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Abstract

Limit cycle oscillations (LCOs) as well as nonlinear aeroelastic analysis of a 3-DOF aeroelastic airfoil motion with cubic re-
storing moments in the pitch degree of freedom are investigated. Aeroelastic equations of an airfoil with control surface in an
incompressible potential flow are presented in the time domain. The harmonic balance (HB) method is utilized to calculate the 
LCO frequency and amplitude for the airfoil. Also the semi-analytical method has revealed the presence of stable and unstable 
limit cycles, along with stability reversal in the neighborhood of a Hopf bifurcation. The system response is determined by nu-
merically integrating the governing equations using a standard Runge-Kutta algorithm and the obtained results are compared with
the HB method. Also the results by the third order HB (HB3) method for control surface are consistent with the other numerical 
solution. Finally, by combining the numerical and the HB methods, types of bifurcation, be it supercritical, subcritical, or diver-
gent flutter area are identified. 
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1. Introduction1

Aeroelasticity is defined as the interaction of aero-
dynamics, elasticity and dynamics. The aeroelastic 
results under the assumption of structural linearity, 
may disagree with the physical phenomena as most 
real structures may have structural nonlinearities such 
as mathematical (freeplay, bilinear and cubic) and 
physical (friction and hysteresis) nonlinearities. When 
some nonlinearity assumptions are made, the aeroelas-
tic characteristics of the system particularly after the 
linear flutter speed could be predictable. 

Diversion from linearity comes from aerodynamic 
and structural nonlinearity where aerodynamic nonlin-
earities at transonic speeds or high angles of attack 
may emerge. Structural nonlinearity is classified as 
being either distributed or concentrated. Distributed 
structural nonlinearity is governed by elastodynamic 
deformations that affect the whole structure. Concen-
trated nonlinearity commonly arises from worn hinges 
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of the control surfaces, loose control linkages, and 
material strength and resistance, or is related to mate-
rial behavior.  

Limit cycle oscillations (LCOs) and bifurcations 
arising from a concentrated structural nonlinearity in 
the restoring forces were first studied by Woolston[1]

and Shen[2], et al. Breitbach[3] described the flutter 
analysis of an airplane with multiple structural nonlin-
earity in the control system. Laurenson, et al.[4] studied 
flutter of a missile control surface with freeplay using 
the describing function method. Lee, et al.[5] applied 
the describing function method to analyze the flutter 
characteristics of the F-18 aircraft. They considered a 
nonlinearity of the type represented by a bilinear 
spring at the wing-fold hinge. They also considered   
free-play nonlinearity at the leading edge flap. 

Tang, et al.[6] investigated free-play nonlinearity in 
the pitch degree of freedom. It was shown that 
free-play nonlinearities introduced LCO at speeds be-
low the linear flutter speed. They concluded that the 
amplitude of LCO depended on initial conditions, air-
speed, and degree of nonlinearity. Kim, et al.[7] par-
ticularly investigated same problems but with a flexi-
ble two-degree-of-freedom (2-DOF) airfoil. They per-
formed nonlinear aeroelastic analyses for both the fre-Open access under 
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quency domain and time domain. Dessi, et al.[8] con-
structed a theoretical model with a 3-DOF aeroelastic 
typical section with a trailing-edge control surface in-
cluding cubic nonlinear springs for both the nonlinear 
description of the torsional stiffness and of the hinge 
elastic moment. The equations of motion are then ana-
lyzed by a singular perturbation technique based on the 
normal-form method. The nonlinear response of a 
structurally nonlinear airfoil in subsonic flow has 
similarly been the subject of a number of investiga-
tions such as works done by Conner[9] and Tang[10], et 
al. for discontinuous structural nonlinearities , and by 
O’Neil[11] and Sheta[12], et al. for continuous structural 
nonlinearities. 

The nonlinear flutter behavior may have a benign 
and explosive flutter nature. In the former case, above 
the linear flutter speed, the system tends to be stable 
LCO, leading to a supercritical pitchfork-like Hopf 
bifurcation as depicted in Fig.1(a), whereas in the sec-
ond case which is demonstrated in Fig.1(b), even be-
low the linear flutter speed, the system may experience 
instability, namely a subcritical knee-like Hopf bifur-
cation. At the Hopf point equilibrium solution or stable 
zero amplitude response converts to the periodic solu-
tion, and the amplitude of the unstable LCO becomes 
zero contrary to the stable one. Also at the turning/fold 
point when the initial conditions are sufficiently high, 
the unstable LCO becomes stable and vice versa. 

Fig.1  Two different types of Hopf bifurcation. 

Harmonic balance (HB) method is used to determine 
the turning point (TP) location respect to the free- 
stream flow velocity and it is an efficient method to 
illustrate unstable LCO before the Hopf point, which 
in this case is equal to the linear flutter speed. 

Cubic nonlinearity in the pitch degree of freedom 
causes subcritical knee-like and supercritical pitch-
fork-like shape Hopf bifurcation respect to the charac-
teristics of the airfoil. On the contrary when the cubic 
nonlinearity exists in the flap/aileron rotation individu-
ally, one always encounters divergent flutter after the 
flutter speed with soft cubic nonlinearity in the control 
surface.

The present paper considers the governing aeroelas-
tic equations of a 3-DOF airfoil containing cubic 
structural nonlinearity, either hardening or softening in 
the pitch degree of freedom are derived through in-
compressible unsteady aerodynamics, and they are 
studied in the time domain. The standard LCO analy-
ses in the neighborhood of the flutter speed with both 
the first and third order of HB method is applied in 
order to evaluate the TP location and predict LCO am-
plitude and frequency of the airfoil. Also the results of 
HB method are compared with the exact numerical 
solution which is derived from the stable LCO. Finally,
by combining the numerical and HB methods, super-
critical and subcritical bifurcations within the range of 
an airfoil variable are identified. 

2. Deriving Governing Equations 

Consider a 3-DOF airfoil, elastically supported by a 
linear plunge spring and a nonlinear torsional spring. It 
is equipped with a control surface (flap) constrained to 
the wing with a linear torsional spring as shown in 
Fig.2. Using standard notation, the plunging deflection 
is denoted by h;  is the pitch angle about the elastic 
axis, positive in the downward direction and with nose 
up, and is the flap angle, positive when the trailing 
edge (TE) surface is moved down. The elastic axis is 
located at a distance ahb from the mid-chord, where b
is half the chord, while the wing mass center is located 
at a distance x b from the elastic axis. The axis of ro-
tation for the flap is located at a distance chb from the 
mid-chord, while the flap mass center is located at a 
distance x b from the flap hinge. All distances are 
positive when measured towards the TE of the airfoil. 
In Fig.2, K , Kh and K are the stiffnesses in plunge, 
pitch and flap, respectively. 

Fig.2  Schematic of 3-DOF model of a typical section. 

The aeroelastic equations of motion for nonlinear 
3-D typical section with a TE flap in the absence of 
external excitation forces can be written as follows[8]:
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where L is the aerodynamic lift of wing; m the total 
mass of airfoil; G(h) nonlinear plunge stiffness terms, 
M  and M  are the pitching moments about elastic axis 
and flap hinge; S  and S  the airfoil static moments 
about the elastic axis and flap hinge; I  and I  the air-
foil mass moments of inertia about elastic axis and flap 
hinge; Ch, C  and C  the damping coefficients in 
plunge, pitch and flap; M ( ) and M ( ) the nonlinear 
pitch and flap stiffness terms. 
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where U is the free-steam velocity, and  the density of air. 
When the above non-dimensional coefficients are 

substituted in Eq.(1), the dimensionless equations of 
motion can be obtained 
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where ( )  represents the derivative with respect to 
non-dimensional time , and is used in the rest of this 
paper. 

The aerodynamic forces are presented as follows[13]:

*2 3 2 4

1

*2 4 2 2

4 10 7 1

1 8 4 11

*2 4 2

( )

2 ( )

1( ) (0.5 )
8

( )

( ) 0.5

       2(0.5 ) ( )

2
( )

h

h h

h h

h h

h h

TL U b a

T
W

M U b a a

T T T c a T

T T c a T T

a a W

M U b 9 1 4

13 5 4 10 34 11
2 2 2

1 12

(0.5 )

2
2

( )

hT T a T

T T T T TT T

T T
W

 (3) 
where the coefficients T1, T2, …, T14 are introduced by 
Theodorsen[14] and given in Appendix A. Also W( ) in
terms of Wagner’s function is given by 
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In Eq.(4), ( ), defined as Wagner function, can be 
approximated as 

1 2
1 2( ) (1 e e ) (5)

where the constants 1=0.165, 1=0.045 5, 2=0.335, 
and 2=0.3 are borrowed from Jones[15].

Due to the existence of the integral terms in the in-
tegro-differential Eq.(4), it is cumbersome to integrate 
them numerically. A simpler set of equations was de-
rived by Lee, et al.[16], and they introduced four new 
variables, so by adding the control surface, we extend 
the variables to six as 
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By integrating and employing the above variables, 
W( ) can be obtained as 
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By substituting Eq.(7) into Eq.(3), the general form 
of aeroelastic equations in the absence of external 
forces, we obtain 
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where coefficients ci, di, ei (i=a, b, c) and cj, dj,
ej (j=1, 2, …, 12) are given in Appendix B. f( ), g( )
and h( ) are functions of initial conditions and terms in 
the Wagner function. The right hand side of Eq.(8) can 
be written as 
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3. Numerical Simulation 

The governing aeroelastic equations in the time do-
main, Eq.(8), can easily be rewritten as a set of first 
order ordinary differential equations (ODEs). By a 
suitable transformation, the resulting set of twelve 
ODEs is given as follows: 

d ( , )
d
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vector X takes the following form: 
T
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(12)

The initial conditions of the system can be expressed 
as
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  The first ODEs in the state space form are given as 
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The standard fourth-order Runge-Kutta method can 
be used to integrate the system of Eq.(10) under given 
initial conditions as mentioned. 
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4. Computing Linear Flutter Speed 

Substituting G( )= , M( )= , M( )=  into Eq.(10) 
yields 

1 1X A F A BX (16)

where A, B are 12 by 12 and F is 12 by 1 sparse ma-
trices given in Appendix C. 

The linear flutter velocity *
LU  is obtained by solving 

the resultant eigenvalue problem. Stability of the linear 
system depends on the eigenvalues of –A 1B in 
Eq.(16). Solution of this equation gives twelve eigen-
values; six with zero imaginary parts and three sets of 
complex conjugate pairs. By increasing non-dimen- 
sional speed, the first positive or asymmetrically zero 
real part of some of the eigenvalues indicates instabil-
ity speed due to the fact that positive damping requires 
the system to keep stable. The corresponding imagi-
nary part equals reduced frequency k (k= /(U* ),
is the fundamental frequency of the motion) where the 
system exhibits oscillatory behavior for non-zero val-
ues of reduced frequency. So the non-zero imaginary 
part indicates flutter speed, with positive real part; the 
eigenvalue with zero imaginary part represents diver-
gence speed, with positive real part. 

For a representative sample, by assuming the char-
acteristics of the airfoil as below:  

1

2

1.2,  0.5,  100,  0.25,  0.097 1

0.012 5,  0.6,  0.5,  3.5h h

r x r

x c a

Fig.3 shows the variation of the real part of the 
complex conjugate pairs with non-dimensional veloc-
ity (U*). At low velocities all the eigenvalues have 
negative real parts, indicating that the system is stable. 
However, as U* is increased, the real part of one of the 
complex conjugate pairs increases and eventually be-
comes positive at *

LU =4.663 031. 

Fig.3  Real part of eigenvalues as a function of non-dimen-
sional speed. 

5. The First Order HB (HB1) Method  

The HB method is an efficient method for the pre-

diction of the frequency and amplitude of LCO that 
occurs at speeds above the linear flutter speed for 
wings containing a cubic nonlinearity. In order to apply 
this method, plunge and pitch motions should assume 
the form of a trigonometric series, such as Fourier se-
ries. So, the time-dependent part of plunge and pitch 
motions can be approximated as 
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where  and ,  and , and  and  are 

constants in nonlinear terms M , M  and 
M , respectively. 

Substituting Eq.(17) into Eq.(6) and Eq.(8), and 
calculating the coefficients of sin( ) and cos( ), we 
obtain the system a1, f1, g1, h1, n1 and :
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where mi, pi, qi, si and ui (i=1, 2, …, 6) are functions of 
system parameters and frequency , and their definitions 
are given in Appendix D. For velocities larger than the 
bifurcation value, the motions have limited-amplitude, 
i.e. there exist non-zero solutions to Eq.(19). 

At the particular case where we only have cubic 



· 270 · Saied IRANI et al. / Chinese Journal of Aeronautics 24(2011) 265-278 No.3 

nonlinearity in the pitch degree of freedom or 3  0, 

3 = 0, 3 = 0, the determinant of five equations of 

Eq.(19) should be zero. We can obtain acceptable fre-
quency by the following equation: 

1 2 4 5 6

1 2 4 5 6

1 2 4 5 6

1 2 4 5 6

1 2 4 5 6
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m m m m m
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s s s s s
u u u u u

(20)

In this instance for the supercritical bifurcation, it 
yields two acceptable as well as zero frequency for 
the equilibrium solution. Once the frequency is ob-
tained f1, g1, h1 and n1can be solved from the four rela-
tions of Eq.(19) in terms of a1, that is 
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Substituting Eq.(21) into the third equation of 

Eq.(19) yields the pitch, plunge and flap amplitude: 
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6. The Third Order HB (HB3) Method  

The second dominant harmonic is associated with a 

frequency of 3 . For a higher order approximation in 
the analytical prediction, we rewrite Eq.(17) as  
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At the particular case where 3  0, 3 = 0, 3 =

0, substituting Eq.(23) into Eq.(6) and Eq.(8), and calcu-
lating the coefficients of sin( ) and cos( ), we obtain 
the system of a1, f1, g1, h1, n1, a3, b3, f3, g3, h3, n3 and :
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where mi3, pi3, vi3, qi3, si3, ui3 (i=1, 2, …, 6) are func-
tions of system parameters and frequency , and their 
expressions are given in Appendix D. Also variables 
mi, pi, qi, si and ui (i=1, 2, …, 6) are the same as men-
tioned in HB1 method.  

The variables f1, g1, h1, n1 in terms of a1 can be 
solved from the four expressions in Eq.(24), and their 
solutions are the same as Eq.(21). Also the variables f3,
g3, h3, n3 can be solved from another four expressions 
in Eq.(24) in terms of a3 and b3:
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So the other four expressions of Eq.(24) become 
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 (26) 
where
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(27)
Ref.[17] solved a equation similar to Eq.(26) for a 

2-DOF airfoil without control surface after some com-
plicated algebraic manipulations. Taking advantage of 
the suggested relations, we have 

5 4 3 2 2 2
4 4 43 4 43 33 30 8 (10 4M M M M M M M

2 2
33 3 4 43 33 3 43 33
2 2 2 2 2

43 3 43 4 43 3 43 33 3

4 ) (30 9
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M M M M M M M M M
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3

3

*2
2 43 3 43 4 33
1 2 2

4 3 43 43
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2 2 43 3 4 4 33
3 3 2 2

4 3 43 43

4 ( )
4 3

4 ( )
3( 4 3 )

M M M M MU
a

M M M M

M M M M MUa b
M M M M

(29)

By using Eq.(28), we can obtain acceptable fre-
quency, then by substituting Eq.(29) into the two ex-
pressions of Eq.(26), a1, a3 and b3 could be found. Con-
sequently, from Eq.(21) and Eq.(25), we can derive the 
specific values of f1, g1, h1, n1 and f3, g3, h3, n3 respec-
tively. 

7. Determining TP Location 

TP exists only in subcritical bifurcations where the 
amplitude of the unstable and stable LCOs, as well as 
frequency, becomes equal to each other. In a 3-DOF 
airfoil with cubic nonlinearity, the characteristics of the 
airfoil and the sign of pitch cubic nonlinearity affect 
the location of TP irrespective of its magnitude and 
initial conditions. 

In this section by utilizing HB1 method, we investi-
gative how the characteristics of the airfoil affected by 
the location of TP and how the subcritical bifurcation 
converts to supercritical one or vice versa. To be sim-
plified, HB1 method is applied in order to find TP lo-
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cation. The results are consistent with that obtained by 
HB3 method. 

The variation of airfoil parameters is depicted in 
Fig.4 by using the characteristics of the airfoil, as de-
fined in previous section, and applying hardening cu-
bic nonlinearity as 3 > 0, 3 = 0, 3 = 0, = =

=1. By increasing ah, supercritical bifurcation con-
verts to the subcritical at ah= 0.46, which causes the 
TP location to move farther away from the Hopf point. 
Also in the range of 0.05 ch<0.41, there exists sub-
critical bifurcation and increasing this parameter 
causes the TP to come closer to the Hopf point. In an-
other instance, in the range 127< <194.5, by increas-
ing  initially, TP comes closer to the Hopf point, only 
to leap suddenly away where the type of bifurcation 
becomes supercritical with no TP. Other parameters, 

Fig.4  TP location with respect to variation of ah, ch, , x ,
r and 1 in an airfoil with 1=1.2, r = 0.5, =100,
x = 0.25, 2=3.5, r = 0.079 1, x = 0.012 5, ch= 0.6, 
ah= 0.5, G( )= , M( )= , 3 > 0, =1.

such as x , r and 1, are also illustrated in Fig.4, and 
their variation can be expressed similarly. Within this 
range for all plots in Fig.4, the instability speed is flut-
ter speed as the response of the dynamical system is 
investigated. Higher values for ah up to the level of 

0.1 are not considered in this analysis as they change 
the instability speed to divergence one. 

8. Bifurcation Plots 

8.1. Cubic hardening stiffness 

Supercritical bifurcation emerges when an airfoil 
with the characteristics mentioned in Section 6, in-
cluding cubic hardening stiffness in the pitch degree of 
freedom, is considered. Also by changing the level of 
ah to 0.4, the bifurcation becomes subcritical with 
TP=0.996 16 U*/ *

LU  where the structural nonlinearity 
is in the form of 

3( ) ,   ( ) ,  ( ) 50G M M
Now, by using the HB1 and HB3 methods, the finite 
limited amplitude of the stable and unstable LCOs are 
computed and depicted in Fig.5. Also to verify the re-
sults, stable LCO for a variation of U*/ *

LU  are nu-
merically evaluated and except for control surface or 
flap amplitude, the results of HB methods show good 
agreement with the numerical solution. HB1 method 
could not predict the shape of oscillations perfectly in 
the flap amplitude, due to the specific shape of LCO 
where the oscillations are not combination of sin( )
and cos( )  individually. 
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Fig.5 Bifurcation plots for pitch, plunge and flap amplitudes 
for an airfoil with 1=1.2, r =0.5, =100, x = 0.25, 

2=3.5, r = 0.097 1, x = 0.012 5, ch=0.6, ah= 0.4,
0.5, G( )= , M( )= , M( )= +50 3.

In Fig.6, stable LCOs for a location before Hopf bi-
furcation and after that by HB3 and Runge-Kutta ap-
proaches for flap oscillations with ah= 0.4 are plotted. 
Note that the phase difference between two oscillations 
by two methods is not important because the HB me-
thod starts plotting of the LCOs at =0.

Fig.6  Stable LCO vs non-dimensional time for an airfoil 
with 1=1.2, r = 0.5, =100, x = 0.25, 2=3.5, 
r = 0.097 1, x = 0.012 5, ch=0.6, ah= 0.4, G( )= ,
M( )= , M( )= +50 3.

8.2. Cubic softening stiffness 

By similar procedure like Section 8.1 but for 3 =
50, the subcritical bifurcation occurs this time for 

ah= 0.5 with TP=0.998 6 U*/ *
LU . In Fig.7 the bifurca- 

Fig.7  Bifurcation plots for pitch, plunge and flap ampli-
tudes for an airfoil with 1=1.2, r = 0.5, =100, 
x = 0.25, 2=3.5, r = 0.097 1, x = 0.012 5, ch= 0.6, 
ah= 0.4, 0.5, G( )= , M( ) = , M( )= 50 3.
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tion for two sets of parameters of ah is plotted. Sub-
stantial difference between HB1 and HB3 methods, 
and Runge-Kutta method for the flap amplitude was 
already explored in Section 8.1. 

In Fig.8, stable LCOs for a location before Hopf bi-
furcation and after that by HB3 and Runge-Kutta ap-
proaches for flap oscillations with ah= 0.5 are plotted. 
The phase difference is unimportant in this case as 
explained before. 

Fig.8  Sable LCO vs non-dimensional time for an airfoil 
with 1=1.2, r =0.5, =100, x =0.25, 2=3.5, r =
0.097 1, x = 0.012 5, ch=0.6, ah= 0.5, G( )= ,
M( )= , M( )= 50 3.

In a 2-DOF airfoil (without control surface) with 
cubic softening stiffness in pitch degree of freedom, 
even below the linear flutter speed, we encounter di-
vergent oscillations with respect to initial conditions. 
This issue is also correct for a 3-DOF airfoil with cubic 
softening stiffness in the control surface. But in the 
present format, divergent oscillations are encountered 
occasionally based on the initial conditions.  

By combining the numerical and HB methods, types 
of bifurcation such as supercritical and subcritical bi-
furcations as well as divergent flutter area by variation 
of ah are identified in two cases for 1=1.2 and 1=1.0. 
In the subcritical bifurcation when initial conditions 
are not sufficiently large, the response will be damped 
or backed to the equilibrium state. Otherwise, aeroe-
lastic response leads to either stable LCOs or divergent 
oscillations.

In Figs.9-10, divergent oscillations/flutter, LCO and 
equilibrium state/solution areas are obtained through 
numerical solution and the boundary of two types of 
bifurcations with each other or with damped oscilla-
tions area (i.e. TPs curve) are designated by HB1 me-
thod.  

Fig.9  Types of bifurcations and oscillations by variation of 
ah for an airfoil with 1=1.2, r =0.5, =100, x =
0.25, 2=3.5, r = 0.097 1, x = 0.012 5, ch= 0.6, 
G( )= , M( )= , M( )= 50 3, (0)= (0)=

(0)= (0)= (0)= 0. 

Fig.10  Types of bifurcations and oscillations by variation 
of ah for an airfoil with 1=1, r =0.5, =100, x =
0.25, 2=3.5, r = 0.097 1, x = 0.012 5, ch= 0.6, 
G( )= , M( )= , M( )= 50 3, (0)= (0)=

(0)= (0)= (0)=0.
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In Figs.9(a)-9(b), with 1=1.2 the only non-zero ini-
tial conditions are (0)=3 and (0)=5 respectively. 
The stronger initial disturbance causes larger divergent 
and LCO area. For another sample in Figs.10(a)-10(b),  
with 1=1 the only non-zero initial conditions are 

(0)=2 and (0)=4  respectively. So the system ex-
cited with small initial disturbances usually does not 
lead to divergent oscillations. 

9. Conclusions 

In this work, the governing aeroelastic equations of 
a 3-DOF airfoil in an incompressible flow are derived 
in the time domain. The nonlinear aeroelastic behavior 
of the 3-DOF airfoil with hardening and softening cu-
bic nonlinearities in pitch degree of freedom is also 
studied in the time domain, and the prediction of LCO 
amplitude and frequency by using the HB method and 
numerical solution is investigated and the results are 
illustrated in a series of bifurcation plots. The follow-
ing outcomes are concluded:

(1) The bifurcation diagram is very dependant on the 
position of the elastic center.

(2) The type of bifurcation and TP location depends 
on the characteristics of the airfoil as well as the pa-
rameters of structural nonlinearity. 

(3) For cubic softening stiffness in pitch degree 
freedom in a 3-DOF airfoil, whether the type of bifur-
cations is subcritical or supercritical, and the initial 
conditions may cause divergent oscillations.

HB method is in a good agreement with Runge- 
Kutta method, but for flap amplitude of HB1 method it 
could not predict the shape of oscillations contrary to 
the higher order of this semi-analytical method. 
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Appendix C: Coefficients for Eq.(16) 
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Appendix D: Coefficients for Eq.(19) and Eq.(24) 
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