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a  b  s  t  r  a  c  t

Chemical  production  processes  which  use  biosynthetic  pathways  typically  experience  variations  in  the
concentration  and  composition  of  impurities  contained  in the  products,  due  to  the  natural  variability  of
biological  behaviour.  As  a result,  downstream  processes  which  use these  biosynthetic  chemical  products
need to be  quite  flexible  with  respect  to the  impurity  concentrations.  In this  study,  a ternary  semi-
continuous  distillation  process  is  investigated,  separating  a  mixture  into  three  fractions,  as  a  potential
candidate  for  the  purification  of three  different  bio-based  chemicals  (bio-acrylic  acid,  bio-n-butanol,
and  bio-n-butyl  acrylate)  which  are  generated  at various  steps  in  the  process  to  produce  bio-n-butyl
eywords:
emicontinuous
ernary distillation
io-based
io-butanol

acrylate  from  bio-based  feedstocks.  In this  model-based  investigation,  the performance  of this  approach
is  discussed  in  terms  of the  energy  demand,  product  loss,  and  the  cycle  time.  It  is  shown,  that  a  single
ternary  semicontinuous  system  can  be  applied  to  purify  several  bio-based  chemicals,  allowing  a  simple
increase  or  decrease  of the  desired  final  purity,  while  being  able  to  handle  natural  variations  of  the  initial
mpurities
esign

compositions  of the  feed.

. Introduction

The chemical industry is still highly dependent on fossil raw
aterials, both for fuel production and for the production of bulk

hemicals and specialty chemicals. Due to diminishing reserves
f fossil fuels and other non-renewable materials, new pathways
sing sustainable bio-based resources are under investigation [1].
s a result, a shift from an oil-based to a bio-based chemical indus-

ry is anticipated.
Acrylic acid (AA) and its derivatives are important basic building

locks for the chemical industry which are growing in demand. For
xample, the worldwide production of these chemicals increased
y 40% from 2003 to 2006 [2,3] and is anticipated to continue

ncreasing by almost 5% per year until 2015 [4]. Butyl acrylate
s one of the most important derivatives of acrylic acid and 30%
f the global acrylic acid demand is used for its production [5].

-Butyl acrylate (BA) is produced in an equilibrium-limited esteri-
cation reaction of n-butanol (BuOH) and acrylic acid, with water
s co-product. The conventional process for the n-butyl acrylate

Abbreviations: AA, acrylic acid; AP, Aspen PlusTM; BA, n-butyl acrylate; BuOH,
-butanol; FC, flow controller; HETP, height equivalent to a theoretical plate; HOC,
ayden O’Connell equation of state; IMP, impurity; LC, level controller; MV,  middle
essel; RR, reflux ratio; UNIQUAC, universal quasichemical.
∗ Corresponding author. Tel.: +49 231 755 4319.

E-mail address: Alexander.Niesbach@bci.tu-dortmund.de (A. Niesbach).

255-2701
ttp://dx.doi.org/10.1016/j.cep.2013.09.008 © 2013 Elsevier B.V. Open access under CC BY-NC-ND license.
production was published by Bell [2] and is a homogeneously
catalysed multistage process using two reactors for the conversion
of the reactants followed by three distillation columns for prod-
uct purification and reactant recovery. Niesbach et al. investigated
a single-stage reactive distillation process for the production of
n-butyl acrylate, significantly reducing the number of unit oper-
ations required and consequently the production costs for n-butyl
acrylate [6–8]. Reactive distillation is a well known technology
for achieving process intensification for various reactions, such
as esterifications [6,9], transesterifications [10,11] or etherifica-
tions [12,13] and can also be used in combination with other unit
operations, for example in combination with membranes [14]. In
the studies of Niesbach et al., the concept of reactive distillation
emerged as a promising future technology for the economic pro-
duction of n-butyl acrylate. However, these studies assumed the
feed products were pure (i.e., pure n-butanol and pure acrylic
acid).

In reality, if n-butanol and acrylic acid are derived from a bio-
logical process, they will contain impurities which can alter the
performance of the reactive distillation unit and subsequently end
up in the final n-butyl acrylate product and can also vary from batch
to batch due to seasonal changes in the biological raw material com-
position of the fermentation process. To identify the impact of the

© 2013 Elsevier B.V. Open access under CC BY-NC-ND license.
use of bio-based raw materials on distillation processes, Niesbach
et al. [15] developed a 4-step methodology using the example of a
reactive distillation column for the production of n-butyl acrylate.
As a result of this methodology, potential impurities in bio-based

dx.doi.org/10.1016/j.cep.2013.09.008
http://www.sciencedirect.com/science/journal/02552701
http://www.elsevier.com/locate/cep
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cep.2013.09.008&domain=pdf
mailto:Alexander.Niesbach@bci.tu-dortmund.de
dx.doi.org/10.1016/j.cep.2013.09.008
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
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Impurities enter the process through the acrylic acid and n-
butanol feeds and much of it ends up in the n-butyl acrylate product,
which has a required industrial minimum purity of wBA ≥ 0.9950
[24], but typically higher purities around wBA ≥ 0.9970 are
Scheme 1. Reaction scheme of the e

eactants and potential side-reactions in the reactive distillation
olumn were identified and their impact on the reactive distilla-
ion process for the production of n-butyl acrylate was shown. The
mpurities were investigated with concentrations up to 3000 ppm,
ased on component data sheets of basic n-butanol and acrylic
onomer suppliers. It was concluded that a certain group of impu-

ities (which are critical with respect to the product purity and
ust be removed) cannot be separated by changes in the oper-

tional parameters of the reactive distillation process. Therefore,
dditional purification steps are necessary.

One of the most suitable separation strategies for this situa-
ion is semicontinuous distillation. Semicontinuous distillation is

 process intensification technique which can separate both light
nd heavy boiling components simultaneously, even with chang-
ng feed concentrations. In semicontinuous distillation processes,
t least one middle vessel is tightly integrated with a distillation col-
mn  operating in a particular forced cycle. This strategy can achieve
ultiple separation steps using only one column [16]. The poten-

ial of semicontinuous processes to achieve lower lifetime costs
n comparison to batch and continuous distillation processes, also
howing simulation results of batch and continuous processes in
omparison to semicontinuous processes, was shown by Adams
nd Seider [16–18] and Pascall and Adams [19] for intermedi-
te production rates such as those typically seen in biochemical
rocessing. Semicontinuous processes have so far been stud-

ed for azeotropic distillation, ternary non-azeotropic distillation,
xtractive distillation, semicontinuous distillation with chemi-
al reaction and pressure-swing distillation processes [16–23].

ithin this study, a ternary semicontinuous separation is inves-
igated.

Ternary semicontinuous separation processes allow for a sep-
ration of three fractions. The middle vessel (MV) receives a
ide-stream of the distillation column and the fresh feed while
he column is fed with the contents of the middle vessel. In
ernary semicontinuous processes, distillate and bottom products
re removed continuously and the intermediate boiling component
s recycled to the middle vessel and purified during the course of
he cycle.

Within this study, the potential of a semicontinuous process for
he further purification of high-purity bio-based raw materials is
nvestigated. The potential of a semicontinuous distillation unit to
ct as a multipurpose unit, either separating the reactants upstream
r the final products downstream of the reactive distillation col-
mn, is investigated. The esterification of acrylic acid and n-butanol
or the production of n-butyl acrylate published by Niesbach et al.
6] serves as case study. The use of a semicontinuous process for the
emoval of impurities from the final product n-butyl acrylate as well
s from reactants upstream of the reactive distillation column is
hown. Simulation studies are performed to investigate the feasibil-
ty of semicontinuous processing for the purification of the various
treams to allow for the production of bio-derived n-butyl acry-
ate with a sufficient purity. As the concentration of impurities in
io-based raw materials differs in dependency of the feedstock and
ven in different batches, the flexibility of this concept in respect

o the impurity concentration is furthermore investigated. The per-
ormance of the use of a semicontinuous distillation for the removal
f bio-based impurities is discussed in terms of the energy demand,
roduct loss, and the cycle time.
cation of acrylic acid and n-butanol.

2. Process

The chemical system investigated in this study is the
equilibrium-limited esterification of acrylic acid and n-butanol to
form n-butyl acrylate and water. The reaction scheme of this reac-
tion is shown in Scheme 1.

This reaction is performed in the reactive distillation process
shown in Fig. 1, which was optimised in earlier studies [6]. The
optimisation study resulted in an economically optimised reactive
distillation process for the synthesis and purification of n-butyl
acrylate in a single step. However, for the optimisation, only the
four main components (Scheme 1) were taken into account. In
a subsequent study the impact of using bio-based raw materials
was investigated and the impurities were identified, that disturb
the performance of the reactive distillation process. These impu-
rities can be categorised in impurities that were found in the two
reactants and those, that result from side-reactions in the reac-
tive distillation column. It was found, that the reactive distillation
process is only able to operate in a given process window while
still maintaining the desired product purity. For higher concentra-
tions of impurities, a separation of the identified impurities using a
semicontinuous distillation unit is investigated in this study, to still
allow a production of n-butyl acrylate, fulfilling industrial purity
specifications.
Fig. 1. Set-up of optimised reactive distillation process.
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acid or n-butanol. All three of these already possess a high purity of
wBA ≥ 0.9900 before entering the semicontinuous process, but a fur-
ther separation of impurities is necessary to achieve the industrial
specification for the final product n-butyl acrylate (wBA ≥ 0.9970).
Fig. 2. Investigated process configurations for th

chieved. Therefore, the impurities can be removed from either
he n-butyl acrylate after production, or from the acrylic acid and n-
utanol feeds before they are fed to the reactive distillation column
nd the most-feasible position for the application of the semicon-
inuous process may  change with the type of impurities. In this
ork, both options are explored using semicontinuous distillation

trategies as shown in Fig. 2.
As several esters are produced in the reactive distillation column

rom the impurities due to side-reactions with the main compo-
ents and some of these esters are hard to separate from the final
roduct, a removal of the impurities from the reactants avoids the
ormation of esters and simplifies the purification of the final prod-
ct. However, it may  still be easier to purify the BA product because
nly one separation system is required, whereas either two  sepa-
ation systems or an alternating operation of one system for the
urification of either n-butanol or acrylic acid would be needed if
he impurities were removed from the reactants first. Thus, both
ptions are examined in this work.

Table 1 summarises the potential impurities that were identi-
ed in the reactants acrylic acid and n-butanol with their boiling
oints at 0.576 bar, the operation pressure of the reactive distilla-
ion process, and the set of impurities identified as critical for the
-butyl acrylate purity in the reactive distillation process [15]. The

mpurities were identified in a 4-step methodology, investigating
he impurities resulting from the bio-derived reactants and poten-
ial side-reactions occurring in the reactive distillation process [15].
hose impurities were clustered based on similarity in thermo-
ynamic and physical property data and simulation studies were
erformed to identify their influence on the n-butyl acrylate purity
fter the reactive distillation process [15]. In this investigation, a
eduction from 14 initial impurities to eight impurities was  per-
ormed after step-2 and of these eight impurities, four were found
o be the most critical in respect to the purity of n-butyl acrylate
n the reactive distillation process [15]. As the last reduction from
ight to four impurities was only performed for a processing of
hese components in the n-butyl acrylate reactive distillation pro-
ess, all eight impurities resulting from the clustering after step-2
re taken into account in this study.

In the following sections, a feasibility study for the use of a
ernary semicontinuous distillation process for the removal of the
bovementioned impurities from the three investigated streams is
resented. The results of simulations of the semicontinuous process
re presented, using simulation results (feed and product composi-
ions) of a reactive distillation process, that were already published
n earlier studies [6,15].

.1. Thermodynamic and physical properties
Reliable pure component and mixture property data is essen-
ial to ensure accurate simulation results. Thermodynamic and
hysical property data in this work is calculated using the Aspen
ropertiesTM package within Aspen PlusTM and Aspen DynamicsTM.
duction of purified bio-derived n-butyl acrylate.

The physical and thermodynamic pure-component and mixture
property data for the components investigated within this simula-
tion study are taken from Aspen PropertiesTM and are compared
to literature data. For the determination of the liquid phase activ-
ity coefficients in Aspen PropertiesTM, the UNIQUAC model is used
[26]. The Hayden O’Connell equation of state is applied to account
for nonidealties in the gas phase [27]. The selected models for the
determination of the other pure component and mixture prop-
erty data are summarised in the Table S-1 in the supplementary
material.

Vapour pressure and vapour–liquid equilibria are of particu-
lar importance for the simulation of any distillation column. If
large deviations between Aspen PropertiesTM equilibria predic-
tions and literature data are found, new parameters are determined
using regression of the literature data. A description of the selected
methods can be found in an earlier work [15]. A comparison of
experimental and simulated data for the vapour pressures of the
impurities identified in n-butyl acrylate and an example for a com-
parison of a vapour–liquid equilibrium with experimental data are
shown in Figs. 3 and 4. The selected UNIQUAC binary interaction
parameters are summarised in Table S-2 in the supplementary
material.

2.2. Process description

The semicontinuous process is designed to achieve a designated
final purity of the target product, either n-butyl acrylate, acrylic
Fig. 3. Vapour pressures of the impurities identified in n-butyl acrylate. Symbols
represent the literature data taken from Yaws [29] and lines represent the simulated
results of the Aspen PropertiesTM simulations.
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Table 1
Potential impurities identified by Niesbach et al. [15] for the two  feed streams and the final product stream of the reactive distillation column for the production of BA with
respective boiling points at p = 0.576 bar taken from Yaws [25]. The last three columns show, for which stream the impurity is taken into account.

Component IUPAC name Formula CAS number Tb (K) AA-feed BuOH-feed BA-product

Isobutanol 2-Methyl-1-propanol C4H10O 78-83-1 366.6 +
Acetic acid Acetic acid C4H4O2 64-19-7 374.2 + + +
Butyl  acetate Butyl acetate C6H12O2 123-86-4 381.2 +
Isoamyl alcohol 3-Methyl-1-butanol C5H12O 123-51-3 388.5 + +
Propionic acid Propanoic acid C3H6O2 79-09-4 394.8 + +

-01-2 400.1 +
-21-7 419.0 +
-92-6 419.6 + +
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Table 2
Design of the semicontinuous distillation process.

Design variable Value

Equilibrium stages 28
Packing type Sulzer BXTM

Packing height 4.2 m
Butyl  propionate Butyl propanoate C7H14O2 590
Butyl  butyrate Butyl butanoate C8H10O 109
Butyric acid 1-Butanoic acid C4H8O2 197

he same setup for the semicontinuous process is used for all three
eparation tasks to demonstrate a flexible field of application for a
ingle semicontinuous process unit. The column consists approxi-
ately 4.2 m of Sulzer BXTM structured separation packing with an
ETP value of 0.14 m,  which is equivalent to 28 equilibrium stages,
ot including the condenser and the reboiler. For the investigation

TM
resented in this manuscript the structured packing Sulzer BX is
sed, which is also used for the separation section of the reactive
istillation process [6]. A total of 30 equilibrium stages are chosen to
emonstrate the separation efficiency at moderate column heights.

ig. 4. Vapour–liquid equilibrium of the binary system butyl acetate – n-butanol at
.01  bar. Symbols represent the literature data taken from Shim et al. [28] and lines
epresent the simulated results of the Aspen PropertiesTM simulations.

Fig. 5. Semicontinuous pr
Feed position Below stage 14
Column diameter 0.547 m

The feed from the middle vessel is fed to the middle of the column at
a height of 2.1 m (equivalent to a position between the 14th and the
15th equilibrium stage from the top of the column) and a sidedraw
is collected at the same height, which is recycled to the middle ves-
sel. The operating parameters for the different operation modes are
summarised in Section 3.2 for the n-butyl acrylate simulation and
Section 3.3 for the acrylic acid and n-butanol purifications. The pro-
cess flowsheet of the semicontinuous process used for the removal
of the impurities is shown in Fig. 5 and the most important design
information is summarised in Table 2. The target component, either
n-butyl acrylate, n-butanol or acrylic acid is purified and separated
from the light boiling and heavy boiling impurities. The middle ves-
sel in this ternary semicontinuous process is attached to both, the
side stream of the distillation column and the fresh feed stream.
The purified product can be obtained from the middle vessel using
the drain during the end of each cycle. The whole campaign within
one operating cycle of the semicontinuous process consists of three
operating modes.

In the first operating mode, the middle vessel is fed with the

feed to be separated—in this case, raw n-butyl acrylate containing
the impurities. When the desired liquid level in the middle ves-
sel is reached, the valve for the raw n-butyl acrylate closes and

ocess configuration.



ering 

t
l
t
t
o
D
m
m
c
a
t

b
q
u
w
f
r
t
l
t
i
t
S

2

a
m
fi
P
t

i
e
w
t
t
fl
o
c
c
fl

s
o
A
a
a
r
b
T
i
b
o
f
i

a
t

2

R

A. Niesbach et al. / Chemical Engine

he second operating mode begins. In the second operating mode,
ight-boiling impurities are removed at the top (containing some of
he main component) and the heavy-boiling impurities (also con-
aining some of the main component) are removed at the bottom
f the column. The side stream is recycled to the middle vessel.
uring this time, the concentration of the main component in the
iddle vessel gradually increases, and the distillate and bottoms
olar flow rates are maintained constant, although the impurity

ontent of those streams will gradually decrease. The second oper-
ting mode is maintained until the desired purity specification for
he main component in the middle vessel is achieved.

As soon as the desired specification is reached, the third mode
egins. In the third mode, the contents of the middle vessel are
uickly removed via the drain at the bottom of the middle vessel
ntil the middle vessel is almost empty. Then, the cycle restarts
ith the first operating mode. However, the column continues to

unction, and the distillate and bottom product molar flow rates
emain constant during this mode as well. Within the simula-
ions, the middle vessel is emptied to 8% of the maximum liquid
evel when the purified product is removed and refilled to 96% of
he maximum liquid level during the charging phase, according to
nvestigations by Pascall and Adams [19]. A detailed description of
he dynamic simulation of the semicontinuous process is given in
ection 2.4.

.3. Process control

The control of this semicontinuous process is configured in such
 way that quick and efficient transitions between the operating
odes are possible. A detailed discussion of possible control con-

gurations for ternary semicontinuous processes was  published by
ascall and Adams [19] and will not be discussed in detail within
his publication.

As shown in Fig. 5, the side draw flow rate is controlled using
nformation about the feed flow rate and composition using a strat-
gy known as the ideal side-draw recovery arrangement, which
as developed by Adams and Seider [18]. In this strategy at each

ime instance, the flow valve of the side draw is adjusted such that
he total molar flow rate of the side draw is equal to the total molar
ow rate of the main component in the feed (i.e., the total flow rate
f the feed times the mole fraction of the main component). This
onfiguration has been shown to result in reduced cycle times in
omparison to configurations without controlling the side stream
ow rate [16].

The distillate and bottom product molar flow rates are kept con-
tant by manipulating their respective flow valves. In contrast to
ther investigations of semicontinuous processes (e.g., Pascall and
dams [19]), the concentrations of the impurities in the distillate
nd bottom product only vary slightly within the cycles. This is

 result of the very small distillate and bottom product streams
esulting from small concentrations of the impurities in the raw
utyl acrylate up to 2000 ppm for each impurity (see Section 3).
herefore, a control system to maintain the impurity concentration
n the top and bottom stream is not used. Besides the distillate and
ottom product mass flow, the reflux ratio is kept constant through-
ut each simulation. For future investigations of this configuration,
urther degrees of freedom can be investigated by additionally vary-
ng the reflux ratio within a dynamic campaign.

Furthermore, the level of the reflux drum is kept constant by
djusting the feed flow rate and the level in the reboiler is main-
ained by adjusting the reboiler heat duty.
.4. Process simulation

The distillation column is modelled using the equilibrium-based
adFrac model included in Aspen PlusTM and Aspen DynamicsTM.
and Processing 74 (2013) 165– 177 169

Besides the design variables already described in Section 2.2, addi-
tional design variables need to be set in order to allow for a dynamic
simulation of the process. The overall pressure drop for the column
is set to 0.1 bar. The size of the column, the size of the middle ves-
sel, the size of the reflux drum as well as the size of the sump were
determined using the design heuristics published by Luyben et al.
[30]. The pressure drops for the valves are set to 0.1 bar, except
for the raw feed valve and the valve of the column feed, which are
operated with a pressure drop of 0.05 bar. The column diameter
is chosen based on the Aspen PlusTM sizing function and is set to
0.547 m.

Flooding and weeping behaviour is checked during the simu-
lation studies using a flooding approach from Eckart [31,32] and
neither flooding nor weeping conditions in any of the presented
simulations were experienced.

Column top pressure, distillate-to-feed ratio, reflux ratio and
the side stream to feed ratio are varied throughout the simulation
studies to investigate the impact of these changes on the pro-
cesses behaviour. Furthermore, the feed composition and the final
purity achieved in the semicontinuous process are varied. Detailed
explanations of the chosen operating parameters for the operation
modes are summarised in Section 3.2 for the n-butyl acrylate sim-
ulations and Section 3.3 for the acrylic acid and for the n-butanol
simulations.

The start-up procedure for the dynamic simulations in Aspen
DynamicsTM was  performed according to the descriptions pub-
lished by Pascall and Adams [19]. Proportional integral controllers
are used within this study. The controller parameters are tuned to
ensure a stable operation throughout the cycles. An event-driven
task is set-up to control the switch between the different modes
within each cycle. Subsequently, the dynamic model is used to
perform the simulation studies.

3. Results of semicontinuous process simulations

In this section, the design and the results of the three differ-
ent operation modes are presented. In total, almost 320 dynamic
simulations were performed for the investigation of the presented
operation modes and parameter studies. The simulation studies are
performed to demonstrate the feasibility of the use of semicontin-
uous distillation processes for the removal of small concentrations
of bio-based impurities. Furthermore, the flexibility of these pro-
cesses in respect to the use of the same semicontinuous setup
for the purification of raw materials with varying initial impurity
concentrations is shown and the use of a semicontinuous distilla-
tion unit as a multipurpose process for the purification of different
raw materials is demonstrated. Therefore, within the simulation
studies, the reflux ratio, column top pressure and the size of the
distillate and bottom product mass flow (by the variation of the
distillate-to-feed ratio and the side-stream to feed ratio) are varied.
Furthermore, simulations with different initial impurity concen-
trations and different final specifications for acrylic acid, n-butanol
and n-butyl acrylate are performed. To allow for a comparison of
results of different case studies, the total amount of purified prod-
uct should not differ significantly in the different simulations. To
meet this requirement, five complete cycles are performed in each
simulation. The performance criteria used for the evaluation are
described in Section 3.1.

Figs. 6–8 summarise the results of one of the simulations of
the n-butyl acrylate case study. The initial concentration of n-butyl
acrylate for this simulation is wBA = 0.9930, containing 1000 ppm of

each of the seven impurities listed in the right column of Table 1.
This simulation is performed with a reflux ratio of RR = 200, a col-
umn  top pressure of p = 0.576 bar (the column top pressure of the
reactive distillation column [6]), and distillate and bottom product
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Fig. 6. n-Butyl acrylate purity in the middle vessel as a function of operating time
for  the purification of raw n-butyl acrylate with a purity of wBA = 0.9930 to a final
purity of wBA = 0.9970 with a reflux ratio of RR = 200 and a column top pressure of
p  = 0.576 bar.

Fig. 7. Butyl butyrate mass fraction in the middle vessel as a function of operating
time for the purification of raw n-butyl acrylate with a purity of wBA = 0.9930 to a
final purity of wBA = 0.9970 at a reflux ratio of RR = 200 and a column top pressure of
p  = 0.576 bar.

Fig. 8. Mass flows of distillate, side stream and bottom product for semicontinuous
process as a function of operating time for the purification of raw n-butyl acrylate
with a purity of wBA = 0.9930 to a final purity of wBA = 0.9970 at a reflux ratio of
RR = 200 and a column top pressure of p = 0.576 bar.
and Processing 74 (2013) 165– 177

mass flow setpoints of 10 kg h−1 (achieved with controllers that
adjust the distillate-to-feed ratio and the side-stream to feed ratio).
In the distillate stream, the weight fraction of the main component
is wBA = 0.8142 and in the bottom stream the weight fraction of the
main component is wBA = 0.7207 in average over all five cycles. In
this study, a final purity of wBA = 0.9970 n-butyl acrylate is achieved.
Fig. 6 shows the n-butyl acrylate concentration as a function of
operating time. Throughout each cycle, the concentration of n-butyl
acrylate increases. As soon as the desired purity is reached, the
product is removed from the middle vessel and the middle vessel
is charged with raw n-butyl acrylate, causing the decrease in con-
centration. Note that the middle vessel is not completely emptied
in between the cycles to ensure that flow to the distillation column
continues uninterrupted. Also, note that the initial concentration
of the first cycle is slightly lower compared to the cycles two to
five because the initial concentration is a sort of initial guess. How-
ever, as shown in Fig. 2, a stable limit cycle is reached in the second
cycle.

Fig. 7 shows the concentration of the heavy-boiling impurity
butyl butyrate in the middle vessel over time. The trends for most
of the other impurities follow essentially the same shape, and so
only one is shown for clarity. As butyl butyrate is removed at the
bottom of the semicontinuous process, the concentration in the
middle vessel decreases until the desired purity for n-butyl acrylate
is achieved and the cycle is restarted.

In Fig. 8, the corresponding mass flows of the distillate, the bot-
tom product and the side stream are shown. As can be seen from this
figure, the majority of the feed stream is leaving the column at the
side-stream location in the middle of the column. This is a result of
the low impurity concentrations in the feed. The light- and heavy-
boiling impurities are removed in the small distillate and bottom
product streams at the top and the bottom of the column.

A detailed analysis of the results for the n-butyl acrylate case
study is shown in Section 3.2.

Figs. 6–8 are representative results for the simulations of all
three case studies, demonstrating the stability of the dynamic
process throughout several cycles and thus demonstrating the
successful implementation of the control system for the semicon-
tinuous distillation set-up.

3.1. Performance criteria

To evaluate the simulations within the different case studies,
three performance criteria are defined and used in this study as an
intuitive way  of characterising and comparing the many case stud-
ies. For all studies shown within this paper, the cumulative energy
demand, the cumulative amount of purified product and its compo-
sition and the cumulative amount of distillate and bottom product
and its composition are monitored for five complete cycles. Invest-
ment costs are not used, as the same semicontinuous distillation
unit was used as a multipurpose unit for all three operation modes.
These cumulative values are used for the calculation of the per-
formance criteria. The first performance criterion, the specific heat
duty is shown in Eq. (1).

Specific heat duty = Reboiler heat duty (kWh)
Total product mass produced (kg)

(1)

The specific heat duty allows an estimation of the necessary
energy demand of the reboiler per kg of purified product. The heat
duty of the condenser is not taken into account for the calculation

of this criterion and energy savings by a potential heat integration
are not investigated.

The second criterion used to evaluate the process performance
within this study is the specific loss of target product in the distillate
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Table  3
Varied parameters and investigated ranges for n-butyl acrylate case study, taking
all seven impurities into account. The values marked in bold are base-case values
that  are kept constant while the other parameters are varied during the simulation
studies.

Parameter Investigated range

Reflux ratio 200, 300, 600
Column top pressure (bar) 0.2, 0.4, 0.576
Top/bottom mass flow (kg h−1) 5, 7.5, 10
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tion from an initial n-butyl acrylate concentration of wBA = 0.9930
to a final concentration of wBA = 0.9970. The base-case pressure
(p = 0.576 bar) and the base-case reflux ratio (RR = 200) are used.
Initial BA purity (wt.-frac.) 0.9930, 0.9948, 0.9965
Final BA purity (wt.-frac.) 0.9970, 0.9980, 0.9990

nd bottom product streams as shown in Eq. (2).

pecific product loss

= Product lossdistillate (kg) + product lossbottom product(kg)

Total product mass produced (kg)
(2)

The product used for the abovementioned calculations is either
crylic acid, n-butanol or n-butyl acrylate, depending on the con-
idered case study.

Beside the loss of product and the energy demand of the process,
he cycle time is used as the third performance criterion, as the
ength of the cycles is an indication for the yearly throughput of
he plant. Also, because a stable limit cycle is not obtained until
he second cycle, the cycle time of the second cycle is used for the
valuation purposes.

.2. Purification of n-butyl acrylate

For the n-butyl acrylate simulation studies, seven different
mpurities are taken into account, namely: isoamyl alcohol, acetic
cid, butyl acetate, butyric acid, butyl butyrate, butyl propionate
nd propionic acid (see Table 1). In an earlier investigation, these
mpurities were found to accumulate in the final product n-butyl
crylate within the reactive distillation process [15]. The investi-
ated ranges for the operating parameters of the semicontinuous
rocess, for the initial and for the final purity of n-butyl acrylate are
ummarised in Table 3.

The reflux ratio is varied between RR = 200, 300 and 600. These
arge values are results of the small total size of the distillate stream.
herefore, even at high reflux ratios of RR = 600, the total reflux flow
s moderate compared to the feed flow. The results of changes in the
olumn top pressure are investigated at p = 0.2, 0.4 and 0.576 bar.
he highest pressure of p = 0.576 bar results from the operating
ressure of the reactive distillation column upstream to this semi-
ontinuous process [6]. The other investigated pressures are lower,
s higher pressures result in higher temperatures and hence in a
igher risk for a polymerisation of n-butyl acrylate [8]. As the raw
aterial contains only small fractions of the impurities, the investi-

ated distillate and bottom product flows are small in comparison
o the side-stream. In this study, mass flows of ṁTop,Bot = 5 kg h−1,
.5 kg h−1 and 10 kg h−1 are investigated with a distillate and bot-
om product mass flow of the same size within each simulation. An
mpurity concentration of wImp. = 500 ppm, 750 ppm and 1000 ppm
s studied for each impurity, resulting in initial purities for n-butyl
crylate of wBA = 0.9930, 0.9948 and 0.9965. For the final purities
f n-butyl acrylate, the industrial specification of wBA = 0.9970, as
ell as higher purities of wBA = 0.9980 and wBA = 0.9990 are inves-

igated. The values highlighted in bold in Table 3 are the base-case
arameters that are kept constant during the investigation of the
ther parameters in this simulation study.
The average concentration of n-butyl acrylate in the distillate
tream is wBA = 0.8693 for all experiments with a distillate and
ottom product flow of ṁTop,Bot = 10 kg h−1, resulting in an aver-
ge impurity concentration of wImp. = 0.1307 in the distillate. In
Fig. 9. Specific heat duty, specific n-butyl acrylate loss and cycle times for the purifi-
cation of n-butyl acrylate from an initial purity of wBA = 0.9948 to a final purity of
wBA = 0.9980 as a function of the reflux ratio.

the bottom product, the average n-butyl acrylate concentration
is wBA = 0.7916, leading to an average impurity concentration of
wImp. = 0.2084. For a distillate and bottom product flow of ṁTop,Bot =
7.5 kg h−1, the average n-butyl acrylate concentration slightly
increased to wBA = 0.8848 for the distillate and wBA = 0.8356 for the
bottom product. A further decrease of the distillate and bottom
product flow to ṁTop,Bot = 5 kg h−1 does not result in significant
changes of the amount of impurities in the distillate and bottom
product, ending up with average n-butyl acrylate concentrations of
wBA = 0.8730 for the distillate and wBA = 0.8202 for the bottom prod-
uct. The resulting total loss of n-butyl acrylate per mass of purified
product is given in this section.

For an increasing reflux ratio, the specific heat duty increases by
57% from 0.62 kWh  kg−1 for RR = 200 to 1.45 kWh  kg−1 for RR = 600
(Fig. 9). This results from the increasing flow rate of internal liquid
and vapour streams inside the column. The impact of the reflux ratio
on the specific heat duty is significantly larger than its impact on the
specific n-butyl acrylate loss (−33%) and the cycle time (−19%). In
other words, increasing the reflux ratio improves both the yield and
the cycle time, but with increasing energy demands. The optimal
value for the reflux ratio will depend on the specific application of
this process and depend strongly on the costs for heat and the costs
for the loss of n-butyl acrylate product.

An example of the results for changes in the distillate and
bottom product mass flow is shown in Fig. 10, showing a purifica-
Fig. 10. Specific heat duty, specific n-butyl acrylate loss and cycle times for the
purification of n-butyl acrylate from an initial purity of wBA = 0.9930 to a final purity
of  wBA = 0.9970 as a function of the distillate and bottom product mass flow.
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pressure range. Third, the separation efficiency for isoamyl alcohol
and acetic acid changes strongly with pressure, but with oppos-
ing trends. At higher pressures, the separation of isoamyl alcohol,
ig. 11. Specific heat duty, specific n-butyl acrylate loss and cycle times for the
urification of n-butyl acrylate from varying initial purities for n-butyl acrylate to a
nal purity of wBA = 0.9980 as a function of the initial n-butyl acrylate purity.

s shown in Fig. 10, the cycle time is most significantly impacted
y changes in the distillate and bottom product mass flows. As
roduct mass flows increase, the impurities are also removed more
uickly, and thus the desired purity for n-butyl acrylate is reached

n a shorter time. For example, the cycle time decreases by as much
s 40% by increasing the distillate and bottom mass flow from

 kg h−1 to 10 kg h−1. However, the tradeoff is that this also results
n both higher specific heat duty (more energy spent per kg of prod-
ct recovered) as well as higher n-butyl acrylate concentrations in
hese streams (more specific n-butyl acrylate loss, from 3.6% to 4.6%
ver the same range). These results from the increased internal col-
mn  flow rates caused by the higher distillate flow rates with the
ame reflux ratio.

For the purification of bio-based raw materials, a process with a
igh flexibility is necessary, as both the composition of the differ-
nt impurities and the concentration of these impurities can differ
epending on the feedstock of the fermentation process and from
atch to batch. Fig. 11 shows how the three performance crite-
ia are affected by changes in the initial impurity concentration in
aw n-butyl acrylate. In each case, a final purity of wBA = 0.9980 is
chieved, demonstrating that the process is flexible with regard
o batch-to-batch changes in purities. For the example shown in
ig. 11, a decrease of the n-butyl acrylate purity in the feed from
BA = 0.9965 to wBA = 0.9930 results in an increase of the cycle time

rom 2.2 h to 8 h with proportional increases for the specific heat
uty and the specific n-butyl acrylate loss. In contrast to contin-
ous purification processes, a decrease of the initial purity of the
aw materials in a semicontinuous process can be compensated
y an increasing cycle time, without the need to change the other
perating parameters.

In addition to flexibility with respect to varying feed concentra-
ions, the semicontinuous process can also handle batch-to-batch
etpoint changes in the final purity for the target product. Fig. 12
hows the results of simulations with an initial n-butyl acrylate
oncentration of wBA = 0.9965 and base-case values for the three
perating parameters. By just increasing the cycle time of the pro-
ess, an increased final purity for the target product can be achieved.
ue to the asymptotic slope of the results towards infinity at an n-
utyl acrylate purity of 1, the costs drastically increase at very high
urities.

The last parameter investigated in this simulation study is the
olumn top pressure. The optimised reactive distillation column
perates at a top pressure of p = 0.576 bar, as larger pressures can-

ot be realised due to constraints imposed by the chosen catalyst
nd the polymerisation tendency of some components [8]. Beside
he operating pressure of the reactive distillation column, two
ower pressures, p = 0.2 bar and 0.4 bar, are investigated. Although a
Fig. 12. Specific heat duty, specific n-butyl acrylate loss and cycle times for the
purification of n-butyl acrylate from an initial purity of wBA = 0.9965 to varying final
purities as a function of the final n-butyl acrylate purity.

reduced pressure also reduces the boiling temperatures in the col-
umn, a clear trend for the heat duty as a function of the pressure
is not found. Instead, all three performance criteria exhibit a min-
imum at the medium pressure of p = 0.4 bar. To further investigate
this trend, the percentage removal of the seven investigated impu-
rities in the purified n-butyl acrylate as a function of the column
top pressure is shown in Fig. 13.

In the simulations shown in this figure, a purification of raw
n-butyl acrylate with an initial concentration of wBA = 0.9930 to a
final concentration of wBA = 0.9980 is studied with impurity con-
centrations in the raw feed of 1000 ppm per impurity. Three key
conclusions can be made from the results. First, the components
butyric acid, butyl butyrate, propionic acid and butyl acetate are
almost completely removed from n-butyl acrylate using the semi-
continuous distillation process for the whole investigated pressure
range. Of these components, butyl acetate is removed together
with the distillate, while butyric acid, butyl butyrate and propionic
acid are removed together with the bottom product. Second, butyl
propionate, which is fed with a concentration of 1000 ppm in raw n-
butyl acrylate, is not removed at all using this process. This is a result
of the vapour pressures of n-butyl acrylate and butyl propionate
which are essentially identical to each other for the investigated
Fig. 13. Amount of removed impurity in purified n-butyl acrylate for the purifica-
tion of an initial purity of wBA = 0.9930 (1000 ppm per impurity) to a final purity of
wBA = 0.9980 as a function of the column top pressure.
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hich is separated together with the distillate, is advantageous, as
he difference in the boiling temperature between n-butyl acrylate
nd isoamyl alcohol increases with increasing pressure. However,
he opposite is true for the heavy-boiling component acetic acid,
hich is more favourable at lower pressures due to the presence of

 heavy-boiling azeotrope between n-butyl acrylate and acetic acid.
lthough the difference in boiling temperature between n-butyl
crylate and acetic acid increases with pressure, the fraction of
cetic acid in the azeotropic composition decreases with increasing
ressure, and thus the separation of acetic acid at lower pressures

s advantageous.
Therefore, two additional cases for the purification of n-butyl

crylate are simulated. In both cases, butyl propionate is not added
o the raw n-butyl acrylate, assuming that it is not produced in the
eactive distillation process. The first case is simulated at p = 0.2 bar
ithout adding butyl propionate and isoamyl alcohol. The initial
urities for n-butyl acrylate are kept constant in comparison to
he study taking all seven impurities into account (wBA = 0.9930,
.9948, 0.9965). This allows a comparison of the results to the main
ase, as the same amount of impurities needs to be separated for
he same final purities. The five remaining impurities are added
t equal concentrations achieving a final mass fraction of one. In
he second case, a simulation at p = 0.576 bar is performed without
dding butyl propionate and acetic acid, which is difficult to sep-
rate at higher pressures. The results for the purification and the
roduct loss based on an initial purity of wBA = 0.9965 for the three
ifferent cases are summarised in Fig. 14.

For these two case-studies, the average concentration of n-butyl
crylate for all simulations in the distillate and bottom product is
BA = 0.8472 in the distillate and wBA = 0.7262 in the bottom prod-
ct, resulting in average impurity concentrations for the distillate
nd bottom product of wImp. = 0.1528 and wImp. = 0.2738, respec-
ively.

The use of a semicontinuous process for the separation of an
mpurity mixture without butyl propionate significantly increases
he efficiency of the process. The trends shown in Fig. 14 are also
ound for the specific heat duty and the cycle times and for the
ther two initial purities, which means that both investigated cases
mprove all performance criteria in comparison to the case, where
ll impurities are taken into account. For a purification to a final
urity of wBA = 0.9990, the specific heat duty was reduced by 55%
or case 1 (Fig. 14) and by 61% for case 2, the specific n-butyl acry-

ate loss by 59% for case 1 and by 63% for case 2 and the cycle
ime by 54% for case 1 and by 61% for case 2. Besides a signifi-
ant decrease of the energy consumption, the n-butyl acrylate loss

ig. 14. Comparison of specific n-butyl acrylate loss for the case study with all impu-
ities and the two  case studies with five impurities each as a function of the final
-butyl acrylate purity with an initial purity of wBA = 0.9965.
and Processing 74 (2013) 165– 177 173

and the cycle times, higher final purities can also be achieved, if the
process is used for suitable impurity compositions. For the simula-
tions shown in Fig. 14, a final purity of wBA = 0.9995 is additionally
investigated, which cannot be achieved when the raw material con-
tains significant amounts of butyl propionate. Depending on the
concentrations of acetic acid and isoamyl alcohol in the raw mate-
rial, a suitable operating pressure needs to be chosen to allow for
an efficient separation of these components.

3.3. Purification of bio-based reactants n-butanol and acrylic acid

Besides the use of a semicontinuous distillation column for
the removal of impurities from n-butyl acrylate downstream of
the reactive distillation column, impurities can also be separated
directly from the reactants acrylic acid and n-butanol upstream
of the reactive distillation process. As a result, the formation of
butyl propionate in the reactive distillation column, which cannot
be separated from the final product n-butyl acrylate using the semi-
continuous distillation process, can potentially be avoided. Within
the investigations of the two reactants, the same semicontinuous
distillation setup is used as for the purification of n-butyl acrylate,
demonstrating that a single semicontinuous distillation column can
potentially be used as a multipurpose unit for the purification of
several bio-based chemicals (Fig. 5).

Within the reactant acrylic acid, the light-boiling impurity acetic
acid and the heavy-boiling impurity propionic acid are identi-
fied [15] and separated using the semicontinuous distillation. The
recovery of propionic acid would avoid the formation of butyl
propionate in the reactive distillation column and therefore the
complex separation from n-butyl acrylate. The recovery of acetic
acid would also be advantageous, as the pressure sensitive sepa-
ration from n-butyl acrylate would not be necessary. Within the
reactant n-butanol, the light-boiling impurity isobutanol and the
heavy-boiling impurities acetic acid, isoamyl alcohol and butyric
acid are identified and their separation is investigated in this sec-
tion. The recovery of isoamyl alcohol is especially advantageous
because this would avoid the complex separation from n-butyl
acrylate. A summary of the potential impurities in the studied bio-
based chemicals within this paper is shown in Table 1.

The investigated ranges for the operating parameters of the
semicontinuous process as well as the investigated initial and
the final purities of n-butanol and acrylic acid are summarised in
Table 4.

Within these simulation studies, the same ranges for the reflux
ratio, the column top pressure and the distillate and bottom product
mass flows are investigated in the same way  as for the n-butyl acry-
late case study shown in Section 3.2. Furthermore, the same final
purities of wAA,BuOH = 0.9970, 0.9980 and 0.9990 are investigated
and an additional purity of wAA,BuOH = 0.9995 is taken into account.
The initial purities for this study are varied between wAA = 0.9960,

0.9972 and wAA = 0.9986 for acrylic acid and wBuOH = 0.9920, 0.9944,
0.9960 and wBuOH = 0.9972 for n-butanol, maintaining equally dis-
tributed concentrations of the impurities ranging from 700 ppm
to 2000 ppm for each impurity in both case studies. As bio-based

Table 4
Operating parameters and investigated ranges for the n-butanol and acrylic acid
case study, taking the respective impurities into account. The values marked in bold
are base-case values that are kept constant while the other parameters are varied
during the simulation studies.

Parameter Investigated range

Reflux ratio 200, 300, 600
Column top pressure (bar) 0.2, 0.4, 0.576
Top/bottom mass flow (kg h−1) 5, 7.5, 10
Initial AA, BuOH purity (wt.-frac.) 0.9920, 0.9944, 0.996, 0.9972
Final AA, BuOH purity (wt.-frac.) 0.9970, 0.9980, 0.9990, 0.9995
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crylic acid only contains two impurities in significant amounts
nd bio-based n-butanol contains four impurities, different initial
eactant purities are investigated.

.3.1. Purification of acrylic acid
The use of a ternary semicontinuous distillation system is sim-

lated for the separation of acetic acid and propionic acid from
 high-purity acrylic acid mixture. In this portion of the study, the
perating parameters, initial purities and final purities summarised
n Table 4 are investigated. The two impurities acetic acid and pro-
ionic acid are taken into consideration as impurities in acrylic
cid, whereas acetic acid is light-boiling in comparison to acrylic
cid and is supposed to be collected in the distillate and propio-
ic acid is supposed to be collected in the bottom stream due to a
eavy-boiling azeotrope formed by propionic acid and acrylic acid.

n the simulation study using a ternary semicontinuous distillation
rocess, only a slight purification is achieved for the acrylic acid
tream compared to the initial impurities. For example, a purifi-
ation of an initial concentration of wAA = 0.9960 is only possible
p to a final concentration of wAA = 0.9980. The purified acrylic acid
treams still contain large amounts of acetic acid for all simulations,
hereas most of the propionic acid is removed. This is also reflected

y the acrylic acid concentrations in the distillate and bottom prod-
ct stream. The average acrylic acid concentration in the distillate
or all simulations for the purification of acrylic acid is wAA = 0.9792
nd in the bottom product the average acrylic acid concentration
s wAA = 0.8653, demonstrating the low impurity concentrations in
hese streams and the big loss of acrylic acid. Fig. 15 shows the
ercentage removal of both impurities in the purified acrylic acid
or the purification from an initial concentration of wAA = 0.9980
1000 ppm per impurity) to a final concentration of wAA = 0.9990
s a function of the pressure for the three investigated column top
ressures of p = 0.2, 0.4 and p = 0.576 bar.

Both impurities are fed with an initial concentration of
000 ppm within this simulation. The reason for the poor purifi-
ation performance of the semicontinuous distillation system is
hown in Fig. 15. Despite a good recovery of the propionic acid,
igh final purities of acrylic acid cannot be achieved as acetic acid

s only slightly removed from the acrylic acid. The removal of acetic
cid is also not significantly improved by a variation of the other
perating parameters.
.3.2. Purification of n-butanol
The use of a ternary semicontinuous distillation system is sim-

lated for the separation of isobutanol, acetic acid, isoamyl alcohol

ig. 15. Amount of removed impurity in purified acrylic acid for the purification
f  an initial purity of wAA = 0.9980 (1000 ppm per impurity) to a final purity of
AA = 0.9990 as a function of the column top pressure.
Fig. 16. Amount of removed impurity in purified n-butanol for the purification of an
initial purity of wAA = 0.9920 (2000 ppm per impurity) to a final purity of wAA = 0.9990
as  a function of the column top pressure.

and butyric acid from a high-purity n-butanol stream. The operating
parameters, initial purities and final purities investigated in this
case study are summarised in Table 4. For the separation of these
four impurities, the ternary semicontinuous distillation column
shows promising results, separating isobutanol at the top of the
column and acetic acid, isoamyl alcohol and butyric acid at the bot-
tom. A final purity of wBuOH = 0.9995 is achieved even with the worst
investigated initial purity of wBuOH = 0.9920 with a cycle time of
8.7 h, a specific n-butyl acrylate loss of 0.109 kg kg−1 and a specific
heat duty of 2.4 kWh  kg−1. Fig. 16 shows the results of a simu-
lation with an initial purity of wBuOH = 0.9920 to a final purity of
wBuOH = 0.9990. In this figure, the recovery rate of the four investi-
gated impurities is shown as a function of the column top pressure.
As the initial purity of this simulation is wBuOH = 0.9920, the impu-
rities are fed with a concentration of 2000 ppm each.

A significant separation of all impurities is achieved within
this process. The separation of isoamyl alcohol is not affected
by changing the operating pressure of the column, whereas the
separation of the other three components can be improved by
using the optimal column top pressure. As the concentration of
isobutanol in the distillate increases with decreasing pressure,
the recovery of isobutanol at lower pressures is advantageous. A
better separation of butyric acid and acetic acid is achieved at
higher pressures. For butyric acid, the difference of the boiling
point in comparison to n-butanol increases with increasing pres-
sure, allowing a better separation. The separation of acetic acid is
also improved with increasing pressure, although the difference
in the vapour pressures of n-butanol and acetic acid decreases
with increasing pressure in the investigated operating range. This
results from the heavy boiling azeotrope of acetic acid and n-
butanol. The composition of this binary homogeneous azeotrope
changes from wacetic acid = 0.395 at p = 0.576 bar to wacetic acid = 0.363
at p = 0.200 bar, allowing a better separation of acetic acid at higher
pressures.

For the simulations varying the operational parameters as well
as the initial and final purities of n-butanol, comparable results to
the n-butyl acrylate case study are obtained, except for the variation
of the pressure. Simulations of purification from an initial purity of
wBuOH = 0.9920 to a final purity of wBuOH = 0.9990 are performed at
different pressures, with results shown in Fig. 17. In the study, all
impurities have identical feed concentrations.
The results indicate that the impact of the column top pressure
on the final concentration of isobutanol is large in comparison to
the impact of the pressure on the concentrations of the other com-
ponents. A reduction of the cycle time (−16%), the specific heat
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Table 5
Results of the presented study showing the investigated impurities and the main
component they should be separated from in the investigated pressure range. “++”
represents an amount of more than 90% of the impurity removed, “+” between
50% and 90% removed, “−” between 10% and 50% removed and “−−” represents
an amount of less than 10% removed.

Impurity AA-feed BuOH-feed BA-product

Isobutanol +
Acetic acid − ++ +/−
Butyl acetate ++
Isoamyl alcohol + +
Propionic acid + ++
Butyl propionate −−
Butyl butyrate ++
ig. 17. Specific heat duty, specific n-butanol loss and cycle times for the purification
f  n-butanol from an initial purity of wBuOH = 0.9920 to a final purity of wBuOH = 0.9990
s  a function of the column top pressure.

uty (−15%) and the specific n-butanol loss (−24%) is achieved by
 pressure change from 0.576 bar to 0.200 bar.

The average concentration of the main component n-butanol
ound for these simulations is wBuOH = 0.9002 in the distillate and

BuOH = 0.6246 in the bottom product, demonstrating a good impu-
ity separation, especially in the bottom product stream.

.4. Analysis

The results for the purification of the two bio-derived reactants
crylic acid and n-butanol and of the final product n-butyl acry-
ate using a semicontinuous distillation system were presented in
ection 3 of this investigation. The use of a semicontinuous pro-
ess is shown for a mixture of various impurities and a separation
f these impurities can be performed in a single semicontinuous
istillation column. The ability of a semicontinuous distillation sys-
em to act as a multipurpose unit and purify various streams is
hown. A main focus of this study is to evaluate the flexibility of
his process to be able to handle varying impurity concentrations
n respect to the composition and the concentration of the single
mpurities. It is shown that a semicontinuous process is able to

aintain final purities without changes in operational parameters
uch as the reflux ratio or the column pressure, only by increasing
r decreasing the cycle times. Furthermore, higher final purities can
asily be achieved by longer cycle times without the necessity to
hange other operating parameters. Nevertheless, the boundaries
f the semicontinuous process for these case studies are shown
ith respect to the separability of some of the investigated com-
onents. Based on the results shown in Section 3, the feasibility for
he use of a semicontinuous distillation system for the presented
ase-studies were identified.

In the investigation for the purification of the final product
-butyl acrylate it was found, that six of the seven impurities
an be separated using the semicontinuous technology, only butyl
ropionate cannot be removed using semicontinuous processing.
he difficulty in removing butyl propionate results from almost
dentical vapour pressures of n-butyl acrylate and butyl propio-
ate. Hence, for a successful implementation of semicontinuous
rocessing downstream of the reactive distillation process, the for-
ation of butyl propionate should be avoided, e.g., by removing the

ropionic acid upstream of the reactive distillation column. Besides
hese difficulties, an efficient simultaneous separation of isoamyl

lcohol and acetic acid is not possible, as their separation effi-
iency strongly changes with pressure, but with opposing trends.
herefore, two additional cases were simulated with five impuri-
ies each, both without having butyl propionate as an impurity in
Butyric acid ++ ++

the n-butyl acrylate stream and with either acetic acid or isoamyl
alcohol, depending on the operating pressure of the column. In
these studies it is shown, that significant savings in energy demand
and product losses and reduced cycle times can be achieved, just
by a change of the operational pressure in dependency of the
impurities found in n-butyl acrylate. Therefore, the semicontin-
uous process is an attractive technology for the separation of
impurities from the final product n-butyl acrylate, as long as only
small amounts of propionic acid were found in the bio-based
feed streams, leading to negligible concentrations of butyl propio-
nate.

In the investigations for the purification of the two  reactants
upstream of the reactive distillation process, the feasibility of
a semicontinuous process was  only found for one of the two
reactants. For bio-derived acrylic acid, the use of a semicon-
tinuous process simultaneously removing the light-boiling and
heavy-boiling impurities does not offer any advantages for the
purification, as only a slight separation of acetic acid is achieved
by this distillation process. Nevertheless, the removal of propionic
acid using this technique shows promising results and avoids the
formation of butyl propionate in the reactive distillation column.
But as only one separation step is successfully performed in this
process, the use of a normal distillation column or an alternative
separation technique should be preferred to a semicontinuous sys-
tem. For n-butanol, an efficient separation of impurities contained
in bio-based n-butanol is achieved using a ternary semicontinu-
ous distillation column, even at comparably low initial n-butanol
purities of wBuOH = 0.9920. A flexible purification is possible for the
entire range of initial and final impurities tested, and the same
semicontinuous distillation system can be used for several different
purification tasks. The impact of changes in the operating param-
eters is essentially the same as it was for the n-butyl acrylate case
study. However, in the final implementation of the proposed sys-
tem, the reflux ratio, distillate mass flow rate, and bottom product
mass flow rate should be determined by optimisation of the pro-
cess economics, which are outside of the scope of this study. For
this system, it is expected that low column pressures will be opti-
mal  since the separation of isobutanol is significantly improved,
while the separation of the other impurities does not change sig-
nificantly. A summary of the results obtained in this study, showing
the single impurities and the main component they should be sep-
arated from, is given in Table 5. Impurities that are removed by
more than 90% are marked with “++”, between 50% and 90% they
are marked with “+”, from 10% to 50% they are marked with “−”
and for a removal of less than 10% they are marked with “−−”. For
impurities that are removed by more than 50%, a use of the semi-
continuous process concept for the separation of the impurity from

this main component, for acrylic acid and n-butanol upstream of the
reactive distillation process and for n-butyl acrylate downstream of
the reactive distillation process, is potentially feasible.
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To conclude, the semicontinuous process is an attractive tech-
ology for future bio-based separations, allowing a high flexibility

n respect to initial and final purities within given boundaries.

. Conclusion and future outlook

In this work, the application of a ternary semicontinuous distil-
ation system to realistic batch purification problems that occur
oth upstream and downstream of a reactive distillation col-
mn  used for the production of bio-derived n-butyl acrylate from
-butanol and acrylic acid was investigated using dynamic simula-
ions. Additional purification is needed because industrial purity
equirements for n-butyl acrylate cannot be achieved using the
eactive distillation process as it currently exists.The semicontinu-
us process was used, as a additional continuous purification unit,
uch as a conventional distillation column, does not provide the
exibility to guarantee the product specification using bio-derived
aw materials with changing impurity compositions. Ternary
emicontinuous distillation processes simultaneously perform
wo thermochemical separation steps (which typically requires
wo distillation columns in continuous operation) in a single
istillation column, facilitated by the tight integration with a
iddle-vessel.
In the analysis, the impacts of changes in key operational param-

ters and conditions (reflux ratio, distillate mass flow rate, bottom
roduct mass flow rate, column top pressure, initial and final
urities of each of the three primary products) on the perfor-
ance of the process were investigated. It was determined that

he semicontinuous process can successfully be used for removal
f all impurities except two of the seven studied from n-butyl acry-
ate for the entire range of initial and final desired purities studied;
utyl propionate cannot be removed thermally due to nearly iden-
ical vapour pressures with butyl acrylate, and only one of the
air of acetic acid or isoamyl alcohol can be removed in signifi-
ant amounts depending on the pressure chosen. In addition, the
se of a semicontinuous system for the purification of n-butanol
hows promising results, since all impurities could be removed
rom the n-butanol using the same process configuration as the
-butyl acrylate system. However, the results indicate that the use
f a semicontinuous process for the purification of bio-based acrylic
cid, containing the two impurities acetic acid and propionic acid,
s not feasible, as only the propionic acid and small amounts of the
cetic acid are removed.

Furthermore, the results of the analysis indicate that, for the
-butyl acrylate and n-butanol systems studied, ternary semi-
ontinuous distillation systems are flexible enough to handle
atch-to-batch variations in both the initial concentrations of

mpurities and the final purity setpoint of the primary product,
ut do not require shut-down, cool-down, or start-up phases
etween them. This is a significant advantage over batch dis-
illation. Furthermore, the distillate and bottoms products are
emoved continuously at near-steady state, meaning that this
emicontinuous distillation strategy has both the steady-state
rocessing advantages of continuous distillation and the batch-
o-batch flexibility advantages of batch distillation. Furthermore,
he same semicontinuous process can be used for several purifi-
ation tasks, also allowing a high flexibility in respect to the
hemical system. For an industrial application, the semicontin-
ous process can be used on demand if the desired product
urity cannot be achieved due to high impurity concentrations.
lthough this work demonstrates the technical feasibility of remov-
ng most of the impurities from bio-derived n-butyl acrylate, an
conomic analysis was not within the scope and thus should be
onsidered in future work to determine if this process should be
ommercialised.
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Appendix A. Nomenclature

Latin letters
ṁi mass flow of flow i (kg h−1)
p pressure (bar)
T temperature (K)
wi weight fraction of component i in the liquid phase

(kg kg−1)

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.cep.2013.09.008.
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