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SUMMARY

Selecting a suitable site to deposit their eggs is an
important reproductive need of Drosophila females.
Although their choosiness toward egg-laying sites
is well documented, the specific neural mechanism
that activates females’ search for attractive egg-
laying sites is not known. Here, we show that disten-
tion and contraction of females’ internal reproductive
tract triggered by egg delivery through the tract plays
a critical role in activating such search.We found that
females start to exhibit acetic acid (AA) attraction
prior to depositing each egg but no attraction when
they are not laying eggs. Artificially distending the
reproductive tract triggers AA attraction in non-
egg-laying females, whereas silencing the mechano-
sensitive neurons we identified that can sense the
contractile status of the tract eliminates such attrac-
tion. Our work uncovers the circuit basis of an impor-
tant reproductive need of Drosophila females and
provides a simple model for dissecting the neural
mechanism that underlies a reproductive need-
induced behavioral modification.
INTRODUCTION

The need to care for offspring can alter behaviors of animal

mothers significantly. Many commonly described maternal be-

haviors such as feeding and aggression against intruders serve

the purpose of nurturing and protecting the newborns. But in

some species, pregnancy alone is sufficient to induce changes

in sensory processing and behaviors (Rosenblatt and Lehrman,

1963). Pregnancy-induced hormonal changes are thought to

play a role in activating ‘‘prenatal care behaviors’’ (Kristal,

2009), but the exact circuit mechanism by which the presence

of a fetus in utero modifies the behaviors of expectant mothers

remains not well understood.

The fruit fly Drosophila melanogaster has emerged as a suit-

able model to study the genetic and circuit basis of female repro-

ductive behaviors. Similar to higher animals, virgin and mated/
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pregnant flies show significant differences in their behaviors

and physiologies. For example, virgins are receptive to male

courtship and lay very few eggs, whereas mated females are un-

receptive to courtship, lay eggs frequently, and preferentially

consume proteins over sugars (Carvalho et al., 2006; Kubli,

2003; Ribeiro and Dickson, 2010). Much progress has been

made in recent years in elucidating the molecular and circuit ba-

sis by which the experience of mating modifies physiologies and

behaviors of female flies (Bussell et al., 2014; Feng et al., 2014;

Häsemeyer et al., 2009; Rezával et al., 2012; Yang et al., 2009;

Zhou et al., 2014). In contrast, whether and how egg-laying

need influences how female flies interpret the valence of external

stimuli—so as to guide their decision of whether to move toward

or away from specific stimuli—remains little explored, despite

the fact that female flies are known to be highly selective about

where to lay eggs (Azanchi et al., 2013; Dweck et al., 2013; Jo-

seph et al., 2009; Joseph and Heberlein, 2012; Rockwell and

Grossfield, 1978; Schwartz et al., 2012; Yang et al., 2008).

Here, we show that egg-laying need increases female flies’

attraction for acetic acid (AA) significantly. Behavioral analysis

reveals that signs of AA attraction emerge prior to physical egg

deposition. Manipulating the internal egg-delivery process (that

precedes physical egg deposition) reveals that artificial dis-

tention of the internal reproductive tract is sufficient to activate

AA attraction and that mechanical stretch of the reproductive

tract is sensed and relayed to the CNS by a set of piezo-ex-

pressing sensory neurons. Our results suggest a model in which

Drosophila females modify their AA attraction by assessing, via

mechanosensitive neurons on the tract, whether eggs are being

pushed through their reproductive tract. We propose such acti-

vation of AA attraction in anticipation of impending physical egg

laying may be considered a rudimentary form of maternal care

and provide a suitable model to study the circuit mechanism

by which reproductive needs modify female behaviors.

RESULTS

Egg Laying, but Not Mating, Correlates with Mated
Females’ Positional Preference for AA
It has been shown that, as a population, mated females show

stronger positional preference for AA than virgins do, and they

also prefer to lay eggs on an AA-containing versus an AA-free
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substrate (Joseph et al., 2009). Because mating induces several

behavioral and physiological changes, we first ascertained that

mated females’ increased AA preference is triggered by egg-

laying need as opposed to other mating-induced changes. We

custom-built an apparatus that contains several chambers,

each of which can house one AA+ and one AA� substrate (Fig-

ure S1B). We loaded females into this apparatus (one per cham-

ber), recorded their behaviors for 4 hr (Figure S1A; Movie S1),

and tracked their positions using Ctrax (Branson et al., 2009).

Similar to what was reported previously (Joseph et al., 2009),

we found that mated, egg-laying females show a clear prefer-

ence to lay eggs and to spend time on an AA site (Figure 1A;

Table S1).

To disentangle the impact of mating versus egg laying on po-

sitional preference for AA, we compared AA preference of mated

females that lay very few eggs versus virgins that lay many. (We

have discovered that mated females reduce their egg-laying rate

significantly if their diet is deprived of yeast paste, a protein

source that boosts egg production. Conversely, virgins that

have been continuously fed yeast paste after eclosion can some-

times lay many eggs.) We found that mated females that lay very

few eggs show no positional preference for AA, but virgins that

lay many do (Figure 1A). Importantly, neither yeast-fed males

nor yeast-fed virgins that lay few eggs show any AA preference

(Figure S1F). Together, these results suggest egg laying, not

mating or yeast feeding, is responsible for mated females’ posi-

tional preference for AA.

Egg-Laying Females Show ‘‘Active Attraction’’ for AA
We next determined whether egg-laying need triggers ‘‘active

AA attraction’’ in addition to positional preference for AA. We

noticed that females move constantly between AA+ and AA-

free substrates but occasionally reverse their running direction

in the middle of the chamber. We labeled a reversal where fe-

males would switch from moving away to moving toward AA

substrate an ‘‘attractive return’’ and proposed that it indicates

active AA attraction (Figure 1B, right panel). A recent report

uses a similar criterion to define behavioral attraction (Gao

et al., 2013). Similarly, we proposed a reversal from moving to-

ward to moving away from AA substrate signals active AA aver-

sion and labeled it an ‘‘aversive return’’ (Figure 1B, left panel). We

can then determine net AA attraction by calculating an ‘‘AA

attraction index’’ (Figure 1B). Indeed, regardless of their mating

status, females that lay many eggs show a significantly stronger

AA attraction than ones that lay very few eggs (Figure 1B; Fig-

ure S1G), suggesting increased egg laying is sufficient to induce

active AA attraction.

We have so far compared AA attraction of two types of fe-

males: one that lays many eggs and one that does not. But if

egg-laying need is indeed the trigger for AA attraction, the

same female should exhibit different levels of AA attraction de-

pending on her egg-laying rate in a given time period. So we

sought to correlate egg-laying rate and AA attraction in the

same animals and found that temporal distribution of egg-laying

events is nonuniform: there are clearly periods when a female

lays eggs frequently and ones when she does not (Figure 1C,

blue and green traces). Moreover, females consistently move

faster during ‘‘no egg-laying’’ periods than ‘‘high egg-laying’’ pe-
C

riods (Figure 1C, blue and green traces), allowing us to use loco-

motion speed to separate their trajectories into high versus low

egg-laying states (Figures 1C, S1C, and S1D). We found that in-

dividuals show stronger AA attraction when they are actively

laying eggs than when they are not (Figure 1D). An examination

of the ‘‘return point’’ (Figure 1B) further revealed that females in

a high egg-laying state tend to execute their attractive returns

at positions closer to AA (Figures 1E and 1E0), suggesting that

when laying eggs actively, females are less tolerant about stay-

ing away from AA.

Finally, if egg-laying need is a trigger for AA attraction, then

signs of attraction might emerge prior to each egg laying. We

examined the trajectory in the 1 min window immediately before

and after 151 egg-laying events and found that, indeed, attrac-

tive returns tend to occur before, but not after, egg laying (Fig-

ures 1F and 1F0). Moreover, when we segmented the trajectory

before each egg laying into four consecutive 1 min periods, we

found that the number of attractive returns increases as

females are nearing to laying an egg (Figures 1F and 1F0). In
contrast, aversive returns occur very rarely in these windows

(Figure S1E). Taken together, our analysis shows thatDrosophila

females are more attracted to AA when they are actively laying

eggs and that such attraction emerges prior to physical egg

laying.

Persistent Presence of Egg(s) in the Internal
Reproductive Tract Is Sufficient to Trigger AA Attraction
Independent of Egg Laying
Next, wewanted to uncover the neural basis by which egg-laying

need activates AA attraction prior to physical egg laying. We

looked closer at the egg-delivery process that occurs in females’

internal reproductive tract.While egg-laying becomes obvious to

observers only when females begin to display the ovipositor mo-

tor program (Yang et al., 2008), it has begun once an egg starts to

descend from the ovaries into the internal reproductive tract—an

epithelial tube that connects the two ovaries to the uterus, where

eggs are fertilized (Figure 2A). The reproductive tract has a small

diameter and is encased by muscles that are innervated by sen-

sory and motor neurons (Castellanos et al., 2013; Häsemeyer

et al., 2009; Yang et al., 2009). Because egg delivery in the tract

precedes physical egg deposition, we hypothesize that perhaps

females start to increase AA attraction once they sense eggs are

being pushed through the tract.

To test this idea, we first assessed AA attraction of females

who have eggs ‘‘persistently trapped in the tract.’’ It has been

shown recently, and we confirmed, that some of the ILP7-

Gal4-expressing neurons in the ventral nerve cord (VNC) are

motor neurons that innervate the tract (Figure 2B) (Castellanos

et al., 2013). Importantly, inhibiting ILP7 neurons with Kir2.1

(Baines et al., 2001) consistently causes one or more eggs to

be ‘‘jammed’’ in the tract (Castellanos et al., 2013; Yang et al.,

2008) (Figure 2C), providing us with the desired phenotype to

test our hypothesis. Indeed, females with inhibited ILP7 neurons

showed clear AA attraction, despite that they cannot physically

lay any eggs (because their tract is jammed) (Figure 2E). Impor-

tantly, females of the same genotype but deprived of yeast

paste showed much reduced egg jamming (Figure 2D) as well

as much reduced AA attraction (Figure 2E), suggesting that
ell Reports 9, 522–530, October 23, 2014 ª2014 The Authors 523
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the persistent presence of eggs in the tract, not other changes

induced by silencing ILP7 neurons, is what triggers AA attrac-

tion. Thus, we propose that during regular egg laying, AA attrac-

tion is activated each time an egg is being squeezed through the

tract.

A Group of ppk1-Expressing Sensory Neurons on the
Reproductive Tract Can Sense Contraction of the Tract
How do females sense that an egg is being squeezed through

their reproductive tract? We speculate some sensory neurons

on the tract are mechanosensors. We have previously shown

that the ppk-Gal4-labeled sensory neurons on the tract can be

divided into at least two groups (Häsemeyer et al., 2009; Yang

et al., 2009) (Figure 3A). The first group expresses the fruitless

transcripts, senses sex peptide (SP), and has relatively short

dendrites (Häsemeyer et al., 2009; Rezával et al., 2012; Yang

et al., 2009). We suspect ppk neurons of the second group,

two on lateral ducts and four to six at the base of the common

duct (Figures 3B, S2H and S2I), are mechanosensors. They

have large dendrites that ‘‘tile’’ the entire surface of tract (Fig-

ure 3B) and appear to express the mechanosensitive channel

Piezo (Coste et al., 2010; Coste et al., 2012; Kim et al., 2012) (Fig-

ures 3C and S2E). However, there is no direct evidence showing

that these ‘‘tract-tiling’’ ppk1 neurons are indeed capable of

sensing tract contraction/distention.

Next, we devised a three-step approach to test whether

these tract-tiling ppk1 neurons are mechanosensors (Figure 3F).

First, we used the calcium sensor GCaMP3 (Tian et al., 2009) to

monitor activities of axonal termini of tract ppk1 neurons. (The

GCaMP3 signal in ppk axons in the VNC is less likely to move

out of the focal plane when tract contraction occurs.) To define

the specific VNC region targeted by tract ppk1 neurons, we

made use of a ppk1.0-Gal80 (Häsemeyer et al., 2009). This

ppk1.0-Gal80 suppresses Gal4-dependent expression in nearly

all ppk1-Gal4 neurons except ones that reside on the tract,

revealing that axons of tract ppk1 neurons consistently target
Figure 1. Egg Laying, but Not Mating, Triggers Acetic Acid Attraction

(A) Mated and virgin flies that lay more eggs (with yeast, more than ten eggs in 4 hr

few eggs (yeast deprived, one or no eggs in 4 hr) show positional avoidance of A

areas are ‘‘troughs’’ where we place substrates. Plain, 1% agarose; AA, 1% agaro

(TAA + Tplain), where TAA and Tplain are time spent on the AA (red bracket) half and

chamber picture. *p < 0.05, **p < 0.01, ***p < 0.0001. n.s., not significant, p > 0.0

(B) Mated and virgin flies that lay many eggs show stronger ‘‘active’’ AA attractio

diagramed. The vertical bar in the right panel denotes the ‘‘return point’’ of an

(Rattractive + Raversive), where Rattractive and Raversive represent the number of attract

***p < 0.0001. Student’s t test.

(C) Example of a 1 hr, annotated trajectory of a single female. y axis, time; x axis, a

where the animal is in a high versus low locomotion state. The two states can be se

Figures S1C and S1D). Note that all the egg-laying events (short red ticks) occur in

(D) Individual females show stronger AA attraction when they are actively laying eg

(E and E0) Return points of attractive returns are closer to AAwhen animals are in a

The return point of an attractive return is when the animal reverses its running dir

calculated as % chamber length. ***p < 0.001, Student’s t test. (E0) Representati
(F) Raster of attractive returns surrounding 151 egg-laying events. There are 151 ‘‘

single egg-laying event occurs at time 0. Each dot along the horizontal line denote

and after egg laying, respectively.

(F0) Average number of attractive returns during eachminute of the 8min timeline in

test.

Note that all error bars indicated in this work represent SEM.

C

to the posterior tip of the VNC (Figures 3D, 3E, S2A, and

S2B). This projection is further confirmed when we used the

‘‘FLP-out’’ approach (Gordon and Scott, 2009) to sparsely label

ppk1-Gal4 neurons (Figures S2F and S2G). Second, we used a

chemical-genetic approach (Lima and Miesenböck, 2005; Yao

et al., 2012) to stimulate contraction of tract muscles. We ex-

pressed the ATP-gated P2X2 channel in ILP7 neurons and

found that stimulating them with ATP induces robust contrac-

tion of the tract (Figures 3G and 3H; Movie S2). Finally, we

used the LexA/LexAop2 and Gal4/UAS system to express

P2X2 and GCaMP3 in ILP7 and ppk1 neurons, respectively (Fig-

ure 3F), allowing us to record ppk1 neurons while activating

tract muscle contraction.

CGaMP3 signal in the axonal termini of tract ppk1 neurons

increased significantly when we stimulated ILP7 neurons (Fig-

ures 3I–3K; Movie S3). To ensure that such GCaMP3 increase

was not due to ‘‘local interaction’’ between ppk1 and ILP7

neurons (their processes overlap extensively in the VNC; Fig-

ure S3A), we physically severed the connectives between

the tract and the VNC. ILP7 neurons in such ‘‘severed’’ prep-

aration still responded to ATP robustly (Figure S3B–S3D), but

their stimulation no longer induced a significant GCaMP3 in-

crease in ppk1 axons (Figure 3K), ruling out the possibility

that ILP7 neurons locally activate ppk1 axons in the VNC.

Thus, our results suggest that the tract-tiling ppk1 neurons

are mechanosensors that can detect contraction/distention

of the tract.

ppk1-Expressing Tract Sensory Neurons Are Required
for Egg-Laying-Induced AA Attraction
To determine if the mechanosensitive tract ppk1 neurons play

a role in promoting AA attraction, we next targeted them for

inhibition. In our first ‘‘subtraction-based’’ approach, we

used the ppk1-Gal4 to express Kir2.1 in the presence of

ppk1-Gal80. This manipulation caused females to have eggs

jammed in their tract (Figure 4A), but unlike ILP7-inhibited
in Mated Females

) show positional preference for acetic acid (AA). Mated and virgin ones that lay

A. The schematic shows the configuration of an egg-laying chamber. Shaded

se with 3% (v/v) AA. Positional preference for AA is calculated as: (TAA� Tplain)/

the plan half of the chamber (green bracket), respectively. See Figure S1B for

5. Student’s t test.

n than ones that lay few eggs. ‘‘Aversive return’’ and ‘‘attractive return’’ are as

attractive return. AA attraction index is calculated as (Rattractive � Raversive)/

ive and aversive returns in a given trajectory, respectively. *p < 0.05, **p < 0.01,

nimal position. The green and blue traces show the segments of the trajectory

parated using speed threshold of 0.7 mm/s (see Experimental Procedures and

the low-locomotion state. Yellow circles, ‘‘attractive returns’’ in the trajectory.

gs than when they are not (blue versus green trace). *p < 0.05, Student’s t test.

high egg-laying state (343 returns) than in a low egg-laying state (1,091 returns).

ection (see also B). Distance between the return point and the AA substrate is

ve return points of 100 attractive returns in low versus high egg-laying states.

invisible’’ horizontal lines, each of which represents an 8 min trajectory where a

s one attractive return. Light purple and gray highlights the 1min window before

(F). *p < 0.05, **p < 0.01, ***p < 0.0001. n.s., not significant, p > 0.05. Student’s t
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Figure 2. Persistent Presence of an Egg in

the Reproductive Tract Is Sufficient to

Trigger AA Attraction

(A) A diagram depicting the reproductive tract and

its relative position to the CNS. Eggs (red arrow)

are produced in the ovaries. To be deposited, they

must be pushed out of the ovaries, squeezed

through the lateral and common ducts, and fertil-

ized in the uterus. In our article, internal repro-

ductive tract = lateral ducts + common duct. One

ILP7-expressing motor neuron whose axon de-

scends from the VNC to innervate the tract is

shown in green.

(B) ILP7 axons (magenta) form DLG-positive

synapses (green) with tract muscles. ILP7 axons

are labeled by mCD8-RFP. DLG, Disc Large, a

neuromuscular junction marker. Scale bar is

25 mm.

(C and D) Inhibiting ILP7 neurons consistently

(20/20) causes egg jamming in the tract (white

arrow) of yeast-fed mated females (C). In contrast,

inhibiting ILP7 neurons did not cause egg jamming

consistently if females were yeast deprived (D).

Note that ovaries from yeast-fed females aremuch

larger (they contain many more eggs) than those

from yeast-deprived ones. The two pictures were

taken at the same magnification. Scale bar is

500 mm.

(E) Yeast-fed and yeast-deprived ILP7-inhibited

mated females show strong and much-reduced

AA attraction, respectively. One-way ANOVA with

Bonferroni’s post test. *p < 0.05. n.s., not signifi-

cant, p > 0.05.
females, they showed no AA attraction (Figure 4A). In our sec-

ond ‘‘intersection-based’’ approach, we used the 21-7-Gal4

that labels tract ppk1 neurons, but not many of the none tract

ppk1 neurons (Song et al., 2007), to express an UAS-FRT-

stop-FRT-Kir2.1 (Yang et al., 2009) and introduced a ppk1-

LexA and a source of flp into the same animals. Because

21-7-Gal4 and ppk1-LexA are coactive mostly only in the tract

ppk1 neurons, animals bearing all four transgenes (ppk1-LexA,

LexAop2-flp, 21-7-Gal4, and UAS-FRT-stop-FRT-Kir2.1)

should mostly have only their tract ppk1 neurons inhibited

(Figures S2C and S2D). Again, these ‘‘intersected’’ animals

show an ‘‘egg-jamming’’ phenotype but no AA attraction (Fig-

ure 4C). Lastly, restricting Kir2.1 expression to only the adult

stage still reduced AA attraction (Figure 4B), ruling out poten-

tial developmental problems due to chronic silencing of ppk1

neurons as the cause for the lack of AA attraction we

observed. Thus, active tract ppk1 sensory neurons are
526 Cell Reports 9, 522–530, October 23, 2014 ª2014 The Authors
required to activate AA attraction

induced by egg presence in the tract.

To test whether the mechanosensitiv-

ity of the tract ppk1 neurons is impor-

tant for AA attraction, we reduced

their piezo expression. We first used

21-7-Gal4 to express a piezo-RNAi

(Kim et al., 2012). In addition, we also

used two copies of ppk1-Gal4—in
the presence of ppk1-Gal80—to express the piezo-RNAi.

Neither set of animals showed AA attraction, suggesting

that piezo expression in tract ppk1 neurons is important for

AA attraction (Figure 4C).

Finally, we asked whether artificial activation of tract ppk1

neurons in the absence of active egg delivery is sufficient to

trigger AA attraction.We found that expressing in tract ppk1 neu-

rons the sodium channel NaChBac (Luan et al., 2006), a

commonly used effector for increasing membrane potential,

failed to trigger AA attraction in yeast-deprived females (Fig-

ure 4D). Because NaChBac overexpression may not be effective

in stimulating ppk1 neurons, we also used the heat-gated

dTRPA1 to stimulate ppk1 neurons. However, increasing tem-

perature alone causes a significant alteration in AA attraction,

making data interpretation difficult. Thus, we are unable to

conclude whether stimulating ppk1 neurons is sufficient to

induce AA attraction.



Figure 3. A Subgroup of ppk1-Expressing

Sensory Neurons that Innervate the Repro-

ductive Tract Can Sense Tract Contraction

(A) A diagram showing a subset of ppk1 neurons

that extends dendrites on the tract and project

axons to the VNC. There is one ppk1 neuron on

each lateral duct (red arrows) and two to three on

each side of the base of the common duct

(green arrows). Black arrow points to the anterior/

posterior (A/P) divide demarcated by the ppk1

dendrites. Note that we use ppk1 and ppk1-Gal4

interchangeably.

(B) Dendrites (red arrows) of ppk1 neurons parti-

tion the tract into distinct domains. Note that cell

bodies of ppk1 neurons on the lateral ducts are

suspended outside of the tract and are easily torn

off during dissection, but one cell body remains

attached to the tract in this picture (blue arrow).

Scale bar is 100 mm for (B)–(D).

(C) piezo-Gal4 labels the same ‘‘tract-tiling’’ neu-

rons as ppk1-Gal4. Blue arrows, somas of the

sensory neurons on the lateral ducts; black arrow,

A/P divide.

(D and E) Dendrites and axons of the tract ppk1

neurons labeled by ppk1-Gal4 driving GFP in the

presence of ppk1-Gal80. (D) The ‘‘subtracted’’

animals still show labeling of tract-tiling sensory

neurons. (E) The tract-tiling ppk1 neurons target

their axons to the posterior tip of the VNC. Scale

bar for (E) is 25 mm. See Figure S2 for a comparison

of the axonal projection labeled by ppk1-Gal4

before and after ppk1-Gal80-mediated ‘‘subtrac-

tion.’’

(F) Our preparation. To activate ILP7 neurons, we

used ILP7-LexA to express LexAop2-P2X2 and

bath-applied ATP. To assess activity changes of

ppk1 neurons, we used ppk1-Gal4 to express

UAS-GCaMP3 and imaged their axonal termini in

the VNC. The connectives between VNC and

reproductive tract in were usually carefully pre-

served, but we severed them when assessing

whether the GCaMP3 increase in ppk1 axons

might be due to local activation of ppk1 axons by

ILP7 neurons (see also Figure S3).

(G andH) Stimulating ILP7 neurons induces a clear

contraction of the reproductive tract. (G) Tract

before stimulation. ILP7 axons are visible because

they coexpress GCaMP3 and P2X2. (H) ATP

causes a clear contraction of the tract and a significant GCaMP3 increase (n = 10 animals). Scale bar for (G) and (H) is 25 mm. See also Movie S2.

(I–K) Stimulating tract contraction (via stimulating ILP7 neurons) induces a clear GCaMP3 increase in tract ppk1 neuronswith (9/20) andwithout (8/8) the presence

of ppk1-Gal80. (I) GCaMP3 response of ppk1 axons when perfused with buffer. (J) GCaMP3 response of the same axons when perfused with ATP. (K) Quan-

tification of the ATP-inducedGCaMP3 change. ***p < 0.001.Mann-Whitney test. Note that theGCaMP3 increase ismore pronounced in the areawhere tract ppk1

axons terminate (pink arrow) than where other axons terminate (white arrow). See also Movie S3.
DISCUSSION

In this report, we discovered that egg-laying need can activate

AA attraction in Drosophila females and that mechanical stretch

of the tract—induced by egg delivery through their internal

reproductive tract—is one origin of the ‘‘egg-laying need.’’ We

demonstrate that egg delivery in the internal reproductive tract

is an important physiological signal that modulates how

Drosophila females interpret the valence of sensory stimuli.

The flexibility in egg-laying need-induced modification of sen-
C

sory processing contrasts significantly to that triggered by SP:

once SP gains control of the female CNS, it keeps the mated fe-

males unreceptive to male courtship for days (Rezával et al.,

2012; Ribeiro and Dickson, 2010; Yang et al., 2009). In contrast,

mated females can readily turn on and off their AA attraction de-

pending on their egg-laying need at a given moment. Perhaps

this is because while there is no need for females to remate until

the stored sperm is depleted, in between egg laying, they have

to tend to other needs and are better off not ‘‘too attached’’ to an

AA site.
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Figure 4. Functional Tract ppk1 Neurons Are Required for Egg-

Laying-Induced AA Attraction

(A) Inhibiting ppk1 neurons in the presence of ppk1-Gal80 causes egg jamming

(white arrow) and reduces AA attraction. Scale bar is 500 mm.One-way ANOVA

with Bonferroni’s post test. *p < 0.05. n.s., not significant, p > 0.05.

(B) Inhibiting ppk1 neurons specifically in adult stage reducesAA attraction still.

One-way ANOVA with Bonferroni’s post test. n.s., not significant. ***p < 0.001.

(C) Inhibiting tract ppk1 neurons by the ‘‘intersection method’’ reduces AA

attraction, as does reducing piezo expression in 21-7 neurons or tract ppk1

neurons (23 ppk1-Gal4 plus ppk1-Gal80).

(D) Expressing NaChBac in tract ppk1 neurons fails to activate AA attraction.
If tract ppk1 neurons play a critical role in AA attraction, why

did our activation experiment fail? There are several possibilities.

First, a temporally/spatially precise stimulation of ppk1 neurons
528 Cell Reports 9, 522–530, October 23, 2014 ª2014 The Authors
is needed. Second, there are additional mechanosensors on

the tract that act together with ppk1 neurons to promote AA

attraction. Third, presence of eggs in the tract may signal via

both a mechanical and a nonmechanical means. For example,

passage of eggs through the tract may trigger release of hor-

mones from the tract that then act together with ppk1 neurons

to modulate behavior. Nevertheless, it is interesting to note

thatDrosophila is not the only species that relies on reproductive

tract-generated mechanical stimuli to activate ‘‘maternal behav-

iors.’’ Mechanical stimulation of uterine wall has been shown to

contribute to maternal behavior activation in sheep, dogs, and

rats (Hayes and De Vries, 2007; Kendrick et al., 1991; Keverne

et al., 1983; Lévy et al., 2010; Poindron et al., 1989; Yeo and Ke-

verne, 1986), raising the possibility that this feature of behavior

control may be evolutionarily conserved.

Which sensory system is responsible for egg-laying-induced

AA attraction? Several reports suggest AA can promote attrac-

tion through the olfactory system (Ai et al., 2010; Root et al.,

2011; Semmelhack and Wang, 2009), but Joseph et al. showed

that egg-laying preference for AA depends on taste, but not

olfaction (Joseph et al., 2009). Indeed, we have found that

Ir64a and Or83b, two olfaction mutants with defective AA

sensing (Ai et al., 2010; Semmelhack and Wang, 2009), both

show strong egg-laying-induced AA attraction (Figures S4E

and S4F). But if egg-laying-induced AA attraction is indeed taste

driven, then it may be partly driven by taste memory. This is

because ‘‘attractive returns’’ occur in the middle of the chamber

where females’ taste neurons are not in contact with AA. Mush-

room body (MB) has been shown to regulate egg-laying-induced

positional preference for AA (Joseph et al., 2009), but we did not

observe a significant change in AA attraction when we ablated it

(Figures S4A–S4D), suggesting the taste memory that guides

attractive returns in our paradigm is likely stored elsewhere.

Determining the identity of the AA-sensing taste neurons that

promote AA attraction will be an important next step.

Lastly, we also do not know which brain center(s) responds

to tract ppk1 neurons to modify valence of AA signal. Pars in-

tercerebralis, the neuroendocrine center, may be one potential

(indirect) target, given that it was proposed recently to be a po-

tential target of tract neurons that signal mating status change

(Feng et al., 2014) and that hypothalamus, its vertebrate coun-

terpart, is important for modulating reproductive behaviors

also.

EXPERIMENTAL PROCEDURES

Stocks

The following stocks were used in this work: ILP7-Gal4 (Yang et al., 2008),

piezo-Gal4 (Kim et al., 2012), 21-7-Gal4 (Song et al., 2007), hs-FLP (Gordon

and Scott, 2009), UAS-Kir2.1eGFP (Baines et al., 2001), ppk1-Gal4,

UASmCD8-GFP, UAS-mCD8-RFP, UAS-NaChBac (Bloomington Drosophila

Stock Center), UAS-FRT-CD2-stop-FRT-Kir2.1eGFP (Yang et al., 2009),

UAS-P2X2 (Lima and Miesenböck, 2005), UAS-GCaMP3 (Tian et al., 2009),

UAS-piezo-RNAi (Kim et al., 2012), ppk1-LexA, ppk1.0-Gal80 (Häsemeyer

et al., 2009), ILP7-LexA, LexAop2-FLP (Pan et al., 2012), LexAop2-P2X2,

ppk1-GS-Gal4, LexAop2-GCaMP3, and w1118.

Transgenic Animals

ILP7-LexA, ppk1-LexA constructs were produced by cloning the 1 kb pro-

moter upstream of ILP7 and ppk1 genes, respectively, into the recently



modified LexA construct (Pfeiffer et al., 2010). LexAop2-GCaMP3 and

LexAop2-P2X2 were constructed by cloning the GCaMP3 (Tian et al., 2009)

and P2X2 (Lima and Miesenböck, 2005) genes into LexAop2 vectors (Pfeiffer

et al., 2010). These constructs were then injected into attP-carrying animals

following standard protocol.

Immunohistochemistry

Tissues were processed following the same protocol as previously described

(Yang et al., 2008). Images were acquired using a Zeiss LSM 700 laser scan-

ning confocal microscope. The following primary antibodies were used:

mouse anti-Dlg (1:10, DHSB), rat anti-mCD8 (1:100, Invitrogen), mouse

anti-GFP (1:100, Sigma-Aldrich), and rabbit anti-GFP (1:1,000, Invitrogen).

The following secondary antibodies were used: goat anti-mouse Alexa 488,

goat anti-mouse Cy3, goat anti-rat Alexa 488, goat anti-rabbit Alexa 488,

and goat anti-rabbit Cy3.

Hydroxyurea Treatment to Ablate the Mushroom Body

To ablate the mushroom body, 0- to 1-hr-old larvae were collected and fed hy-

droxyurea (HU) (H8627, Sigma) dissolved in inactive yeast paste (50 mg/ml) for

5 hr and then transferred into fresh HU-free food.

Egg-Laying Preference Assay

Females were collected into groups of 20–30 with 15–20 males at the first day

of eclosion and kept in fly incubator (25�C and 65%humidity) for 4–5 days. The

vials where females were kept were supplemented with active yeast paste un-

less we wanted to reduce their egg production. Prior to egg-laying/behavior

assays, individual female flies were loaded into chambers in a custom-de-

signed two-choice egg-laying apparatus (Figures S1A and S1B). The 3% AA

(v/v) substrate and plain substrate were made from 1% agarose that has

been preheated in the 55�C water bath. The substrates were allowed to set

for 30 min before experiments commence.

Behavior Analysis

Flies were raised and placed into chambers as described above. A camera

holder with four Microsoft LifeCam Cinema cameras was then attached to

the top of the chamber-containing apparatus (Figure S1A). Each camera

was positioned above two egg-laying chambers to record two flies. Videos

were acquired by CamUniversal and then converted (to allow faster tracking)

using Avidemux. Egg-laying events were annotated manually by visually in-

specting the videos. Ctrax (Branson et al., 2009) was used to track the fly po-

sitions. Custom MATLAB code was used to detect parameters we used to

calculate positional preference index and attraction index and to separate

the trajectories into high and low egg-laying states based on the flies’ locomo-

tion speed (Figures S1C and S1D). The speed is calculated first by determining

the path length every 2 s (at 7.5 frames/s). We imposed a 1min threshold when

separating the low versus high locomotion states. This is because flies some-

times increase their running speed suddenly and briefly—even though they

have been consistently in a state of low locomotion—and they then immedi-

ately slow down and lay an egg (Figure 1C). Thus, if flies do not maintain their

increased speed for at least 1 min, we consider such changes too transient to

be labeled as ‘‘high locomotion state.’’

Tract Contraction Assay

To determine whether stimulating ILP7 can cause tract contraction (Figures 3G

and 3H), we isolated the tract from the rest of the body and pinned it onto a

custom-made perfusion chamber that contains insect physiology buffer (Xiang

et al., 2010). We then either perfused the chamber with buffer alone or with

buffer with ATP (400 mM).

GCaMP3 Recording

Intact VNC (with their connection to the tract carefully preserved) was

dissected and mounted in a custom-built perfusion chamber and imaged

through a water-immersion 403 lens on our Zeiss LSM 700 confocal scope.

To image neuronal activity, we recorded GCaMP3 fluorescence at one frame

per second using the time-series function software. We normally waited for the

baseline to stabilize before perfusing buffer alone for 3min and then buffer with

ATP to stimulate specific neurons and recorded changes in GCaMP3 signal.
C

The acquired images were then analyzed using a custom MATLAB code.

Change in fluorescence (DF/F) in a given ROI was averaged from signals

from all focal planes.
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