j

720 i+1

Hlr T k=1 142 .
o 5 (2)
— —l k+1 )Ck+l+1 1 l+1 A* ¢ q ’q 1 q, 2 X
=D ;_ i [ lgA; (@), P gt q.9 |49
By the g-Chu—Vandermonde formula we have
I+1 1 Y
[+1 . i-l. k
R=(=DY R AT 1, A%(2) (611 _ D1 (5)+e+Da+2)
=L i (@ @i
R YRR R k1) (142 —i)+k2—k—1
=Dty AR 4 1], A% () gD 2D+ k=
— Li — k]
Ll ' '
= (—1)l+1 Z ; =i [k +j+ 1]qu+j(Z)6](k+l)(l_j)+l,
j=obt J

which is exactly the left-hand side of (15). a

Remark. When ¢ = 1, Theorems 1 and 2, which correspond to Theorems 2.2 and 1.1 of
Sun [12], are actually equivalent. Indeed, in such a case, we have

(=D"A;(1 —x) = A, (), (19)
which can be verified as follows:

Zo (e == ZO (7)o > (’) (~DVa;(1 = )"

=0\

n n ) n i’l—j »
— _1], _ll’ll
j—0<j)( >aJZ<,-_j><x )

i=j

n n . .

=> < ) (—1) a;x".
j=0 N/

Now, taking a, = (— 1)kt xk+l=n A (y) with g = 1,

n

at = Z (’:) (— D)+ k= 4,4

i=0
n n S i . ..
— Z ( . ) (— 1)k k=i Z < ) (—D)ia;yi=
i—0 ! =0 \J
= (—1)lHkn phtl=n Xn: <”) aj(—1)"~i Xn: <” - J) X"l yi=i
j=0 N iz NPT

— (_1)l+kxk+l—nAn(x + y)
It follows from (19) that

a;}; — (_1)k+l+nxk+l—nA:(1 —x = y)
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Substituting the above values of a,, and a in Theorem 1 we obtain Theorem 2. Conversely,
it is easy to see that Theorem 1 is a special case of Theorem 2 because

An(0) = (=1D)"ay, A1) =a,.

Hence we have proved that Theorems 1 and 2 are actually equivalent when g = 1.

4. Some applications

In this section we derive some examples from our main theorem; most of them are
g-analogs of results in Sun [12].

Example 1. For any fixed integeri > 0 leta, = (—1)" [”] "ig <2); then it follows from
(3) and (5) that

n i k
i= S [0
i
2 — o (k=i
= [’?]qlz_’ > [n l} (tq'yig("?)
i — k—i
n . 2.
= [l. ] (—tq"; @n-iq" .
Substituting the above values in (8) of Theorem 1 yields

! k . T i
Z[ H J”}( D (~q't: g jmig’ T ()
— Z[ } [1 +J} (=i gkl G=)2, (20)

For variations of methods, we will give two more proofs of (20). Note that when g = 1
Eq. (20) reduces to a crucial result of Sun [12, Lemma 3.1], which was proved by using a
derivative operator.

We first g-generalize Sun’s proof by using a g-derivative operator. For any polynomial
f(®)int, let D, be the g-derivative operator with respect to :

IR0
Dy f(t) = G-
Clearly we have
D" = qn -1 n—1 . _ .
gl = qjt ) Dy ((—t; @)n) = [n]g(—qt; @n-1.
For integer i > 0 define [i],;! = ]_[;-zo[j]q; then
j . N n—i
Dy = 11 ], @

Dy (=t ) = "1t || (~a't: @i 22)
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By Gauss inversion, the g-binomial formula (5) is equivalent to
n
=Z(—1)jq( ) '”[ }(z q)j-
j=0

Replacing z by —1g* we get
n n YT o
(tg"y" =Y M (=)' g/ UtV (—tg%; ). (23)
=0

Now, using the g-derivative operator and (21)—(23), we can write the difference of the two
sides of (20) as follows:

]
—D’ (( t q»ZM (—1)/ g/ VDR 1k ¢

[i]4! =
kel . .
_ (tqk)l Z |: :| q/(f_l)/2t1>
=0t/

= W'y (=1 g’ = g™ (=139)

which is clearly equal to 0.
Our second proof of (20) uses the machinery of basic hypergeometric functions.
Rewriting (20) in terms of basic hypergeometric functions, we have

k ) i —l7 k+1’ —t k
[i}(—l)l(—q’t; q)k—iq(z)g% [q qkq—i+1 0 1 ;q,q}

17, —k gl
:Mtl ‘g4 1 [qql_iil ;q,—qu}. (24)
A standard proof of (24) goes then as follows:
k ) i . —l’ —i’ —t i—1y—1
I:l.:|(_1)1(—N]l§Cl)k—iq(z)(_qu e, [" "qk_fH ) ;q,q}
(by [8, p. 241(IIL.11)])

_ [k} gl (é)(_tqi;q)k_i @5 i ket
i @ @i
k+Hl+1—i

l .
x b, [‘1 ’qlq il ,q,—tq’i| (by [8, p. 241(IIL6)])

Ul waa—i ; (—14"; oo g~ g k
=|. ¢ "t (—tqg"s ki ———— ,P iy g, —tq
[l} “(—1g @) 2 ML ¢

[—i+1

(by [8, p. 241(I11.3)])
which is equal to the right-hand side of (24).
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Example 2. Leta, = [*}"] ¢~ for n € N. By the notation (3), we have

=Y ["]cw [’C;"} g(3)=im

i=0

(—1)"[ ! }q—m”(%) ifm > n,
= m-—n

0 otherwise.

Theorem 1 implies that

i |:k:| [ =1/ [x +Il+j+ l:| q—m(l+j+l)+<é)

Slilu+i+ny, m

= (=) L ! x Y4 (4) G =1 —mj
k7 PR PR T

k<j<m -/
L]

+[k+l+1]q[";j’]'

Example 3. Letc, = [)]/[}] forn € N. Thenc} = [* 7 ]¢™/[}] In fact,

n

(=t [ e
[la=X[o e ]t

=

— Y [x o 1} 274000 ()

P n—i1 1

— (_1))1qxn—(g) [n —x—1 +yi| _ I:x _yi| qny.

n n

By the identities in Theorem 1, we obtain
Crr D dn] o) & EVY LN e () s
k I+j+1 i* k+j+1 k 1 I~k 1
Z[:| J 6](2)+Z J q(+j+)y+(2) (k+j+1)
J x—1 . x—1
[l+j] j=0 [k+j]
[x]q

=[k+l+1]["ﬂ

J=0

and

Xk: [k:| (_1)qu(£) = Xl:(_l)jmq(k+j)y+<j;l)—l(k+j).
L e A M 2
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Example 4. Carlitz [4, (3.1)] defined the g-Stirling numbers of the second kind {"' }q by

=57 a1

By Gauss inversion we get

), =ty Zena [
Z( =g [y

So we have the following g-dual sequences:

an=(—1)"[n]q!ir:}q, a,’f:[n]gl.

[n]q

Substituting these values in Theorem 1 yields corresponding identities. For example,
applying (8) we obtain

q" J
Cope)
;0" i Je=ag i+,

The left-hand side of the above identity is called a non-central q-Stirling number of the
second kind, with non-centrality parameter k, by Charalambides [5]. This number was first
discussed by Carlitz [4, (3.8)] and recently by Charalambides [5, (3.5)]. Note that for k = 0
these numbers reduce to the usual g-Stirling numbers of the second kind, while for k # 0
the above identity connects the non-central to the usual g-Stirling numbers of the second
kind.

Example 5. Taking e(r) = Y o ﬁl;, as a g-analog of the exponential function e*,
Al-Salam [2, 2.1] defined a g-analog of Bernoulli numbers B, by

1 o0

"

These g-Bernoulli numbers B, satisfy the following recurrence relation (see [2, 4.3]):

Bn I’l>1,

n __
(1. B _{1+Bl n=1.

Now, if aj = Bo = 1 and, forn > 1,a; = B, = ). O[';]B,-,thenao:landfornzl

an:f[ =1yg(s) 3 MB,

i=0
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L

1>]
= (=1)"Bug~ ).

Theorem 1 infers then the following identities, which are g-analogs of the identities of
Kaneko [10] and Momiyama [11] on Bernoulli numbers.

Proposition 1. Fork,l € N,
Xk: [1} (_1)jBk+j+lq<”1) I(k+j+1) Xl:[ } (— 1)Z+lBl+J+1q—([§1)—lf
Ll e+ g+, [+ ) +1]
1
T ki1, ksl

i _j k
ZM( B el ?) = Z[ }( 'Brsjq'*7,

j=0

j=0

I—j .
[”}T }( D/ Mk +j+ 11, Bk+,q( )

k1 |
_ [ * }(—l)l[l+j+l]quﬂ-q(k_”U“)“.
; J
j=0

Example 6. Al-Salam [2] also defined the g¢-Bernoulli polynomials B,(x) =
Y ko [Z] Bix"~*. By Example 5, if a, = (—1)”Bnq_(;) then a* = By,. Therefore

Ap(x) = Z ['Z] Bix"~ = B,(x) and A*(x) = Z [’Z] (—1) Bix"™' = B*(x).

i=0 i=0

If we replace A,(x) and A} (x) by B,(x) and B;(x), respectively, we get the following
result.

Proposition 2. Fork,l € N,

(-1) Z[ } 1 Bl @ ()

k+]+1]q

k] By (1, —x, =2 (f“)—k(z+j+1)
-1 k k—j J 2
o @H‘ TS

ao(—x)k‘HH

:[k+l+1]["7{’]7

]
l . .
G jmxl B, (2)g"")
Jj=0
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k —J
=Dy m ST BL (11 —x—zDg 7)),
=0

I+1

I+1 i . —j

(_1)l+1Z|: ; i|xl+1 ][k—i-] + l]qBZ+j(Z)q(k+l)(l J)+1
it

k+1 1 . k—j _
=(—1>"Z[k? }xk+1"[l+j+11qu+,-([1,—x,—z1>q< )
=0

Remark. It is easy to see that B,(0) = B,, and B,(0)* = (—1)"B,,. Hence Proposition 1
can be derived from Proposition 2 by taking x = 1 and z = 0.
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