Regular Matrices in the Semigroup of Hall Matrices

Han H. Cho*

Department of Mathematics
College of Education
Seoul National University
Seoul, Korea

Submitted by Richard A. Brualdi

ABSTRACT

We study the regular matrices in the semigroup H_n of Hall matrices (Boolean matrices with positive permanent). We study some necessary and sufficient conditions for a Hall matrix to be regular in H_n in terms of idempotent matrices, adjoint matrices, and identifying permutation matrices.

1. INTRODUCTION

Let $\beta = \{0, 1\}$ be the Boolean algebra of order two with operations $(\cdot, \cdot): 1 + 0 = 0 + 1 = 1 + 1 = 1 \cdot 1 = 1 & 0 + 0 = 0 \cdot 1 = 1 \cdot 0 = 0 \cdot 0 = 0$ and an order $<: 0 < 1$. Then under these Boolean operations, the set B_n of all $n \times n$ matrices over β (Boolean matrices) and the set H_n of all $n \times n$ matrices over β with positive permanent (Hall matrices) form multiplicative semigroups. There have been many researches on such semigroup properties as primeness, regularity, and indices in B_n and H_n. In this paper we study the regular matrices in the semigroup $H_n(s)$ ($= \{A \in B_n \mid \text{per} A \geq s\}$) for each positive integer s.

DEFINITION 1.1. Let S be a multiplicative semigroup, and let A be an element of S. A is regular in S if $AGA = A$ for some $G \in S$ (G is called a
generalized inverse of A). A is semi-invertible in S if $AGA = A$ and $GAG = G$ for some $G \in S$ (G is called a semi-inverse of A). For a Boolean matrix $A \in B_n$, the Boolean rank of A is the smallest integer r for which there exist $n \times r$ and $r \times n$ Boolean matrices B and C providing the factorization $A = B \cdot C$. The Boolean rank of a zero matrix is 0, and if the Boolean rank of $A \in B_n$ is n, then A is called a rank-n matrix.

Throughout this paper, we will regard the regular elements of $H_n(s)$ as a generalization of the invertible elements in the semigroup R_n of $n \times n$ real matrices. With this point of view in mind, we derive some properties of the regular matrices of $H_n(s)$ by examining the well-known properties of the invertible matrices in R_n. Also in this paper we show that many properties that hold for the rank-n regular matrices of B_n also hold for the regular matrices of $H_n(s)$.

DEFINITION 1.2. Let $A \in B_n$ be an $n \times n$ Boolean matrix. Then for each pair of integers i and j, A_{ij} and A_{ji} denote respectively the ith row and the jth column of A, and A_{ij} denotes the (i, j) entry of A. As usual, A' denotes the transpose of A. For A and R in B_n, $R \leq A$ if and only if $R_{ij} \leq A_{ij}$ for all i and j. If $R \leq A$, then R is called a spanning submatrix of A (we also say that R is contained in A), and $A - R$ denotes a Boolean matrix such that $(A - R)_{ij} = 1$ if and only if $A_{ij} = 1$ and $R_{ij} = 0$. The permanent per A of A is the number of elements in S_A, where $S_A = \{P \in S_n | P \leq A\}$ and S_n is the set of all $n \times n$ permutation matrices (S_n also denotes the set of all permutations on $\{1, \ldots, n\}$). Finally, both $|A|$ and $\sigma(A)$ denote the number of ones of $A \in B_n$, and A is called a J-matrix and denoted by J_n if $\sigma(A) = n^2$.

Consider the following commutative diagram:

Here, N_n denotes the monoid of $n \times n$ nonnegative matrices, Ω_n denotes the monoid of $n \times n$ doubly stochastic matrices, and T_n denotes the monoid of $n \times n$ Boolean matrices with total support (Boolean matrices that can be expressed as a sum of permutation matrices). Finally ι denotes the canonical inclusion map, and π denotes the support map that sends a nonnegative
matrix to a Boolean matrix in such a way that for each \(\alpha \in \mathbb{N}_n \), the \((i, j)\) entry \(\pi(\alpha)_{ij} \) of \(\pi(\alpha) \) is 1 if and only if \(\alpha_{ij} > 0 \) for each \(i \) and \(j \). Since \(1 \cdot 1 = 1 \) in \(\beta \) and the product of any two positive numbers is positive in the real number system, \(\pi(\alpha) = \pi(\beta)\pi(\gamma) \) when \(\alpha = \beta\gamma \). Therefore \(\pi \) is a semigroup homomorphism, and using this semigroup homomorphism \(\pi \) we can compare the regular elements of each semigroup in the diagram as follows.

Theorem 1.3. Let \(\alpha \) be an element of \(\mathbb{N}_n \) (respectively \(\Omega_n \)) and let \(A \) be \(\pi(a) \). Then

1. If \(\alpha \) is regular in \(\mathbb{N}_n \) (respectively \(\Omega_n \)), then \(A \) is regular in \(B_n \) (respectively \(T_n \)).
2. \(A \) is regular in \(B_n \) if and only if \((A'A'A')^c \) \((A^c \text{ is } J_n - A) \) is the largest generalized inverse of \(A \) in \(B_n \).
3. \(\alpha \in \Omega_n \) is regular in \(\Omega_n \) if and only if \(\alpha\alpha'\alpha = \alpha \).

Consider the matrices

\[
\gamma = \frac{1}{3} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.
\]

Then \(\gamma \) is not regular in \(\mathbb{N}_2 \), but \(C \) is regular in \(B_2 \). So the converse of (1) in Theorem 1.3 does not hold. By (2) and Corollary 4.4 we can see that for \(A \in H_n \), \(A \) is regular in \(H_n \) iff \((A'A'A')^c = P'AP' \) for some \(P \in S_A \) iff \((A'A'A')^c \in H_n \). Consider the matrices

\[
A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}, \quad G = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.
\]

Then \(A \in H_4 \), and \(A \) is regular in \(B_4 \) since \(AGA = A \) and \(GAG = G \) hold. But \(A \) is not regular in \(H_4 \), by Theorem 4.3, since the first row \(A_{11} \) of \(A \) contains only one row of \(A \) even though \(|A_{14}| = 2 \). Therefore there is a Hall matrix \(A \in H_n \) of rank less than \(n \) such that \(A \) is regular in \(B_n \) but not in \(H_n \). Note that for a rank-\(n \) Boolean matrix or a prime Boolean matrix \(A \in B_n \), \(A \) is regular in \(B_n \) if and only if \(A \) is regular in \(H_n \) (cf. [2]).
2. REGULAR MATRICES AND IDEMPOTENT MATRICES

In this section we characterize the regularity of a Hall matrix \(A \in H_n \) in terms of idempotent matrices. Then for each positive integer \(s \), we compare the regular matrices in \(H_n(s) \) and \(T_n \) with the regular matrices in \(H_n \).

Definition 2.1. For \(A \in H_n \), \(A \) is called an idempotent matrix if \(AA = A \). For any Boolean matrices \(A \) and \(B \) in \(B_n \), we say \(A \) is (permutationally) equivalent to \(B \) if \(B = PAQ \) for some permutation matrices \(P \) and \(Q \). Also, if \(B = PAP^t \) for some permutation matrix \(P \), then we say \(A \) is (permutationally) similar to \(B \).

Lemma 2.2. Let \(A \) and \(G \) be Hall matrices such that \(AGA = A \). Then for each \(P \in S_G \), \(APA = A \), and \(P^t \in S_A \).

Proof. For each \(P \in S_G \), \(AGA = A \) means \(APA \leq A \) and \(|APA| \leq |A| \). Since \(AP \) contains a permutation matrix, \(|(AP)A| \geq |A| \) holds. Thus we have \(APA = A \) and \(PAPA = PA \) for any \(P \in S_G \). Since \(PAPA = PA \) and \((P \cdot S_A) \cdot (P \cdot S_A) \subseteq P \cdot S_A \), \(P \cdot S_A \) is a subsemigroup of the symmetric group \(S_n \) (\(P \cdot S_A \) is \(\{P \cdot Q \mid Q \in S_A\} \)). So \(P \cdot S_A \) is a group. Thus \(P^tQ = I \) for some \(Q \in S_A \), and \(P^t \) is in \(S_A \).

Theorem 2.3. Let \(A \) be an \(n \times n \) Hall matrix. Then the following statements are all equivalent:

1. \(A \) is regular in \(H_n \).
2. \(A \) has a unique semiinverse in \(H_n \).
3. \(A \) is permutationally equivalent to an idempotent matrix.
4. \(A \) is regular in \(H_n(s) \) if \(A \in H_n(s) \).

Proof. (1) \(\rightarrow \) (2): Let \(S = \{X \in H_n \mid AXA = A\} \), and let \(G \) be the Boolean sum \(\sum_{X \in S} X \). Then \(AGA = A(\sum_{X \in S} X)A = \sum_{X \in S} (AXA) = A \). Therefore \(G \) is the largest generalized inverse of \(A \) in \(H_n \). Since \(A(GAG)A = (AGA)GA = AGA = A \), we obtain \(GAG \leq G \). Note that \(AGA = A \) and \(GAG \leq G \) imply \(|G| \leq |A| \) and \(|A| \leq |G| \) respectively. Thus \(|G| = |A| \) and \(GAG = G \). Hence \(G \) is also the largest semiinverse of \(A \) in \(H_n \). Now consider any semiinverse \(H \) of \(A \) in \(H_n \). Since \(A(G + H)A = A \) and \(G \) is the largest generalized inverse of \(A \), we obtain \(H \leq G \). Since \(|A| = |G| \) and \(HAH = H \), we have \(|H| \leq |A| \) and \(|A| \leq |H| \). Thus \(|A| = |H| = |G| \) and \(H = G \). Therefore there exists a unique semiinverse of \(A \) in \(H_n \).
(2) \(\rightarrow \) (3): By Lemma 2.2, \(AGA = A \) implies \(APA = A \) for any \(P \in S_G \). So \((APA)P = AP \) and \(AP \) is an idempotent matrix of \(H_n \). Thus \(A \) is permutationally equivalent to an idempotent matrix.

(3) \(\rightarrow \) (4): Suppose \((PAQ)(PAQ) = PAQ \) for some permutation matrices \(P \) and \(Q \). Then \(A(QP) = A \), and \(A \) is regular in \(H_n \). Hence for the largest generalized inverse \(G \) of \(A \) in \(H_n \), \(AGA = A \) and \(GAG = G \), and this means per \(A = \) per \(G \). Thus \(A \) is regular in \(H_n(s) \) for any positive integer \(s \) less than or equal to per \(A \).

(4) \(\rightarrow \) (1): Obvious because \(H_n(1) = H_n \).

Corollary 2.4. Let \(A \) be an \(n \times n \) Hall matrix with total support. Then the following statements are all equivalent:

1. \(A \) is regular in \(T_n \).
2. \(A = (\sum_{Q \in H} Q)P \) for some subgroup \(H \subseteq S_n \) and for some \(P \in S_n \).
3. \(A' \) is the unique semiinverse of \(A \) in \(T_n \).

Proof. (1) \(\rightarrow \) (2): Let \(A \in T_n \) be a regular matrix. Note that \(A \in T_n \) means \(A = \sum_{Q \in S_n} Q \). Hence if \(AA = A \) then \(S_A \cdot S_A \subseteq S_A \) and \(S_A \) is a subgroup of \(S_n \). Hence \(A \in T_n \) is an idempotent matrix if and only if \(A = \sum_{Q \in K} Q \) for some subgroup \(K \) of \(S_n \). If \(AGA = A \), then \(APA = A \) and \(APAP = AP \) for any \(P \in S_G \). Thus \(AP \) is an idempotent matrix for some \(P \in S_n \). Then \(S_A \cdot P \) is a subgroup \(H \) of \(S_n \), and \(S_A = H \cdot P' \). So \(A = \sum_{Q \in H} (QP') = (\sum_{Q \in H} Q)P' \) for some subgroup \(H \subseteq S_n \) and \(P \in S_n \).

(2) \(\rightarrow \) (3): Let \(A = (\sum_{Q \in H} Q)P \) for some subgroup \(H \subseteq S_n \) and for some \(P \in S_n \). Then \(A' = P'\sum_{Q \in H} Q \), and we obtain \(AA'A = A \) and \(A'AA' = A' \), since \(\sum_{Q \in H} Q \cdot \sum_{Q \in H} Q = \sum_{Q \in H} Q \). Thus \(A' \) is a semiinverse of \(A \). Now let \(B \) be another semiinverse of \(A \) in \(T_n \). Then by Theorem 2.3, \(A' \) is \(B \), and this means \(A' \) is the unique semiinverse of \(A \).

(3) \(\rightarrow \) (1): Obvious.

From Corollary 2.4 we conclude that if \(\alpha \) is regular in \(\Omega_n \), then \(A \) [\(= \pi(\alpha) \)] is regular in \(T_n \) and \(AA'A = A \). In fact, by (2) of Theorem 1.3 the semiinverse of \(\pi(\alpha) \) is \(\pi(\alpha') \). But in general the semiinverse of \(A \) may not be \(A' \) for a regular matrix \(A \) of \(H_n \).

3. **REGULAR MATRICES AND ADJOINT MATRICES**

In this section we characterize the regular matrices of \(H_n(s) \) in terms of their adjoint matrices. By Theorem 2.3, if \(A \) is regular in \(H_n \), then \(A \) is regular in \(H_n(s) \). Therefore we will only consider the regularity in \(H_n \).
DEFINITION 3.1. Let \(A \in B_n \) be an \(n \times n \) Boolean matrix. Then \(A \) is fully indecomposable if \(A \) is not equivalent to a matrix of the form
\[
\begin{bmatrix}
B_1 & * \\
0 & B_2
\end{bmatrix},
\]
where the \(B_i \)'s are square matrices. \(A \) is partly decomposable if \(A \) is not fully indecomposable. For each pair of positive integers \(i \) and \(j \), \(E_n(i, j) \) denotes an \(n \times n \) Boolean matrix whose \((i, j)\) entry is the only nonzero entry. For \(A \in B_n \), the adjoint matrix \(\text{adj} \ A \) of \(A \) is an \(n \times n \) Boolean matrix whose \((i, j)\) entry \((\text{adj} \ A)_{ij}\) is 1 if \(\text{per} \ A(j|i) > 0 \), and 0 if \(\text{per} \ A(j|i) = 0 \). Here \(A(j|i) \) denotes an \((n-1)\)-by-\((n-1)\) Boolean matrix obtained from \(A \) by deleting its \(j \)th row and the \(i \)th column.

LEMMA 3.2. Let \(A \) be an \(n \times n \) Hall matrix. Then:

1. If \(A \) is an idempotent matrix, then \(\text{adj} \ A = A \).
2. \(A \) is fully indecomposable if and only if \(\text{adj} \ A = I_n \).
3. \(\text{adj}(PAQ) = Q^t(\text{adj} A)P^t \) for any \(P \) and \(Q \) in \(S_n \).
4. \(\text{adj} \ A \) is a regular matrix of \(H_n \).

Proof. (1): If \(A \in H_n \) is an idempotent matrix, then \(S_A \cdot S_A = S_A \) and \(S_A \) is a group. Thus there is an identity permutation matrix in \(A \). Hence \(A_{ii} = (\text{adj} A)_{ii} = 1 \), and \(A_{ij} = 1 \) implies \((\text{adj} A)_{ij} = 1 \) for any \(i \) and \(j \) (\(i \neq j \)). Now suppose that \((\text{adj} A)_{ij} = 1 \) for some \(i \) and \(j \) (\(i \neq j \)). Then there is a permutation \(\sigma \) on \(\{1, \ldots, n\} \) such that \(\sigma(j) = i \) and \(A_{t \sigma(t)} = 1 \) if \(t \neq j \). Consider \(\sigma(t) \) and \(\sigma^2(t) \) (\(= \sigma(\sigma(t)) \)), and \(\sigma^m(t) \) in general. Note that there is a smallest integer \(d (> 2) \) such that \(\sigma^d(i) = i \) and \(\sigma^{d-1}(i) = j \), since \(\sigma \) is a permutation. Also note that \(A_{i \sigma^{-1}(i)} = 1 \) for any positive integer \(m < d \), since \(A_{i \sigma^{-1}(i)} = 1 \) and \(A_{i \sigma^{m-1}(i) \sigma^{-1}(i)} = 1 \) and \(A \) is an idempotent matrix. Thus \((\text{adj} A)_{ij} = 1 \) if and only if \(A_{ij} = 1 \).

(2): It is well known that \(A \in H_n \) is fully indecomposable if and only if \(A(i|j) \) is a Hall matrix for each \(i \) and \(j \) (cf. [5]).

(3): If \(P \) is in \(S_n \), then \(P \) can be expressed as a Boolean sum \(\sum_{i=1}^n E_n(i, \sigma(i)) \) for some permutation \(\sigma \) on the set \(\{1, \ldots, n\} \). Now we claim that \(\text{adj}(PA) = (\text{adj} A)P^t \). Choose any \(i \) and \(j \) from \(\{1, \ldots, n\} \), and let \(\sigma(i) = \alpha \) and \(\sigma(j) = \beta \). Then \((\text{adj} A)P^t)_{ij} = (\text{adj} A)_{i \beta} \) and \(\text{per}(A(\beta|i)) = \text{per}(PA(j|i)) \). Thus \((\text{adj}(PA))_{ij} = ((\text{adj} A)P^t)_{ij} \) and \(\text{adj}(PA) = (\text{adj} A)P^t \).
By the same method, we have \(\text{adj}(AQ) = Q' \text{adj} A \). Thus we conclude that
\[
\text{adj}(PAQ) = [\text{adj}(AQ)]P' = Q'(\text{adj} A)P'.
\]

(4): If \(A \) is fully indecomposable, then \(\text{adj} A = J_n \) and \(\text{adj} A \) is regular in \(H_n \). Now let \(A \) be partly decomposable. Then \(A \) is permutationally equivalent to a canonical form \(N \) of \(A \), where

\[
N = \begin{bmatrix}
B_1 & B_{12} & \cdots & B_{1\lambda} \\
B_{21} & B_2 & \cdots & B_{2\lambda} \\
\vdots & \vdots & \ddots & \vdots \\
B_{\lambda 1} & B_{\lambda 2} & \cdots & B_\lambda
\end{bmatrix}
\]

Here, the \(B_s \)'s are the nonzero fully indecomposable components of \(A \), and each block matrix \(B_{st} \) is a zero matrix if \(s > t \). In addition we may assume that each \(B_s \) contains an identity permutation matrix, since \(B_s \) is a Hall matrix. We now claim that \(\text{adj} N \) is in fact an idempotent matrix. Note that for any \((i, j)\) entry of \(N \) located inside of any \(B_s \), \(\text{per} N(ij) \) is positive by (2). Hence if \(\text{adj} N \) is partitioned in the same way as \(N \), then the diagonal blocks of \(\text{adj} N \) are \(J \)-matrices and \(\text{adj} N \) contains an identity permutation matrix. We now show that \(\text{adj} N \) has the transitive property. Suppose \((\text{adj} N)_{ij} = 1 \) and \((\text{adj} N)_{jk} = 1 \) \((i < j < k)\). Now let the \((j, j)\) entry of \(N \) be located in \(B_s \), and let the \((\alpha + 1, \alpha + 1)\) entry of \(N \) be the first entry of \(B_s \) and the \((\beta - 1, \beta - 1)\) entry of \(N \) be the last entry of \(B_s \). Since \(\text{per} N(ij) > 0 \) and \(\text{per} N(kj) > 0 \), there are permutations \(\sigma \) and \(\tau \) in \(S_n \) such that \(\sigma(j) = i \), \(\tau(k) = j \), \(N_{i\sigma(x)} = 1 \) \((x \neq j)\), and \(N_{x\tau(x)} = 1 \) \((x \neq k)\). Then, without loss of generality, we may assume that \(\sigma = (i, \ldots, \sigma_0, \sigma_1, \ldots, \sigma_n) \) and \(\tau = (\tau_1, \ldots, \tau_b, \tau_{b+1}, \ldots, k) \) \((\sigma_b = \tau_j = i)\), where \(\sigma_1, \ldots, \sigma_n \) \((\tau_1, \ldots, \tau_b)\) are the components of \(\sigma \) \((\tau)\) that are greater than \(\alpha \) and less than \(\beta \). If \(\sigma_1 = \tau_b \), then construct a permutation \((\ldots, \sigma_0, \sigma_1, \tau_{b+1}, \ldots, k)\) by joining \(\sigma \) and \(\tau \) after deleting \(\tau_1, \ldots, \tau_b \) from \(\tau \). Thus we have \((\text{adj} N)_{ik} = 1 \) in this case. Now let \(\sigma_1 \neq \tau_b \). If \(\sigma_1 = \alpha + f \) and \(\tau_b = \alpha + g \), then \(\text{per} B_c(gf) \) is positive, since \(B_c \) is fully indecomposable. Consider a permutation \(\rho = (i, \ldots, \sigma_0, \sigma_1, \rho_1, \ldots, \rho_c, \tau_b, \tau_{b+1}, \ldots, k) \), where \(N_{x\rho(x)} = 1 \) \((x \neq k)\), \(\rho(k) = i \), and \((\sigma_1, \rho_1, \ldots, \rho_c, \tau_b) \) is a permutation obtained from the condition \(\text{per} B_c(gf) > 0 \). Hence \((\text{adj} N)_{ik} = 1 \) in this case. Using similar arguments, we can show that \((\text{adj} N)_{ik} = 1 \) for general \(i, j, \) and \(k \). Thus \(\text{adj} N \) is an idempotent matrix, since it contains an identity permutation matrix and satisfies transitivity. Therefore we now conclude that \(\text{adj} A \) is a regular matrix in \(H_n \), since \(\text{adj} A \) is permutationally equivalent to an idempotent matrix \(\text{adj} N \).
THEOREM 3.3. For an \(n \times n \) Hall matrix \(A \in H_n \), the following statements are all equivalent:

(1) \(A \) is regular in \(H_n \).

(2) \(\text{adj} \, A \) is the unique semiinverse of \(A \).

(3) \(\text{adj} \, \text{adj} \, A = A \).

Proof. (1) \(\rightarrow \) (2): Let \(A \) be regular in \(H_n \). Then \(A \) is permutationally equivalent to an idempotent matrix \(D (= PAQ \) for some \(P \) and \(Q \) in \(S_n \)) by Theorem 2.3. Note that \(\text{adj} \, D = D \) by Lemma 3.2. Hence \(\lambda(\text{adj} \, A) \lambda = (P^tDQ^t)(Q(\text{adj} \, D)P)(P^tDQ^t) = P^tDQ^t = A \). Thus \(\text{adj} \, A \) is a generalized inverse of \(A \). Note that \(|\text{adj} \, A| = |A| \), since \(|A| = |D| = |\text{adj} \, D| = |\text{adj} \, A| \). Thus \(\text{adj} \, A \) is the largest generalized inverse of \(A \). Therefore \(\text{adj} \, A \) is the unique semiinverse of \(A \) by Theorem 2.3.

(2) \(\rightarrow \) (3): From the assumption, \(A \) is regular in \(H_n \). Now let \(D (= PAQ \) for some \(P \) and \(Q \) in \(S_n \)) be an idempotent matrix. Then \(A = P^tDQ^t \) and \(\text{adj} \, \text{adj}(PAQ) = \text{adj}[Q'((\text{adj} \, A)^tP') = P(\text{adj} \, \text{adj} \, A)Q \) by Lemma 3.2. Note that \(P(\text{adj} \, \text{adj} \, A)Q = D \), since \(\text{adj}(PAQ) = D \). Therefore we obtain \(\text{adj} \, \text{adj} \, A = A \).

(3) \(\rightarrow \) (1): \(A \in H_n \) implies \(\text{adj} \, A \in H_n \), and \(\text{adj} \, A \in H_n \) implies \(\text{adj} \, \text{adj} \, A \) is a regular matrix in \(H_n \) by Lemma 3.2(4). Thus if \(A = \text{adj} \, \text{adj} \, A \), then \(A \) is regular in \(H_n \).

4. REGULAR MATRICES AND IDENTIFYING PERMUTATION MATRICES

In this section we characterize the regularity of a Hall matrix \(A \in H_n(s) \) in terms of its row (and column) sums and its identifying permutation matrices. We also give simple criteria for any Boolean matrix \(A \) to be regular in \(H_n \) in terms of \(S_A \).
DEFINITION 4.1. For any Hall matrix A, a permutation matrix P in A is called an identifying permutation matrix of A if $P_i \preceq A_j$ implies $A_i \preceq A_j$ for each i and j. Let B be a submatrix of A. We say a row of R of A passes B if there is an (i, j) entry place of A such that R and B meet at that (i, j) entry place.

LEMMA 4.2. Let $A \in H_n$ be a Hall matrix such that each row A_{i*} of A contains exactly $|A_{i*}|$-many rows of A. Then:

1. A is a J-matrix if A is fully indecomposable.
2. A is regular in H_n.

Proof. (1): Choose a row A_{i*} whose row sum $\sigma(A_{i*})$ is the minimum among $\sigma(A_{i*})$'s. Then by the assumption, there are $|A_{i*}|$-many rows of A that are contained in A_{i*}. So A can have a $|A_{i*}| \times (n - |A_{i*}|)$ zero submatrix of A if A_{i*} is not an all-one vector. Therefore each ith row A_{i*} must be an all-one vector, and A is a J-matrix, since A is a fully indecomposable matrix.

(2): If A is fully indecomposable, then A is J_n and A is regular in H_n by (1). Now let A be partly decomposable, and let $N (= PAQ$ for some P and Q in S_n) be a canonical form of A, where

$$N = \begin{bmatrix}
B_1 & B_{12} & \cdots & B_{1\lambda} \\
B_{21} & B_2 & \cdots & B_{2\lambda} \\
\vdots & \vdots & \ddots & \vdots \\
B_{\lambda 1} & B_{\lambda 2} & \cdots & B_{\lambda \lambda}
\end{bmatrix}.$$

Here, all the B_j's are nonzero fully indecomposable components of A, and B_{st} is a zero matrix if $s > t$. By Theorem 2.3, we know A is regular in H_n if A is permutationally equivalent to an idempotent matrix. We will show that this N is in fact an idempotent matrix by induction. For each positive integer k with $k < \lambda$, let $N(k)$ be

$$N(k) = \begin{bmatrix}
B_{\lambda-k} & B_{\lambda-k,b} & \cdots & B_{\lambda-k,\lambda} \\
B_{\lambda-k+1,\lambda-k} & B_{\lambda-k+1} & \cdots & B_{\lambda-k+1,\lambda} \\
\vdots & \vdots & \ddots & \vdots \\
B_{\lambda,\lambda-k} & B_{\lambda,\lambda-k+1} & \cdots & B_{\lambda}
\end{bmatrix},$$

where $b = \lambda - k + 1$. Note that each B_j of N is a Hall matrix, and each
$N(k)$ satisfies the condition that each row R of $N(k)$ contains exactly $\sigma(R)$ many rows passing $N(k)$. Now we do induction on this k. First let $k = 1$. We know that B_λ in $N(1)$ is a J-matrix by (1). Now let $\lfloor (B_{\lambda-1})_r \rfloor$ be the minimum value among $(B_{\lambda-1})_r$'s $((B_{\lambda-1})_r)$ denotes the rth row of $B_{\lambda-1}$, and let R be $(B_{\lambda-1})_r$. If R does not contain $\sigma(R)$ many rows of $B_{\lambda-1}$, then $N(1)_r$ must contain at least one row of $N(1)$ passing B_λ. Thus any entry of $N(1)_r$ located inside of $B_{\lambda-1}$ must be one, and $N(1)_r$ must contain $\sigma(R)$ many rows of $B_{\lambda-1}$, since $N(1)_r$ contains $|N(1)_r|$ many rows of $N(1)$. Thus $B_{\lambda-1}$ is a J-matrix too by (1). Hence $N(1)$ is an idempotent matrix, since $B_{\lambda-1}$ is a zero matrix, or a J-matrix if there is a positive entry inside of $B_{\lambda-1}$. By the induction hypothesis, we assume that $\lambda \geq 3$ and $N(k)$ is an idempotent matrix for any $k \leq \lambda - 2$. Now let $k = \lambda - 1$ and $N(k) = N$. Let R be the ith row of B_1 such that $\sigma(R)$ is the minimum value among $(B_1)_r$'s. If R contains less than $\sigma(R)$ many rows of B_1, then N_i should contain more than $|N_i| - \sigma(R)$ many rows passing $N(k-1)$. Note that the number of nonzero entries in the Boolean sum of more than $|N_i| - \sigma(R)$ many rows of $N(k-1)$ is greater than $|N_i| - \sigma(R)$, since $N(k-1)$ is a Hall matrix. Thus B_1 is a J-matrix, and every block B_{1b} in N is a zero matrix or a J-matrix (if there is a positive entry inside of the block B_{1b}). Since the right-hand side of the row N_i, not contained in B_1 is the Boolean sum of $|N_i| - \sigma(R)$ many rows of $N(k-1)$. Thus if there is a positive (i, j) entry of N in the block B_{1b}, then N_i contains a row S passing $N(k-1)$ such that jth entry of S is one. Note that there exists a row T of N passing B_{1b} such that $T \leq S$, since $N(k-1)$ has the transitivity property by the induction hypothesis. Thus $T \leq S \leq N_i$, and N also has the transitivity property. Hence N is an idempotent matrix, and A is regular in H_n.

Theorem 4.3 Let $A \in H_n$ be an $n \times n$ Hall matrix. Then the following statements are all equivalent:

1. A is regular in H_n.
2. Each row A_i contains exactly $|A_i|$ many rows of A.
3. A has an identifying permutation matrix.

Proof. (1) \rightarrow (2): If A is regular in H_n, then by Theorem 2.3, A is permutationally equivalent to an idempotent matrix. Thus each row A_i contains exactly $|A_i|$ many rows of A.

(2) \rightarrow (3): By Lemma 4.2, A is regular in H_n, and $N (= PAQ$ for some P and Q in S_n) is an idempotent matrix in H_n. Note that $P'Q'$ is in A and an identifying permutation matrix of A, since the main diagonal of N is an identifying permutation matrix of N.

(3) \(\rightarrow \) (1): For each row \(A_{i*} \) of \(A \), \(A_{i*} \) contains \(|A_{i*}| \) many rows of \(P \) if there is an identifying permutation matrix \(P \) of \(A \). Thus \(A_{i*} \) contain at least \(|A_{i*}| \) many rows of \(A \). Since \(A \) is a Hall matrix, \(\sum_{j \in I} A_{j*} \geq |I| \) for each subset \(I \) of \(\{1, \ldots, n\} \), and this means \(A_{i*} \) contains exactly \(|A_{i*}| \) many rows of \(A \). Thus by Lemma 4.2, \(A \) is regular in \(H_n \).

Consider the following four \(4 \times 4 \) Hall matrices:

\[
A = \begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
\end{bmatrix}, \quad B = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
\end{bmatrix}
\]

\[
\text{adj } A = \begin{bmatrix}
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
\end{bmatrix}, \quad \text{adj } B = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
\end{bmatrix}
\]

Then by Theorem 3.3, \(A \) is not regular in \(H_n \), but \(B \) is. Also, by Theorem 4.3, \(A \) is not regular, since \(A_{1*} \) contains \(A_{1*} \) only, even though \(|A_{1*}| = 2 \), but \(B \) is regular, since the main diagonal of \(B \) is an identifying permutation matrix of \(B \). If we interpret \(C \in H_n \) as the incidence matrix of the subsets \(S_1, \ldots, S_n \) of \(\{1, \ldots, n\} \), this incidence matrix \(C \) is regular if and only if \(C \) has a special kind of system of distinct representatives of the \(S_1, \ldots, S_n \) (and there occurs an identifying permutation), by Theorem 4.3. The following corollary presents simple criteria for \(A \) to be regular in the semigroup of Hall matrices. The regularity of \(A \) in the semigroup \(H_n \) can be determined from \(S_A \) as follows.

Corollary 4.4. Let \(A \) be an \(n \times n \) Hall matrix. Then the following statements are all equivalent:

1. \(A \) is regular in \(H_n \).
2. \(S_A = \{ P \in S_n \mid AP^tA = A \} \).
3. \(S_A \subseteq \{ P \in S_n \mid P'AP' = \text{adj } A \} \).
4. \(S_A = S_A \cap \{ P \in S_n \mid P \text{ is an identifying permutation matrix of } A \} \).
5. For some \(P \in S_A \), \(AP^tA \leq A \).
6. For some \(P \in S_A \), \(P_{i*} \leq A_{j*} \) if and only if \(A_{i*} \leq A_{j*} \).

Proof. (1) \(\rightarrow \) (2): From Theorem 2.3, \(AGA = A \) and \(GAG = G \), where \(G \) is the largest semiinverse (generalized inverse) of \(A \) in \(H_n \). Then for any \(P^t \in S_G \), we have \(AP^tA = A \) and \(P \in S_A \) by Lemma 2.2. Similarly, for any \(P \in S_A \) we have \(GPG = G \) and \(P^t \in S_G \). Thus for any \(P \) we have \(P \in S_A \) iff \(P^t \in S_G \).
(2) \rightarrow (3): $AP' = A$ means A is regular in H_n. Let G be the unique semiinverse of A. Then for $P \in S_A$, $P^tAP' < CAC$ ($= C$) and P^tAP' is a semiinverse of A, because $(P^tAP')A(P^tAP') = P^tAP'$ and $A(P^tAP')A = A$. Thus by Theorem 3.3, $adj A = P^tAP'$ for any $P \in S_A$.

(3) \rightarrow (4): $adj A$ is regular, and $adj A$ is permutationally equivalent to an idempotent matrix by Theorem 2.3. Thus if $P^tAP' = adj A$ for any $P \in S_A$, then A is also permutationally equivalent to an idempotent matrix. Thus A is regular in H_n, and its canonical form N in Lemma 3.2 becomes an idempotent matrix. Note that any permutation matrix contained in A is an identifying permutation matrix of A, since any permutation matrix of N is an identifying permutation matrix of N.

(4) \rightarrow (5): Since A has an identifying permutation, A is regular in H_n. Therefore for any $Q \in S_{adj A}$, $AQA < A$. Thus $AP' < A$ for some $P \in S_A$.

(5) \rightarrow (6): Since $|AP' A| > |A|$ for any $P \in S_A$, $AP' A < A$ implies $A = AP' A$. Thus A is regular in H_n, and any $P \in S_A$ is an identifying permutation matrix of A.

(6) \rightarrow (1): Obvious.

The author would like to thank the referee for suggesting improvements in the original version of this paper.

REFERENCES