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Abstract

Let S be a projective plane, and let G � Aut(S) and PSL(2, q) � G � P�L(2, q) with
q > 3. If G acts point-transitively on S, then q = 7 and S is of order 2.
© 2005 Published by Elsevier Inc.
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1. Introduction

A linear spaceS is a setP of points, together with a setL of distinguished subsets
called lines such that any two points lie on exactly one line. If a linear space with
an automorphism group which acts transitive on the lines, then its every line has the
same number of points and we shall call such a linear space a regular linear space.
Moreover, we shall also assume that P is finite and that |L| > 1.

Let G be a line-transitive automorphism group of a linear space S = (P,L). Let
the parameters of S be (b, v, r, k), where b is the number of lines, v is the number

� Supported by the NNSFC (Grant No. 10471152).
∗ Corresponding author.

E-mail addresses: wjliu@mail.csu.edu.cn, wjliu6210@126.com (W. Liu).

0024-3795/$ - see front matter ( 2005 Published by Elsevier Inc.
doi:10.1016/j.laa.2005.08.026

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82322061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/laa
mailto:wjliu@mail.csu.edu.cn
mailto:wjliu6210@126.com


122 W. Liu, J. Li / Linear Algebra and its Applications 413 (2006) 121–130

of points, r is the number of lines through a point and k is the number of points on a
line with k > 2. By Block [1], transitivity of G on lines implies transitivity of G on
points. The groups of automorphisms of linear spaces which are line-transitive have
greatly been considered by Camina, Preager, Neumann, Spiezia, Li, Liu and others
(see [3–7,11–20,22]).

Recently, Camina and Spiezia have proved the following theorem.

Theorem 1.1 [7]. Let G be a simple group acting line-transitively, point-primitively,
but not flag-transitively on a linear space, then G is not PSL(n, q) with q odd and
n � 13.

Therefore, it is necessary to consider the case where n is small. Weijun Liu has
proved the following theorem.

Theorem 1.2 [13]. Let G = PSL(2, q) with q > 3 act line-transitively on a finite
linear space S, then S is one of the following cases:

(i) A projective plane;
(ii) A regular linear space with parameters (b, v, r, k) = (32 760, 2080, 189, 12),

in this case q = 26;
(iii) A regular linear space with parameters (b, v, r, k) = (q2 − 1, q(q − 1)/2,

q + 1, q/2), where q is a power of 2, it is called a witt-bose-shrikhande
space.

In this short article we considered the case (i) of the Theorem 1.2. and proved the
following:

Theorem 1.3. Let G � Aut(S), where S is a projective plane, and PSL(2, q) �
G � P�L(2, q) with q > 3. If G acts point-transitively on S, then q = 7 and S is
of order 2.

Section 2 introduce notions and preliminary results about PSL(2, q) and the pro-
jective planes. In Section 3, we shall prove Theorem 1.3.

The original version of this article discussed only the case where G = PSL(2, q).
The present version is done according to the referee’s suggestions. The authors are
grateful to the referee for his helpful suggestions.

2. Some preliminary results

We begin by recalling some fundamental properties of PSL(2, q) with q = pa > 3,
where p is a prime number and a is a positive integer.
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Lemma 2.1 (Theorem 8.27, chapter II of [8]). Every subgroup of G = PSL(2, q) is
isomorphic to one of the following groups:

(1) An elementary Abelian p-group of order at most pa;
(2) A cyclic group of order z, where z divides (pa ± 1)/d and d = (2, q − 1);
(3) A dihedral group of order 2z, where z is as above;
(4) The alternating group A4, in this case, p > 2 or p = 2 and 2|a;
(5) The symmetric group S4, in this case, p2a − 1 ≡ 0 (mod 16);
(6) The alternating group A5, in this case, p = 5 or p2a − 1 ≡ 0 (mod 5);
(7) Zm

p : Zt , where t divides (pm − 1)/d and q − 1 and m � a;
(8) PSL(2, pm), where m|a, and PGL(2, pm), where 2m|a.

Now, we suppose that G is a line-transitive automorphism group of a linear space
with parameters (b, v, r, k) and k > 2. Recall the basic inequalities for linear space.

vr = bk;
v = r(k − 1) + 1;
b � v (Fisher’s inequality).

It is well-known that a linear space is a projective plane if and only if b = v. As
the projective plane is concerned, we can get the following equations by b = v:

r = k; v = k2 − k + 1.

Thus both b and v are odd.
We denote GL and Gα as setwise stabilizer of L in G and point stabilizer of α in

G respectively.

Lemma 2.2. Let G be a transitive group on �, and K a conjugacy class of an
element x of G. Let Fix�(〈x〉) denote the set of fixed points of 〈x〉. Then |Fix�(〈x〉)| =
|Gα ∩ K| · |�|/|K|, where α ∈ �. Especially, if G has only one conjugacy class of
the involutions, then

|Fix�(〈i〉)| = e(Gα) · |�|
e(G)

,

where e(G) is the number of involutions in G.

Proof. Count the number of the ordered pairs (α, x), where α ∈ Fix�(〈x〉), we can
get

|Fix�(〈x〉)| = |Gα ∩ K| · |�|
|K| .

If G has only one conjugacy class of the involution, then Gα ∩ K denotes the set of
involution of Gα, that is, |Gα ∩ K| = e(Gα), and |K| is the length of the conjugacy
class of the involution, that is, |K| = e(G). Thus we get

|Fix�(〈i〉)| = e(Gα) · |�|
e(G)

. �



124 W. Liu, J. Li / Linear Algebra and its Applications 413 (2006) 121–130

Lemma 2.3 (Theorem 13.3 of [10]). A collineation of a finite projective plane has an
equal number of fixed points and lines.

Lemma 2.4 ( Theorem 13.4 of [10]). Let � be a collineation group of a finite projective
plane. Then � has an equal number of points and lines orbits.

Lemma 2.5 ( Theorem 20.9.7 of [9, 21]). Let i be an involution in a finite projective
plane of order n. Then either

(1) n = m2 and fixed points and lines of i form a subplane of order m, or
(2) i is a central collineation. In particular, if G acts transitively on points of the

projective plane, and i ∈ G, then G � PSL(3, n).

Lemma 2.6. Let S be a projective plane.
Let G � Aut(S), and let G be point-transitive. If G has the unique conjugacy

class of involutions and |Fix(〈i〉)| = n + √
n + 1, where i is an involution of G and

n is order of S, then

(1) n − √
n + 1 = e(G)

e(Gα)
, and so e(Gα) divides e(G);

(2) the number v of points of S is grester than
(

e(G)
e(Gα)

)2
.

Proof

(1) By Lemma 2.2,

|Fix(〈i〉)| = |Gα ∩ K|v
|K| = e(Gα)v

e(G)
.

Since

v = n2 + n + 1 = (n + √
n + 1)(n − √

n + 1),

we have n − √
n + 1 = e(G)

e(Gα)
, an integer.

(2) Since n − √
n + 1 = e(G)

e(Gα)
, we have v > (n − √

n + 1)2 =
(

e(G)
e(Gα)

)2
. �

Lemma 2.7. Let G = T : 〈δ〉. Suppose that G � Aut(S), where S is a projective
plane. If any proper subgroup of G is not point-transitive, then the order of δ is odd.

Proof. If o(δ) is even, then there exists a subgroup H of G, such that |G/H | = 2 (for
example H = T : 〈δ2〉).

Let P denote a Sylow 2-subgroup of G. Then G = HP . Since v is odd, P � Gα

for some point α of S.
Thus H acts point-transitively on S, a contradiction. �
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The following lemma, suggested by the referee, is very useful.

Lemma 2.8 (Lemma 5.1 of [4]). If p is a prime congruent to 2 modulo 3 then the
point-stabiliser X contains some Sylow p-subgroup of G.

Moreover, X contains a subgroup of index 3 in a Sylow 3-subgroup of G.

Lemma 2.9. PSL(2, q) has exactly one conjugacy class of involutions.

Proof. We know that the involutions in PSL(2, q) shall satisfy the following equalitiy:
(

a b

c d

)
Z ·

(
a b

c d

)
Z = Z,

where Z = Z(SL(2, q)), the centre of SL(2, q).

(1) When q = 2f , Z = E, we have a = d and a2 + bc = 1. This deduces
PSL(2, 2f ) has exactly q2 − 1 involutions.
On the other hand, |CG(i)| = q, |G| = q(q2 − 1), then |G : CG(i)| = q(q2 −
1)/q = q2 − 1. Thus PSL(2, 2f ) has exactly one conjugacy class of involu-
tions.

(2) When q = pf , p is an odd prime number, Z = {E, −E}, then a = −d and a2 +
bc = ±1. Thus G = PSL(2, pf ) has exactly q(q + ε)/2 involutions, where
4| q−ε

2 , and ε = 1 or −1. Note that |CG(i)| = q − ε, |G| = q(q2 − 1)/2, then
|G : CG(i)| = q(q + ε)/2. Thus we know that PSL(2, pf ) has exactly one
conjugacy class of involutions. �

Lemma 2.10. If T = PSL(2, q) � G � P�L(2, q) with q = pa, and G acts point-
transitively on the projective plane, then

(i) if p = 2, then Gα ∩ T is conjugate to one of the subgroups of (1) or (7) in
Lemma 2.1;

(ii) if p is odd, then Gα ∩ T is conjugate to one of the subgroups of (3), (4), (5), (6)

or (8) in Lemma 2.1.

Proof
(i) Because v = |G|/|Gα| is odd and greater than 3, this means that Gα contains

a Sylow 2-subgroup of G, and hence Gα ∩ T contains a Sylow 2-subgroup
of T . Note that q = 2a , check the groups containing a Sylow 2-subgroup of
PSL(2, q) in Lemma 2.1, we will get the conclusion.

(ii) Proved as above. �

Lemma 2.11. PGL(2, q) contains exactly q2 involutions, where q is odd.
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Proof. We know that the involutions in PGL(2, q) shall satisfy the following equality:
(

a b

c d

)
Z ·

(
a b

c d

)
Z = Z,

where Z = Z(GL(2, q)), the centre of GL(2, q). Thus a = −d and a2 + bc /= 0.

This implies that the number of involutions of PGL(2, q) equal to q3−q2

q−1 = q2. �

Lemma 2.12 [2, p. 65]. The equation x2 + 3 = 4pa has exactly solutions pa = 7
and 73.

3. The proof of Theorem 1.3

Let S be a projective plane of order n, and let G act point-transitively on S.
If G = PGL(2, q), then PSL(2, q) is point-transitive by Lemma 2.2 of [6]. Let

G = T : 〈δ〉, where T = PSL(2, q) with q = pa > 3. Then by Lemma 2.7, we can
suppose that o(δ) is odd, and so e(G) = e(T ) and e(Gα) = e(Tα).

Thus by Lemma 2.9, G has the unique conjugacy class of involutions. More-
over, Tα contains a Sylow 2-subgroup of T . Since G is point-transitive, we have
v = |G|/|Gα| = (|T |/|Tα|) · t for some odd divisor t of a.

Let i be an involution of G. Since v is odd, we have i must fix at least one point
of P. By Lemmas 2.3 and 2.4, we know that |FixP(〈i〉)| = |FixL(〈i〉)| and G also
acts line-transitively on S. If i is a central collineation, then by Lemma 2.5, we have
G � PSL(3, n). Since PSL(3, n) � PSL(2, q) unless n = 2 and q = 7 (as required),
we may assume that |FixP(〈i〉)| = n + √

n + 1, and so

n + √
n + 1 = e(Tα) · v

e(T )
(1)

by Lemma 2.2.
Since PSL(2, 4) ∼= PSL(2, 5) ∼= A5 and PSL(2, 9) ∼= A6, by [4], we can let q � 7,

and if q = 3a and 5a , then a � 3 and a � 2, respectively.
If q = 3a with a � 3, then by Lemma 2.8, Gα contains a subgroup of index 3 in

a Sylow 3-subgroup of G. Thus Tα must lie in a parabolic subgroup of T , and so Tα

cannot contain any Sylow 2-subgroup of T . Hence p /= 3.
If p = 2, then |PSL(2, q)| = q(q2 − 1).
By Lemma 2.1, we get

Tα
∼= Za

p�Zt
∼= Za

2 �Zt , where t |2f − 1.

Thus e(Tα) = q − 1. By Lemma 2.6(1), n − √
n + 1 = (q2 − 1)/(q − 1) = q +

1, which is impossible.



W. Liu, J. Li / Linear Algebra and its Applications 413 (2006) 121–130 127

Now we can assume that p � 5 and q � 7. Since Tα does not contain any Sylow p-
subgroup ofT , we havep dividesv, together with Lemma 2.8, we havep ≡ 1 (mod 3),
and so q ≡ 1 (mod 3).

From now on, we assume that 4|(q − ε), where ε = ±1. Thus e(T ) = q(q+ε)
2 .

By Lemma 2.10, we only consider the cases of Tα as (3), (4), (5), (6) or (8) in
Lemma 2.1.

When Tα
∼= A4, we have e(Tα) = 3, and so 3 divides q + ε by Lemma 2.6(1). It

follows that ε = −1.
Since q + 1 ≡ 2 (mod 3) and 4|(q + 1), we have q + 1 = 6l + 2 for some integer

l. Moreover, (q + 1)/2 is even, and so (q + 1)/2 = 6l′ + 4, where l = 2l′ + 1. This
deduces that q+1

4 ≡ 2 (mod 3).

Since v = |T |
|Tα | · t = q(q2−1)

24 · t , we know that (q + 1)/4 divides v. Thus there
exists a prime s congruent to 2 modulo 3, such that s|v, which conflicts with Lemma
2.8.

When Tα
∼= A5, we may get a contradiction as in the case where Tα

∼= A4.
When Tα

∼= S4, by Lemma 2.1(5), 8|(q − ε), and e(Tα) = 9. By Lemma 2.6(2),

v >
q2(q + ε)2

182
� q2(q − 1)2

182
.

Namely,

t · q(q2 − 1)

48
>

q2(q − 1)2

182
.

It follows that

t >
4q

27
·
(

1 − 2

q + 1

)
� q

9

(note that here q � 7), and so

a >
pa

9
. (2)

Note that p � 5 and pa � 7, and we get pa = 52 or 7 from (2) which conflicts with
e(Tα)|e(T ).

When Tα
∼= D2z, where z divides (q − ε)/2 and q−ε

2z
is odd, we get e(Tα) = z + 1.

Since

(n + √
n + 1)(n − √

n + 1) = n2 + n + 1 = v = q(q2 − 1)

4z
· t,

we have q divides v. Together with n − √
n + 1 = e(T )

e(Tα)
= q(q+ε)

2(z+1)
is divided by p,

and so we have q divides q(q+ε)
2(z+1)

.
This implies that z + 1 divides (q + ε)/2. Suppose that q − ε = 2zl1 and q + ε =

2(z + 1)l2, where both l1 and l2 are positive integers. Then 2ε = 2(z + 1)l2 − 2zl1 =
2z(l2 − l1) + 2l2, and so l2 � l1. If l2 = l1, then l1 = l2 = ε = 1, and so z = (q −
1)/2. It follows that n − √

n + 1 = q, and so 1 − 4(1 − q) is a square, that is, the
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equation x2 + 3 = 4pa has positive integer solutions for x, p and a. By Lemma 2.12,
we have pa = 7 or 73. The two cases contradict z is even. Thus l2 < l1. Moreover,
l2 + 1 � l1, that is,

q + ε

2(z + 1)
+ 1 � q − ε

2z
.

It follows that

2z2 + 2z + 2εz � q − ε.

This deduces that z <
√

q.
On the other hand, by Lemma 2.6(2), we have

v >

(
q(q + ε)

2(z + 1)

)2

,

that is,

q(q2 − 1)

4z
· t >

(
q(q + ε)

2(z + 1)

)2

� q2(q − 1)2

4(z + 1)2
.

It follows that

t >
q(q − 1)

q + 1
· z

z + 1
· 1

z + 1
� 3q

4
· 2

3
· 1

z + 1
= q

2(z + 1)
. (3)

If 2a > pa/2 − 1, then pa = 7 (note that p � 5 and pa � 7 again). In this case,
e(T ) = 21 and e(Tα) = 5, contrary to e(Tα)|e(T ).

Thus we can suppose that 2a � pa/2 − 1. By (3), we have z + 1 > q/(2a) �
q/

(√
q − 1

)
>

√
q + 1. It follows that z >

√
q, a contradiction.

When Tα
∼= PSL(2, pm), then e(Tα) = q ′(q ′+ε)

2 , where a
m

> 1 and q ′ = pm.
By Lemma 2.6(2), we have

v >
q2(q + ε)2

q ′2(q ′ + ε)2
>

q2(q − 1)2

q ′2(q ′ + 1)2
,

that is,

q(q2 − 1)

q ′(q ′2 − 1)
· t >

q2(q − 1)2

q ′2(q ′ + 1)2
.

This deduces that

q ′t > q ·
(

1 − 2

q + 1

)
·
(

1 − 2

q ′ + 1

)
>

3q

4
· 2

3
= q/2

(note that here q � 7 and q ′ � 5).
It follows that

2a � 2t > pa−m � 5a/2,

since a/m � 2, which is impossible.
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When Tα
∼= PGL(2, pm), then e(Tα) = q ′2 by Lemma 2.11, where 2m|a and q ′ =

pm. Hence by Lemma 2.6(2), we have

v >
q2(q + ε)2

4q ′4 � q2(q − 1)2

4q ′4 ,

that is,

q(q2 − 1)

2q ′(q ′2 − 1)
· t >

q2(q − 1)2

4q ′4 .

This deduces that

2q ′t > q · q − 1

q + 1
·
(

1 − 1

q ′2

)
>

3q

4
·
(

1 − 1

25

)
= 18q

25
.

Therefore,

a � t >
9

25
· pa−m � 9 · 5a/2−2,

which forces that pa = 52 since a � 2. In this case, we have n − √
n + 1 = 13, and

so n = 16. Thus by (1), we get 21 = 5t , a contradiction.
Now we finished the proof of Theorem 1.3. �
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