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ABSTRACT 

The following theorem is proved: The Kronecker product of two fully indecom- 
posable matrices is fully indecomposable. The theorem is then related to connectivity 
in directed graphs. 

1. Let  A = [ a J  and  B = [bkz] be, respectively,  m by m and n by n 

non-negat ive  matr ices.  The Kronecker product [4, p. 8] of  A with B is the 

FaHB a12B �9 almB -I 
II~I!B a2eB ai!B A @ B =  �9 (1) 

am2B a ~B..2 

mn by mn matr ix  

The mat r ix  A is fully indecomposable [4, p. 123-124] p rov ided  it does not  

conta in  an r by  s b lock  o f  0's with 1 < r < m --  1 and r + s = m; that  is, 

A is fully i ndecomposab le  if  there do  not  exist pe rmuta t ion  matr ices  P 

and Q such tha t  

where A1 and A2 are square non-vacuous  matr ices.  The elements  al~(1), 
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.... a,,,,,(,,,) form a positi~,e diagonal of A provided a is a permutat ion of 

1 . . . . .  m and aloft) . . . . .  a,,~(,,o > 0. In [1] it was shown by use of  the Fro- 
benius-Ktinig theorem [4, p. 123] that  the matrix A isfull.v indecomposable 

[f and only i f  each o f  the matrices obtained f rom A by striking out a row 

and column has a positiz,e diagonal. The Frobenius-K/3nig theorem imme- 

diately implies that  a fully indecomposable  matrix has a positive diag- 

onal. 
Since the concept  of  full indecomposabil i ty  is important  combinato-  

rially and since the operat ion of forming the Kronecker  product  is 

sometimes useful combinatorial ly  and otherwise, the following theorem 

may be of some interest. 

THEOREM. The Kronecker product o f  two ful ly indecomposable matrices 

is a .full), indecomposable matrix. 

PROOF. Suppose A - .  [aJ  and B --  [bz,1] are, respectively, m by m and n 
by n fully indecomposable  non-negative matrices. Consider a typical 

element ai~b~.l of  A @ B: 
I f  a i j  ~ 0 and bz.z > 0, then f rom the above discussion aid belongs to 

a positive diagonal of  A, say alo(~) . . . . .  a,,,~r and bh.z belongs to a posi- 

tive diagonal of  B, say ba~(~), ..., b,,~(,). Then it is easy to verify that 

ato(t)b~z(~ ) , ..., alo(t)b~ro~) , ..., amoomb~(l~ .. . .  , a,,~o(mlb,,~c,,) 

is a positive diagonal of  A @ B containing ai~bz.l �9 
If  a~ > 0 and b~.t -- O, then aij belongs to a positive diagonal of  A, 

say al~(1 ) . . . . .  am~(m ) with c~(i) = j, while the matr ix  obtained f rom B by 

striking out row k and column l has a positive diagonal,  say b1~1~ .. . . .  
b k - ~ k  ~), bk-~,~z.-l~ . . . .  , b,~,,).  Moreover,  B itself has a positive di- 

agonal  blurt), ..., b,o(,) �9 It  is now easy to verify that  

at(~(l)b~e(1), ..., aL~(1)b~,e(n), . . . ,  ai~( i )Dlr( l )  , . . . ,  ai~(i)bk -lr(]~. 1) , 

ai~(~)b~., ~(k+~) , . . . ,  aio(i)bnro~) , . . . ,  a m a ( m ) b l o ( 1 )  ~ . . . ~  am~(m)bnoo~) 

is a positive diagonal  of  the matrix obtained f rom A @ B by striking 

out the row and column of ai~bh.z. 
I f  a~3 --  0 and bkl > 0, then the situation is analogous to the previous 

case. For  it follows by inspection that  a permuta t ion  matrix P exists 
such that  A @ B -- PT(B @ A)P. Since the matr ix  obtained f rom B @ A 
by striking out the row and column of  bk~aij has a positive diagonal,  it 
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follows that the matrix obtained from A @ B by striking out the row 
and column of ai:bkl has a positive diagonal. 

We may now conclude that, if upon striking out the row and column 
of an element ai:bkt of A @ B we obtain a matrix with no positive di- 
agonal, then both a z: = 0 and bkz = O. 

Suppose now A @ B were not fully indecomposable, so that there exist 
permutation matrices P and Q with 

[C~ O}  (3) 
P ( A @ B ) Q =  C2, C2 ' 

where C1 and C1 are square non-vacuous matrices. The matrix C2~ 
must be all zeros, for striking out the row and column of any element of 
C21 gives a matrix with no positive diagonal. But then it follows that 
striking out the row and column of any 0 in the zero block 0 in (3) gives 
a matrix with no positive diagonal. By what we have shown, each such 0 
arises from a product a~:bkt with ai~ = 0 and bkz = 0. Hence the zero 
block 0 in (3) must arise by first choosing an r by s submatrix of O's of 

A, say ai~jq , 1 < p <_ r, 1 < q < s, and then choosing up by Vq subma- 
trices of O's of B, 1 < p _< r, 1 < q < s. The zero block 0 in (3) is then 
formed by taking the corresponding up by Vq submatrices of O's in ai~:qB, 
1 _<p < r, 1 < q _< s. This submatrix of O's of A @ B is then of size 

~]~0=1 /'/p by Z}=I vq. Let 

uz. = max {up} and u z = max {Uq}. 
l <_p<r l <q<s 

Since B is fully indecomposable, uk + uz < n and since, A is fully inde- 
composable, r § s < m. Hence 

p=l - I  
< (r + s) (u~ + t'l) 

< rim. 

But this is a contradiction since the sum of the dimensions of the zero 
block 0 in (3) is ran. Hence A @ B is fully indecomposable. This com- 
pletes the proof. 

2. We now relate the theorem to directed graphs or digraphs [2]. 
A digraph (we allow loops) is said to be strongly connected or strong 
provided every pair of distinct points of the digraph are mutually reach- 
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able by directed paths. Let D be a finite digraph with m points. Label 

the points of D with the integers 1, 2, ..., m. Then, in the usual way, we 

associate an m /, in 0, 1 matrix A -~ [aij  ] with D as follows: a,;~ - 1 if 
and only if there is a directed line in D from point i to point j. Conver- 

sely, given an m • m 0, 1 matrix we can associate a digraph. It is well 

known [6] that the digraph D is strong if and only if the associated 
matrix A is irreducible. The matrix A is irre~hlcible provided there does 
not exist a permutation matrix P such that 

where A1 and A2 are square non-vacuous matrices. We say that the 
digraph D is ultrastrong provided each of the digraphs associated with 

the matrices PAQ for all permutation matrices P and Q is strong. (Note 

that it is enough to say that each of the digraphs associated with PA for 
all permutation matrices P is strong.) Thus the digraph D is ultrastrong 

if and only if the associated matrix A is fully indecomposable. In Figures 1 

and 2 we give a digraph followed by all the digraphs (up to isomorphism) 
derived from it. The digraph for Figure 1 is ultrastrong while the digraph 
for Figure 2 is strong but not ultrastrong. 

FIGURF 1 

FIGURE 2 

Now let Da and Dz be two finite digraphs with associated matrices Aa 
and A2. The usual definition of the Kronecker product or tensor product 
D1 @ D2 of D1 and D2 is equivalent to: D1 @ D2 is the digraph associated 
with the matrix AI @ A2 �9 We may now restate our theorem as: 
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THEOREM. The Kronecker product o f  two ultrastrong digraphs is also 

ultrastrong. 

Final ly  we remark that  a discussion of Kronecker  products  of di- 

graphs relative to other types of connectivi ty is given in [3]. 
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