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The microcomputer algebraic manipulation system MUMATH is used to implement the 
classical variational, Galerkin and least-squares techniques for solving boundary-value 
problems in differential equations and also for solving Fredhohn integral equations. Examples 
are given which extend the precision of known results. The technique is presented as a general 
algorithm which can readily be implemented on other algebraic manipulation systems. 

1. Introduction 

Computer programs have been in existence since the fifties to manipulate polynomials, 
differentiate functions and solve equations. By the late sixties and early seventies 
programs were written which could integrate functions analytically. The late seventies saw 
the development of programs for the symbolic solution of differential and integral 
equations (see Golden, 1977; Stoutemyer, 1977; Bogen, 1979). Large and complex 
algebraic manipulation systems were devised to implement the algorithms which effect 
these processes, the best known being FORMAC, REDUCE2, MACSYMA and 
SCRATCHPAD. 

There then opened up the exciting possibility of tackling many problems in applied 
mathematics and engineering which could be solved approximately by analytical methods 
but which require very large amounts of algebraic manipulation. The Rayleigh-Ritz, 
Galerkin and least-squares methods for solving boundary-value problems in differential 
equations are typical examples. For early work using computer algebra in these methods, 
see Miola (1974) and Andersen & Noor (1977). This application area involves the 
interaction of numerical and algebraic computation (see Ng, 1979). One of the first of 
such applications was the use of algebraic differentiation to determine the higher 
derivatives in the Taylor ~eries method for solving initial-value problems in ordinary 
differential equations. For surveys of applications see, for example, Fitch (1979) and 
Brown & Hearn (1979). 

Unfortunately the use of these large systems did not, and still has not, become very 
widespread and this has meant that the rate of progress in the application of algebraic 
manipulation techniques has been somewhat less rapid than might have been hoped. 
However, the ever-increasing use of microcomputers and the pioneering efforts of 
Stoutemyer and Rich (see the Microsoft MUMATH/MUSIMP Reference Manuals 1980) 
in implementing MUMATH on various 8-bit microprocessors have made symbolic 
manipulation techniques more widely available. See also the work of Fitch (1983) on 
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implementing R E D U C E  on a Motorola  68000 based microcomputer.  The present paper 
will demonstrate how the TRSS0 Model I running M U M A T H  can solve many of the 
classical variational and approximation problems very effectively. Those wishing higher 
accuracy will have to gain access to, say, an IBM PC or a REDUCE2 system. 

2. Ordinary Differential Equations 

Self-adjoint second-order ordinary differential equations of the form 

L[y] = ( p y ' ) ' - q y - - f  = 0 (1) 

satisfying boundary conditions 

y =y~ at x = a, Y = Yb at x = b (2) 

have the variational formulat ion 

L j [y] = (py,2 + qy2 + 2fy) dx = minimum (3) 

under  the same conditions (2) (see Kantorovich & Krylov, 1958, p. 262). This property 
leads to the Rayle igh-Ri t z  technique for the approximate solution of (1), (2): determine 
constants  a~, i = 1, 2 . . . . .  n in the approximation 

y ~ y,, = ~'. atvt(x) (4) 
i=1 

which satisfies (2) and (3) with a suitable choice of basisf imctions vt(x). The equations for 
the at are then 

cqjaj = - f ~ ,  i = 1, 2 . . . .  , n, 
j = l  

where 
t l h  

°~U = °tit = I -  (pv}oj + qv~vj) dx 
t] a 

and  (Sa, b, c) 

L flit = for dx. 

In  the G~lerkin method we write the o.d.e. (1) as 

M[y]  = f  where M -  L + f ,  (6) 

and  if we use the same approximation (4) the Galerkin equations are 

L[y,,]v i dx = (M[y , ]  - f ) v ~  dx  = O, 

which amounts  to forcing the error  L[y , ]  to be orthogonal to all the functions vz, 
i -- 1, 2 . . . .  , n. This approach gives the following equations for the constants at, 

~ chjaj = - f ~ ,  i = 1, 2 . . . . .  n, 
j = l  

where  

ot~j = %1 = -- f ~  M [ v i ] v j  dx  (7a, b, c) 
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and t'*h 

= j~Jb  i dx. 

If we integrate the first member of (Sb) by parts, we see that equations (5) and (7) are 
equivalent. (The advantage of the Galerkin formulation is, of course, that it may be used 
in problems which do not admit of a variational formulation.) 

In the Least-squares method we find the constants a; in (4) from the condition 

J[y] = I b L2[y,,] dx = minimum 
d a  

or (8a, b) 

f ~  L c~L/c?ai = O, dx  

i.e. we are minimising the integral of the square of the error over [a, b]. This condition 
gives the following equations for the constants at, 

~ at~at = fit, i = 1, 2 . . . . .  n, 
j = l  

where 

i; aij = ajt = M[vt]M[vi] dx  (Pa, b, c) 
I 

and 

fl~ = M[vtl  dx. 

Clearly there is greater algebraic labour in setting up these equations than in (5) or (7), 
but the method is of general applicability like the Galerkin method. 

USE OF SYMBOLIC COMPUTATION 

The above solution teclmiques can be summarised in the following simple algorithm. 
For definiteness we refer to equations (5), but the algorithm is essentially the same for the 
other related techniques and problems considered in this paper. 

ALGORITHM 

(i) Construct the coefficients ~j and fl; in symbolic form (i.e. in terms of i and j) from 
equations (5b) and (5c) with the assumed vt(x), using algebraic differentiation and 
integration. 

(it) Evaluate cqj and fit appropriately to set up equations (5a), taking advantage of the 
symmetry ~tj = aji. 

(iii) Solve equations (5a) using arbitrary-precision rational arithmetic. 
(iv) Print the final solution in symbolic form, e.g. as in (16). 

When we come to the non-linear problem (22), we shall employ a numerical phase--in 
solving the system of non-linear algebraic equations (24a) for the constants at. That is, the 
step corresponding to (iii) is accomplished using floating-point computation, and so in 
this case the overall computation is hybrid. 

We wish to emphasise here that a symbolic computation system enables us to extend 
the analytic phase of the computation far beyond what could be contemplated without 
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such a system. This is especially true of problems involving a parameter (such as 2 in the 
eigenvalue problem (18)) and non-linear problems where considerable algebraic 
simplification is required to form the non-linear algebraic equations prior to their 
solution. Also, in the symbolic phase all arithmetic is done exactly through the use of 
arbitrary-precision rational arithmetic, in contrast to ordinary floating-point computation 
which involves round-off error. In fact, in several of the large systems, output from the 
symbolic phase can be converted to (FORTRAN) expressions for incorporation in a 
program to perform numerical computation (see Ng, 1979). 

To effect step (iii) above, it is necessary to use a symbolic matrix algebra package using 
arbitrary-precision rational arithmetic. The author wrote his own package in MUSIMP.  
This exercise was to gain experience with the M U S I M P  language but also to overcome 
the problem that the TRS80 version of M U M A T H  does not come with such a package. 
(The C P / M  version does.) In writing this package the author handled arrays as lists. 
Consequently, it was necessary to write functions to access and change the ith element of 
a list L (for a one-dimensional array). This was done in LISP fashion with the recursive 
functions 

F U N C T I O N  AREL(L,I), 
WHEN i--1, FIRST(L) EXIT, 
AREL(REST(L) , I -  1), 

E NDFUN$  

F U N C T I O N  REPLCAREL(L,I,R),  
WHEN I = 1, REPLACEF(L,R) EXIT, 
REPLCAREL(REST(L),I  - 1,R), 

E NDFUN$  

respectively, with obvious extensions to the (i,j)th element of a list of lists (for a two- 
dimensional array). The authors of the CP/M M U M A T H  matrix package took a 
different approach, based on the stack operations PUSH and POP.  

We note finally here that step (i) cannot always be effected with the M U M A T H  system 
because of its limited integration capability. In these circumstances, the values of etj and 
p~ were computed directly by the system for each appropriate integer value of i and j. 

EXAMPLE. We first consider a well-known special case of (1), viz. 

y " + y + x  = 0 (10) 

with boundary conditions y(0) = y(1) = 0 (see Kantorovich & Krylov (1958, p. 269) and 
Collatz (1960, p. 220)). This problem has the exact solution 

y = sin (x)/sin ( 1 ) - x. (11) 

Both of these authors give the Ritz-Galerkin solutions for n = 2 using the basis functions 

v i = x - x  1+~, (12) 
viz. 

Y "~ Y2 = 7 1 x / 3 6 9 - S x 2 / 3 6 9 - 2 1 x 3 / 1 2 3 ,  (13) 

for which the absolute error (in relation to the exact solution y (x ) )  le(x)[ < 0.0004 in 
[0, 1]. Collatz also gives the least-squares solution for n = 2. Rational arithmetic was used 
throughout. The present author used this problem as a test case for his programs and 
successfully reproduced (13). Evidently (12) is not the best form for the basis functions as 
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the series expansion of the exact solution (11) proceeds in odd powers of x. Consequently, 
this author used 

v t = x - x  2i+1, (14) 

and thereby found the n = 2 Ritz-Galerkin solution 

Yz = 657x/3488- 345x3/1744 + 33x5/3488, (15) 

which has leJ < 6 x 10 -6 in [0, 1]. He determined also the n = 5 solution 

Ys = 112104387771x/595049363456- 117858958525x3/595049363456 
+ 2946473915x5/297524681728 - 70153985x7/297524681728 (16) 
+ 5844685x9/1785148090368 - 52003x 1 t/1785148090368, 

which has le[ < 7 x 10-14 in [0, 1]. Bearing in mind that (16) was computed and printed 
automatically in a f e w  minutes on a TRS80 Model I running MUMATH, we see at once 
the power of even a small algebraic manipulation system for the present class of problems: 
few indeed would seriously contemplate the algebraic labour involved in obtaining this 
result by hand. 

The corresponding results for the least-squares method were obtained but we do not 
reproduce them here. We note only that the overall computing time for the n = 5 case was 
over twice that of the Ritz-Galerkin solution (16) and the maximum absolute error was 
slightly greater ([e[ < 2 x 10-13). 

with 

and 

EIGENVALUE PROBLEMS 

Here we replace the non-homogeneous term f in (1) by - 2 y  and consider the 
homogeneous boundary conditions 

y = 0  at x = a  and x = b .  

If we seek the solution in the form (4), we find the Ritz-Galerkin equations are then 

~ (oh j -  2yij)aj = O, i = 1, 2 . . . . .  n 
j = t  

cq~ as defined in (5b) or (7b) (17a, b, c) 

f; y~j = v~vj dx. 

Equations (17) are a system of n homogeneous equations in n unknowns which have a 
non-trivial solution only if the determinant of coefficients is zero. On expansion this 
determinant yields a polynomial of degree n in 2 whose n roots are approximations to the 
first n eigenvalues of the differential-equation eigenvalue problem. 

EXAMPLE. We consider the well-known problem 

y " + 2 y  = 0 
(18a, b) 

y ( -  1) = y(1) = 0, 

whose lowest eigenvalue is At = (1r/2) 2 with corresponding eigensolution cos (nx/2). We 
assume the basis functions to have the form 

vt(x) = (1 - x2 )x  zCi- 1~ (19) 
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(i.e. selecting the even eigensolutions of (18)). Kantorovich & Krylov (1958, p. 297) give 
the charac ter i s t ic  equat ion for n = 2 and n = 3, viz. 

2 2 - 2 8 2 + 6 3  = 0 (21 = 2.467437) 
(20a, b) 

423--45022+89102--19305 = 0 (21 = 2'46740111). 

The absolute error  of the last approximation to 2~ is already less than 10-8 in magnitude. 
For  n = 4 and n = 5 the present author  found 

2 4 -  3082 a + 210212 2 - 3603602 + 765765 = 0 
(21a, b) 

22 s - 13652'* + 2293202 a - 1253070022 + 1984027502 - 416645775 = 0. 

Solving these equations by the Newton-Raphson method, we find 2, = 2.4674011002730 
and 2.4670411002723397 with absolute errors of less than 7 x 1 0  - l a  and 5 x  10 -17 in 
magnitude respectively. The corresponding eigensolutions differ in magnitude from 
cos(rex/2) by less than 2 x 1 0  -v and 6 x 1 0  -~° respectively in [ - 1 ,  1]. These are 
extremely good results. As is well known, the accuracy of the higher frequency solutions 
becomes progressively poorer, though for n = 4 and n = 5 the second eigenvalue was 
found to be accurate to 3 and 5 decimals respectively from (21a, b). 

The  characteristic equation was obtained from (17) by M U S I M P  functions written by 
the author.  These functions are based on the recursive Laplace expansion of a determinant 
in terms of its cofactors (an approach not recommended for large n because of the n[ 
growth in the number of arithmetic operations). This step had to be taken, however, since 
the determinant evaluator in the M U S I M P  matrix algebra package is based on Gauss 
elimination and will not produce the characteristic equation directly (because the 
M U M A T H  system does not  cancel common factors in numerators and denominators 
unless these appear explicitly). This shortcoming is not present on the more sophisticated 
algebra systems or  later versions of MUMATH.  

NON-LINEAR EQUATIONS 

The  Ritz and Galerkin methods give rise here to sets of non-linear algebraic equations 
for the constants ai. The formation of these equations is somewhat more complicated and 
their solution is more difficult to obtain, 

We illustrate with the example 

y" = 3y2/2 
(22a, b) 

y ( O ) = 4 ,  y ( 1 ) = I  

considered by Collatz (1960, p. 212) which has the exact solution y = 4/(1 +x )  2. With the 
basis 

y,, = 4 - 3 x +  ~ a~vi 
i = l  

vi = x - x  ~÷1 (23a, b) 

the Ri tz-Galerkin  equations reduce to the system of non-linear equations 

/?ukak aa--?)~ = O, i = 1, 2 . . . . .  12, 
j = I  1 
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where 

~ij = vi[v]-3(4-3x)vj]  dx, 
0 

(24a, b, c, d) 
/ ' l  

flijk ~" (3/2) If ViVjVk dx 

and 
d o  

j o  (4-- 3x)2vi dx. (3/2) 7i 

Collatz obtained the two non-linear equations corresponding to n = 2 above and gave the 
appropriate solution a i= -7 .07004 ,  a2=2.72044. The relative error of this 
approximation is less than 2~ in magnitude everywhere in [0, 1]. The present author 
obtained the equations for n = 3 and n =4 using MUMATH. For brevity, only the 
solutions are quoted here: 

al = -9.840060 
a2 = 7.342806 
a 3 =-2.318631 

al = -11.1862943 
az = 11'3823795 
a 3 = -7-0419785 
a, = 1.8941640. 

(25a, b) 

These sets of non-linear equations were solved without difficulty by the Newton-Raphson 
method for systems of equations. Solutions (25a, b) have relative errors which are 
respectively less than 0.25~ and 0.06?/o in magnitude everywhere in [0, 1]. 

We note that it is tempting to proceed in MUMATH without first effecting the 
algebraic reductions (24), i.e. allowing the system to square out and collect all the terms 
before differentiating with respect to the at. If this approach is adopted, the growth in the 
size of the intermediate expressions as n becomes large soon uses up all the available 
memory of a small microcomputer. (This growth problem is, of course, true, to a lesser 
degree, of the linear problems especially when using the least-squares method.) 
Consequently, it is always advisable with a small system to perform as much preliminary 
simplification as possible of the type exemplified by equations (24). 

3. Partial Differential Equations 

The previous techniques may readily be applied to partial differential equations. 

POISSON'S EQUATION 

We consider the well-known elliptic boundary-value problem (torsion problem) 

V2u = - 2  inS 
(26a, b) 

u = 0 on boundary of S, 

where S is the square - 1  ~<x~< 1, - 1  ~<y~< l (see Kantorovich & Krylov, 1958, p. 281). 
With the basis 

tt, = ~ atvi(x, y) (27) 
f= l  
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we find the Ri tz -Gale rk in  equations for the constants  a i are 

~ cq~aj+fli = O, i = 1, 2 . . . . .  n, 
j = l  

where 

a t J = c g =  -1 -11_ -~x ~ +-~y o y j d x d y  (Ritz) 

= - v~V2vj dx  dy (Galerkin)  (28a, b, c) 
- 1  , - 1  

and 

fli = - 2 vi  dx d y. 

With the v i as 
vl = (x 2 -- 1)(Y 2 - 1)(x z +yZ) i -  t, (29) 

which satisfies the boundary  conditions,  Kan to rov i ch  & Kry lov  give the n = 1 and n = 2 
solutions 

u t = 5(x 2 - 1)(y 2 - 1)/8 
(30a, b) 

u2 = (x 2 - 1)(Y 2 - 1)(1295/2216 + 525(x 2 + y2)/4432) 

respectively. The present author  obta ined  the n =  3 and n = 4  solutions with the 
M U M A T H  system, corresponding to 

10061391 26947213979609 

al = 16987888 al  = 45802341113840 

537075 10106985607719 

a2 = 8493944 a~ = 91604682227680 

3942939 -9630261958317  

aa = 67951552 aa = 183209364455360 

24088961157261 

a4 = 366418728910720 

(31a, b) 

respectively. Analytical solutions to this p rob lem are well k n o w n  (see, for example, 
Kantorov ich  & Krylov,  1958, p. 283), so we find for n =  3, [el < 0.021 and  for n = 4 ,  
[e[ < 0.005 throughout  S. We found that  the symmet ry  of this p rob lem m a d e  it more  
efficient to use the Ritz form of (28b) than the Galerk in  form for the evaluat ion  of the 
coefficients c~q with M U M A T H .  

BIHARMONIC PROBLEMS 

Next, consider the problem (vertically loaded c lamped  plate) 

V4u = 1 in R 

u = 0 (32a, b, c) 

Ou/~v = O, on boundar ies  of R 

where R is the annulus 1 ~ r ~< 2, 0 ~< 0 ~< 2n, r, 0 are plane po la r  coordinates  and v is the 
normal  (see Rektorys,  1975, p. 302). 
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Assuming circular symmetry, so that 

d 2 1 d 
V2 ~- d-~'2 q r d r  

and taking 
.~n 

u.  = ~ aiv~(r), (33) 
i = 1  

we find the Ritz-Galerkin equations for the a~ are (' denoting differentiation with respect 
to r) 

~ o:~jaj-f l i  = O, i = 1, 2 . . . . .  n, 
j ~ l  

where 

chj = aji = (v[' + vi/~ )(vj' + vj/r)r dr dO (Ritz) 

= v iV%jr  dr dO (Galerkin) (34a, b, c) 
i 

and 

fit = vtr dr dO. 

With 

vt = (r 2 _  1)2(4_r2)2r2Ci- 11 (35) 

which satisfies the boundary conditions, we find the n = 1 and n = 2 approximations 
correspond to 

7 1043 

ax = 19968 al = 1088832 
(36a, b) 

- 3 5  

a2 = 181472 

respectively. Equation (36b) agrees with the result given by Rektorys. The n = 3 and n = 4 
approximations were computed by the author with MUMATH and these correspond to 

24433 710317319 

al 14593472 al = 295661116096 

- 15305 -227133005 

a2 = 21890208 a2 = 147830558048 
(37a, b) 

121 29721483 

aa - 1368138 aa = 73915279024 

-2119975 

a4 = 55436459268 

respectively. The exact solution is again known (see Rektorys, 1975, p. 304) so we find for 
n = 3 [el < 0.0001 and for n = 4 lel < 0.000025 everywhere in R. We again found the Ritz 
form better than the Galerkin form for computing the coefficients cqj with MUMATH. 
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4. Integral Equations 

Our  final example is a Fredholm integral equation. Many such equations admit of a 
variat ional  formulation (e.g. see Collatz, 1960, p. 487). We will, however, use the 
Galerkin approach to solve the special case 

y (x ) -  4 Jo xty(t) dt = sin x - ~ x (38) 

taken from Delves & Walsh (1974, p. 98) where it is solved by an entirely different 
method.  (The kernel is separable, and so we can easily construct the exact solution, 
y(x) = sin x.) 

Using the basis (4), we find the Galerkin equations are 

~ c~uaj--fl~ = 0, i = 1, 2 . . . . .  n, 

where j = 1 

4 Jo xtv~(t) dt vi(x ) dx (39a, b, c) 

and 

fit = (sin x -  x/4)vi(x ) dx. 

As in Delves & Walsh we take 
o~(x) = x 21-1, (40) 

bearing in mind the power series expansion of the true solution. 
This example is harder for M U M A T H  in several ways. First, if we retain z as a 

symbolic entity throughout ,  the intermediate expressions become prohibitively long for 
M U M A T H  when n > 2. Consequently, we found it necessary to give n an appropriate 
rational approximation at the start of the computation. Even if this is done, the 
intermediate rational numbers very quickly increase in size and soon exhaust the main 
memory of  the TRS80 Model I. Use of the floating-point package suggested by the 
authors of M U M A T H  (see Douglas, 1982) does not solve this problem either as the full 
rational representation of any number is still retained in memory.  To overcome these 
difficulties, the author  wrote a M U S I M P  function T R U N C  which simply truncates a 
given number  of the least significant digits in the numerator  and denominator  of a long 
rational fraction. At least four more digits were always retained than the number of 
significant figures quoted in the final results, so as to counter any build up of error in the 
intermediate computations. Lastly, we have to integrate products of powers of x and sin x 
which requires either the use of the I N T M O R E  package in the CP/M M U M A T H  system 
or the writing of a special function. The former uses up valuable main memory. The 
author  used both  techniques as a check. (It is, of course, recognised that all these 
difficulties would easily be overcome on a large system such as REDUCE2.)  The 
following approximations were found with MUMATH,  

Yl = 24x/re3 
Y3 = 0'99977x -- 0" 16583x 3 + 0"00757x s 

y5 = l'O00000002x-O'166666632xa+O'OO8333148x5 (41a, b, c) 
- 0.000198154x 7 + 0.000002618x 9. 



Using a Small Algebraic Manipulation System 30l 

Fo r  the last two results, lel < 0.0016 and 3 x 10 -8 respectively everywhere in [0, ~/2]. The 
three- term approx imat ion  differs only slightly from that  given in Delves & Walsh. It  may 
be of interest that  the five-term approximat ion  is only very slightly less accurate than the 
best  five-term polynomial  approx imat ion  of sin x in [0, ~/2] (see, for example, Lyusternik 
et al., 1965, p. 91). 

5. Concluding Remarks 

It  has been shown how the M U M A T H  algebraic manipulat ion system running on one 
of the first widely available microcomputers  can very effectively solve many of the 
classical variational,  Galerkin  and least-squares problems in differential and integral 
equat ions.  Solutions are obta ined using rational arithmetic. In  all cases, comparisons 
were made with known exact solutions. 

We  remark finally that  the present work exemplifies the combined use of algebraic and 
numerical  computa t ion  as a powerful tool in Applied Mathematics  and Engineering. It is 
hoped  that  the paper  might help to stimulate further growth in this important  area. 

This work was completed while the author was on Study Leave from the University of Glasgow. 
He is indebted to the Editor and Referees for helpful comments. 
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