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Effects of Stimulants on Brain Function in
Attention-Deficit/Hyperactivity Disorder:
A Systematic Review and Meta-Analysis

Katya Rubia, Analucia A. Alegria, Ana I. Cubillo, Anna B. Smith, Michael J. Brammer, and
Joaquim Radua
Background: Psychostimulant medication, most commonly the catecholamine agonist methylphenidate, is the most effective treatment
for attention-deficit/hyperactivity disorder (ADHD). However, relatively little is known on the mechanisms of action. Acute effects on
brain function can elucidate underlying neurocognitive effects. We tested methylphenidate effects relative to placebo in functional
magnetic resonance imaging (fMRI) during three disorder-relevant tasks in medication-naïve ADHD adolescents. In addition, we
conducted a systematic review and meta-analysis of the fMRI findings of acute stimulant effects on ADHD brain function.

Methods: The fMRI study compared 20 adolescents with ADHD under either placebo or methylphenidate in a randomized controlled
trial while performing stop, working memory, and time discrimination tasks. The meta-analysis was conducted searching PubMed,
ScienceDirect, Web of Knowledge, Google Scholar, and Scopus databases. Peak coordinates of clusters of significant effects of stimulant
medication relative to placebo or off medication were extracted for each study.

Results: The fMRI analysis showed that methylphenidate significantly enhanced activation in bilateral inferior frontal cortex (IFC)/insula
during inhibition and time discrimination but had no effect on working memory networks. The meta-analysis, including 14 fMRI datasets
and 212 children with ADHD, showed that stimulants most consistently enhanced right IFC/insula activation, which also remained for a
subgroup analysis of methylphenidate effects alone. A more lenient threshold also revealed increased putamen activation.

Conclusions: Psychostimulants most consistently increase right IFC/insula activation, which are key areas of cognitive control and also
the most replicated neurocognitive dysfunction in ADHD. These neurocognitive effects may underlie their positive clinical effects.
Key Words: ADHD, fMRI, meta-analysis, methylphenidate, review,
stimulants

Attention-deficit/hyperactivity disorder (ADHD) is defined by
age-inappropriate inattention, impulsiveness, and hyperactiv-
ity (1). Attention-deficit/hyperactivity disorder is associated

with inhibition, attention, working memory (WM), and timing deficits
(2–5), underpinned by functional magnetic resonance imaging
(fMRI) abnormalities in the underlying inferior frontal cortex (IFC)
and dorsolateral prefrontal (DLPFC), striatal and parietal regions, and
networks (2,3,6,7), which are also structurally abnormal (8–10).

Psychostimulants, such as methylphenidate, followed by dex-
amphetamines, are first-line pharmacologic treatment for ADHD
and reduce symptoms in about 70% of patients (11,12). However,
their mechanisms of action are poorly understood. At therapeutic
doses, methylphenidate blocks 60% to 70% of striatal dopa-
mine transporters (DAT) (13), which are abnormally low in
medication-naïve ADHD patients (14). However, in other regions,
From the Departments of Child and Adolescent Psychiatry (KR, AAA, AIC,
AS) and Neuroimaging (MJB), Institute of Psychiatry, King’s College
London, United Kingdom; Departments of Neuroimaging, Institute of
Psychiatry, King’s College London, United Kingdom; and Fundació per
a la Investigació i la Docència Maria Angustias Giménez Research Unit,
Germanes Hospitalaries and Centro de Investigación Biomédica en Red
de Salud Mental (JR), Barcelona, Spain.

Address correspondence to Katya Rubia, Ph.D., Institute of Psychiatry,
Department of Child and Adolescent Psychiatry, King’s College
London, SGDP, Po46, 16 De Crespigny Park, London SE5 8AF, United
Kingdom; E-mail: katya.rubia@kcl.ac.uk.

Received Jun 19, 2013; revised Oct 17, 2013; accepted Oct 18, 2013.

0006-3223/$36.00
http://dx.doi.org/10.1016/j.biopsych.2013.10.016
such as frontal lobes, methylphenidate blocks 70% to 80% of
norepinephrine transporters (15), which reuptake both dopamine
and norepinephrine, leading to increased extracellular catechol-
amine levels (15).

Functional magnetic resonance imaging studies of acute
effects of psychostimulants reveal true underlying mechanisms
of action without confounds of secondary effects of improved
behavior under chronic treatment. Randomized placebo-
controlled fMRI studies of acute methylphenidate effects in
medication-naïve ADHD boys using whole-brain image analyses
found increased activation in predominantly right, but also left,
IFC during tasks of sustained attention, inhibition, and time
discrimination (TD) (4,16–18); in parietal regions during sustained
attention, error monitoring, and interference inhibition (16–18);
the cerebellum during attention, TD, and interference inhibition
(4,16,18); and striatum during reward and response inhibition
(16,18). Studies in chronically medicated ADHD patients found
that an acute clinical stimulant dose relative to off medication
significantly enhanced bilateral medial frontal activation during
an emotional Stroop (19), deactivated cingulate default mode
regions during a cognitive Stroop task (20), or had no effect
during WM (21). Region of interest (ROI) fMRI studies focusing on
frontal and striatal regions found that compared with atom-
oxetine and placebo, methylphenidate had no effect during WM
(22) but significantly enhanced right IFC activation during motor
inhibition (23) and during time discrimination together with
atomoxetine (24). Functional magnetic resonance imaging studies
in chronically medicated ADHD patients using the go/no-go task
found that an acute dose of methylphenidate in medication
responders compared with off medication enhanced activation in
inferior, medial frontal, and anterior cingulate cortex (ACC) and
striatum (25,26).
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Given these relatively inconsistent findings, we aimed to
provide new analyses and to conduct a systematic review and
meta-analysis on the available whole-brain fMRI studies to
determine the most prominent and replicable areas modulated
by acute psychostimulant treatments. Whole-brain analyses do
not restrict the search volume unnecessarily and hence do not
bias findings toward a priori hypothesized regions (27). For this
purpose, we first re-analyzed with a whole-brain analysis three of
our previously published ROI analyses of methylphenidate effects
relative to placebo and atomoxetine (22–24), focusing on the
contrast of methylphenidate versus placebo only. Second, we
performed a voxel-based meta-analysis of whole-brain analysis
fMRI studies on the acute effects of methylphenidate/stimulants
relative to placebo in medication-naïve ADHD patients or relative
to off-medication status in chronically medicated ADHD patients.
Based on biochemical mechanisms of action of stimulants on
frontal and striatal regions (15,28–30) and findings of enhanced
right IFC and basal ganglia activation with acute stimulant
medication in ADHD (4,16–18,23–26), we hypothesized that these
two regions would be the most prominent and replicable areas
that would be modulated by psychostimulants.
Methods and Materials

Whole-Brain Analysis of fMRI Comparison between
Methylphenidate and Placebo during Stop, TD, and WM Tasks

Detailed descriptions of participant selection, tasks, and
individual fMRI analyses are previously published (22–24) and in
Supplement 1.

In brief, right-handed boys with a diagnosis of hyperactive-
impulsive/inattentive combined ADHD between 10 and 17 years (19
for stop; 20 for TD and WM tasks), IQ �70, and no comorbidity
except conduct disorder in two patients were scanned in a double-
blind placebo-controlled design (Table 1) 1.5 hours after oral
administration of either methylphenidate (Equasym [Shire Pharma-
ceuticals, Dublin, United Kingdom], .3 mg/kg, range 5–20 mg),
placebo (vitamin C, 50 mg), or atomoxetine (Strattera [Lilly
Pharmaceuticals, Indianapolis, Indiana], 1 mg/kg, range 16–66 mg)
(not analyzed). Patients were medication-free between scans, which
were 7 days apart. Functional magnetic resonance imaging tasks
included a tracking stop task that measured successful and failed
stop versus baseline go trials, a TD task measuring the ability to
discriminate two time intervals that differed by several hundreds of
Table 1. Demographic Data for Healthy Control Subjects and ADHD Patients

Task Stop Task

Variables Control Subjects (29)
Mean (SD)

ADHD (19)
Mean (SD)

Contr

Age (Years, Months) 13, 9 (2, 6) 13, 1 (1, 7)
IQ 110 (12) 92 (11)
SDQ Total 4 (4) 22 (7)
SDQ Hyperactive/Inattentive 1 (2) 8 (3)
CPRS-R (DSM-IV) Total t 44 (5) 79 (11)
CPRS-R Cognitive/Inattention
Problems t

46 (4) 69 (9)

CPRS-R Hyperactivity t 45 (4) 81 (13)
CPRS-R Global Index: Restless
Impulsive t

46 (5) 78 (11)

CPRS-R ADHD t 46 (5) 76 (8)

ADHD, attention-deficit/hyperactivity disorder; CPRS-R, Conners’ Parent Rati
milliseconds contrasted with an order judgment task, and an n-back
WM task that contrasted the function of recognizing letters shown
3/2/1 letters back with the ability to detect a target letter (“Is it X?”).
Twenty-nine (stop) or 20 (WM/TD) age-matched healthy control
subjects were scanned once (Table 1).

Participants were paid £50 for each visit. Written informed
consent and assent were obtained and the study was approved
by the local ethics committee.

Gradient-echo echo-planar imaging magnetic resonance imag-
ing data were acquired on a GD Sigma 3T Horizon DHx system
(General Electric, Milwaukee, Wisconsin) at the Centre for Neuro-
imaging Sciences, Institute of Psychiatry, Kings’ College London
(see Supplement 1 for image acquisition details).

Whole-brain fMRI analyses were conducted using XBAM
software (http://www.brainmap.co.uk). Individual and group-
level analyses are described in detail elsewhere (3,22,24) and in
Supplement 1. Briefly, fMRI data were realigned to minimize
motion-related artifacts and smoothed using a Gaussian filter
(full-width at half maximum 8.82 mm) (31). Time-series analyses of
individual subject activation were performed with a wavelet-
based re-sampling method (31). We convolved the task epoch of
each event of interest for each task (i.e., successful/failed stop–go
trials for Stop; 3/2/1-back vs. 0-back for WM; time discrimination
versus order judgment for TD), with two Poisson model functions
(delays of 4 sec and 8 sec). Individual activation maps were
recalculated by testing the goodness-of-fit of this convolution
with the blood oxygen level-dependent time series that used the
ratio of the sum of squares of deviations from the mean intensity
value due to the model (fitted time series) divided by the sum of
squares due to the residuals (original time series minus model
time series). This statistic, the sum of squares ratio, was used in
further analyses (32). Using rigid body and affine transformation,
the individual maps were registered into Talairach standard space
(33). A group brain activation map was then produced for each
medication and each experimental condition.

Then, repeated measures analyses of variance (ANOVAs) were
conducted with drug condition as the repeated variable (meth-
ylphenidate, placebo) for the following contrasts: successful stop–
go trials; failed stop–go trials; TD–order judgment; WM: a 2*3
factorial repeated measures design was used, with drug and WM
load (1-back, 2-back; 3-back, all contrasted with 0-back) as within-
subject variables.

Combined voxel/cluster tests were applied coupled with
permutation testing to allow for type I error control at the cluster
Time Discrimination Task Working Memory Task

ol Subjects (20)
Mean (SD)

ADHD (20)
Mean (SD)

Control Subjects (20)
Mean (SD)

ADHD (20)
Mean (SD)

13, 8 (2, 5) 13, 0 (1, 7) 13, 8 (2, 5) 13, 0 (1, 7)
113 (10) 91 (11) 114 (11) 91 (11)

4 (4) 22 (7) 4 (4) 22 (7)
2 (2) 8 (2) 2 (2) 8 (2)

44 (5) 78 (11) 44 (5) 78 (11)
45 (4) 69 (9) 45 (4) 69 (9)

47 (4) 79 (14) 46 (4) 79 (14)
44 (3) 76 (12) 44 (3) 76 (12)

44 (4) 75 (8) 44 (4) 76 (8)

ng Scale Revised; SDQ, Strengths and Difficulties Questionnaire; t, t scores.
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Table 2. Performance Data for Healthy Control Subjects and ADHD
Patients

Task Variable

Control
Subjects

ADHD
Placebo ADHD Methylphenidate

Mean (SD) Mean (SD) Mean (SD)

Stop Task SSRT
(msec)

165 (103) 126 (82) 93 (110)

TD Errors (%) 22 (22) 40 (29) 32 (26)
WM Errors (%) 14 (18) 17 (16) 14 (14)

ADHD, attention-deficit/hyperactivity disorder; SSRT, stop signal reac-
tion time; TD, time discrimination; WM, working memory.
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level (34,35). For each analysis, �1 false positive three-
dimensional cluster per map was expected at p � .05 at the
voxel-level and at cluster levels of p � .007 for the TD and p �
.006 for the stop and WM tasks.

To test for potential normalization effects, ANOVAs compared
performance and brain activation between ADHD boys under
either drug condition with healthy control subjects.

Meta-Analysis of Whole-Brain Imaging Studies of Stimulant
Effects on ADHD Brain Function

A comprehensive literature search was conducted of task-
related fMRI studies up to June 2013 examining the effect of
methylphenidate/other stimulants in ADHD children and adults
using PubMed, ScienceDirect, Google Scholar, Web of Knowl-
edge, and Scopus electronic search engines using keywords
such as attention-deficit/hyperactivity disorder, ADHD, and
hyperkinetic, plus fMRI, neuroimaging, and methylphenidate
and stimulant. Citations within papers identified additional
studies. Studies were excluded based on: 1) ROI analysis; 2) no
report of coordinates; 3) no formal statistical comparison; and
4) less than 10 subjects. Meta-Analysis and Systematic Reviews
of Observational Studies guidelines for meta-analysis were
followed (36). The new whole-brain analysis of our three
previously published fMRI ROI datasets (3,22,24), comparing
methylphenidate relative to placebo only, was included in the
meta-analysis.

For each data set, significant peak coordinates were extracted
of activation differences between 1) acute dose of methylpheni-
date versus placebo in medication-naïve ADHD; and 2) on-
medication versus off-medication in chronically medicated ADHD
patients.

Regional activation differences during cognitive tasks were
analyzed using Effect-Size Signed Differential Mapping (ES-SDM)
software (http://www.sdmproject.com), a voxel-based meta-ana-
lytic approach used in previous meta-analyses of fMRI studies
(6,37) and described elsewhere (38–42) and briefly here.

First, ES-SDM uses the significant peak coordinates to recreate
maps of the effect size of medication condition differences in
blood oxygen level-dependent response in ADHD patients for
each study. For peak coordinates, the re-creation is based on
converting the t value to Hedges effect size and then applying a
normalized Gaussian kernel to the voxels close to the peak.
Activations and deactivations are recreated in the same map to
correctly analyze those regions with higher between-study
heterogeneity. Second, studies are combined with a random
effects model as in standard meta-analyses, taking into account
sample size and intrastudy and between-study heterogeneity
(40). Finally, statistical significance is determined using standard
permutation tests. Default ES-SDM thresholds were used (voxel
p � .005), peak height z ¼ 1, cluster extent ¼ 10 voxels) (39).

Funnel plots were conducted to detect abnormalities such
as studies reporting opposite results or publication bias. A
jackknife sensitivity analysis (same analysis was repeated
excluding one data at a time) established whether results were
replicable.

Some studies included overlapping subjects but conducted
different fMRI tasks, with hence only partially repeated
measures. Nevertheless, this was taken into account by
estimating, for each overlapping sample, an effect-size map
of the mean brain response to the different fMRI tasks and
included only this map in the meta-analysis. See Supplement 1
for details of the estimation assuming a moderate intertask
correlation (.3).
www.sobp.org/journal
Results

Whole-Brain Analysis of fMRI Comparison between
Methylphenidate and Placebo During the Stop, TD, and WM Tasks

Multivariate ANOVAs showed no significant differences
between control subjects and patients under each drug condition
in the extent of maximum rotation and translation movement
parameters in the three-dimensional Euclidean space for any of
the tasks. Group activation maps are shown in Figures S1 through
S3 in Supplement 1.

Stop. No group differences in performance were observed
(Table 2). Analysis of variance showed that for successful stop-go
trials, methylphenidate relative to placebo increased activation in
right IFC, bordering insula and superior temporal lobe and reaching
deep into caudate and rostral anterior cingulate cortex; posterior
cingulate cortex (PCC)/precuneus; left medial temporal gyrus; and
left midbrain and caudate. For failed stop-go trials, methylphenidate
increased activation relative to placebo in a cluster comprising right
IFC, insula, and superior temporal lobe; bilateral PCC/precuneus; and
a cluster including midbrain, inferior, and medial temporal regions
and cerebellum (Table 3; Figure 1). Placebo elicited increased
activation relative to methylphenidate in a cluster comprising dorsal
anterior cingulate cortex (dACC), precentral gyrus, and supplemen-
tary motor area (SMA) for both contrasts (Table 3; Figure 1). This
difference, however, was due to this region being activated under
placebo for the contrast of failed/successful stop-go but deactivated
under methylphenidate, i.e., more activated for go-successful/failed
stop trials (Figure S4 in Supplement 1).

TD. Methylphenidate relative to placebo significantly
decreased time discrimination errors (F1,39 ¼ 4; p � .02)
(Table 2). Methylphenidate increased activation relative to pla-
cebo in right IFC, insula, and putamen (Table 3; Figure 1). Placebo
showed no increased activation relative to methylphenidate.
There was a trend-wise significant negative correlation between
IFC/insula/putamen activation and TD errors during methylphe-
nidate (r ¼ �.3, p � .11).

WM. No significant medication effects on performance or
brain activation were observed.

Normalization Effects
Stop. Control subjects and patients under placebo did not

differ in performance. Patients under methylphenidate, however,
showed significantly shorter stop-signal reaction time than con-
trol subjects (F1,46 ¼ 5.32, p � .026) (Table 2). Compared with
control subjects, ADHD boys under placebo had underactivation
in bilateral IFC, left middle temporal gyri/inferior temporal gyri
reaching into inferior parietal lobe, and right anterior cerebellum/
fusiform gyrus. ADHD boys under methylphenidate compared
with control subjects showed reduced activation in the same left

http://www.sdmproject.com


Table 3. Whole-Brain Image Analysis Showing Differences in Activation between Methylphenidate and Placebo in ADHD Boys

Task (Contrast) Brain Regions of Activation Brodmann Area
Peak Talairach

Coordinates (x, y, z)
Voxel

Number
Cluster
p Value

Methylphenidate � Placebo
STOP (Stop-Go) R IFC/insula/caudate/ACC/superior temporal 47/13/38 43, 26, �13 148 .001

R PCC/precuneus/thalamus/occipital 30/31/7/19 14, �52, 23 761 .0003
L Medial temporal gyrus 39/21 �39, �55, 23 218 .000006
L Midbrain/caudate/inferior temporal �18, 7, �29 395 .0002

Placebo � Methylphenidate
STOP (Stop-Go) R ACC/SMA/postcentral 32/24/6/4 7, 11, 43 304 .009

Methylphenidate � Placebo
STOP (Failed Stop-Go) R IFC/superior temporal/insula 47/38/13 43, 25, �13 185 .006

R and L PCC/precuneus/occipital/inferior parietal 30/31/7/19 3, �48, 23 1098 .00004
L and R Midbrain/medial/inferior temporal/
hippocampal gyrus/cerebellum

21/36 �25, �22, �26 604 .0009

Placebo � Methylphenidate
STOP (Failed Stop-Go) R ACC/SMA/postcentral gyrus 32/24/6/4/5 4, 15, 43 487 .00002

Methylphenidate � Placebo
TD (Time Discrimination –
Order Judgment)

R IFC/insula/putamen 45/44/13 40, 19, 3 39 .007

Placebo � Methylphenidate
TD – – – – –

Methylphenidate � Placebo and Placebo � Methylphenidate
WM (1/2/3-back–0-back) – – – – –

ACC, anterior cingulate cortex; ADHD, attention-deficit/hyperactivity disorder; BA, Brodmann area; IFC, inferior prefrontal cortex; L, left; PCC, posterior
cingulate cortex; R, right; SMA, supplementary motor area; TD, time discrimination; WM, working memory.
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middle temporal gyri cluster (Figure S5A in Supplement 1) but not
in any other previously reduced activation clusters. Patients
showed enhanced activation compared with control subjects in
left posterior cerebellum/PCC and in right superior temporal
gyrus, reaching into posterior insula and putamen.

TD. Healthy control subjects had significantly higher error
rates than boys with ADHD when these were under placebo
(F1,38 ¼ 5, p � .026) but not when these were under methyl-
phenidate (F1,38 ¼ 2, p � .16) (Table 2). Compared with control
subjects, boys with ADHD showed reduced activation under
placebo in bilateral IFC, reaching into left insula and putamen;
Figure 1. Increased (orange) and decreased (blue) activation with methylphen
disorder (ADHD) during a tracking stop and a time discrimination task.
SMA/ACC; and right DLPFC. A small cluster in left medial
prefrontal cortex was enhanced in children with ADHD compared
with control subjects. Under methylphenidate, compared with
control subjects, patients with ADHD only showed reduced
activation in the cluster in the ACC, but this was reduced in size
and no longer included SMA (Figure S5B in Supplement 1).

WM. No group effects were observed for accuracy. Control
subjects compared with patients under placebo showed enhanced
activation in bilateral DLPFC (Figure S5C in Supplement 1). Patients
had no enhanced activation compared with healthy control
subjects. After methylphenidate, patients compared with control
idate relative to placebo in adolescents with attention-deficit/hyperactivity

www.sobp.org/journal
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subjects showed underactivation in the same left and right DLPFC
clusters. However, they showed additional, enhanced activation in
a cluster comprising right superior temporal gyrus/premotor
cortex, striatum/thalamus, and insula, reaching into the cerebellar
vermis, which correlated negatively with the left DLPFC activation
cluster (r ¼ �.5, p � .012) and positively with accuracy (r ¼ .37,
p � .05).

Meta-Analysis
Included Studies and Characteristics. Fourteen high-quality

datasets, all pediatric, were included in the meta-analysis,
including 212 children/adolescents with ADHD. Ten datasets
compared methylphenidate with placebo on brain function in
medication-naïve patients in randomized controlled designs
(4,16–18), including the new whole-brain re-analyses of four ROI
datasets (22–24) (Table 4) and four datasets comparing single
dose effects of methylphenidate/stimulants with off-medication
in chronically medicated medication responders (19–21) (Table 4).
Some papers included several tasks or task contrasts and hence
more than one independent dataset. All datasets in medicated
patients used a washout period of at least 24 hours before fMRI
(Table 4).

Meta-Analysis Results. Children/adolescents with ADHD
under stimulants relative to when under placebo or off medi-
cation showed significantly increased activation in right IFC,
insula, and bordering superior temporal lobe (Table 5;
Figure 2A,B). To test our hypothesis that stimulants increase basal
ganglia activation, which is more difficult to detect in fMRI due to
their relatively small size, we explored the data using a more
lenient p � .05. As hypothesized, an additional cluster in right
putamen was observed (Talairach coordinates: 24, 13, 1; 68
voxels). We also observed a small cluster in rostral anterior
cingulate cortex (Brodmann area: 32; Talairach coordinates: 5,
44, 1; 91 voxels) (Figure 2C).

We tested whether findings remained when we included only
the 10 studies in medication-naïve patients that compared
specifically methylphenidate versus placebo. The activation clus-
ter in right IFC/insula remained almost identical but became
somewhat larger in size and more significant (Table 5).

For both analyses, a cluster in dACC/SMA was significantly
decreased in activation in patients under an acute dose of
methylphenidate/stimulants compared with placebo/off-stimu-
lant medication (Table 5).

Reliability Analysis. Funnel plots showed that no studies had
findings in opposite directions, and there was no detectable
publication bias (Egger’s test p � .4 in both cases). A whole-brain
jackknife sensitivity analysis showed that the findings on the IFC
and ACC activation clusters were moderately replicable and
preserved in all but four and three combinations of datasets,
respectively (Table S1 in Supplement 1).

Results were identical when sample overlaps were taken into
account, though the peak height of right inferior frontal gyrus
(IFG) abnormality was only .971 (p � .0001).
Discussion

The whole-brain analysis in 19 to 20 medication-naïve
ADHD boys showed that methylphenidate relative to placebo
had no significant effect on brain function during WM but
increased activation in right IFC/insula during successful and
failed response inhibition and TD, which trend-wise correlated
with improved TD errors. Methylphenidate also enhanced
www.sobp.org/journal
activation of caudate, parietal, and temporal activation during
inhibition. Placebo relative to methylphenidate increased
activation in ACC/SMA. The findings replicate and extend
previous fMRI findings of methylphenidate enhancing IFG-
striatal activation relative to placebo in a different ADHD
cohort during the same and similar inhibition and timing
tasks (4,17,18). Furthermore, the increased right IFC/insula
activation with methylphenidate led to significant normal-
ization of its underactivation during stop and TD in ADHD
patients when compared with healthy control subjects. The
meta-analysis of stimulant effects in 14 fMRI datasets, includ-
ing the above data, showed that stimulants relative to
placebo/off-medication most consistently increase activation
in right IFC/insula. The finding remained for the 10 studies that
tested specifically for methylphenidate effects relative to
placebo in medication-naïve patients. At a more lenient
threshold, putamen activation was also increased, suggesting
that stimulants most consistently enhance right IFC-insular-
striatal activation.

It was not unexpected that methylphenidate/stimulants most
consistently increased right IFC/insula activation relative to
placebo/off-medication, as this region has been shown to be
increased in activation with methylphenidate relative to placebo
in several whole-brain and ROI fMRI studies of methylphenidate
effects during response inhibition (18,23,26), interference inhib-
ition (17), sustained attention (16), and time discrimination (4,24)
(Tables 4 and 6).

The area of increased activation, i.e., right IFC, bordering
superior temporal lobe and reaching into insula, is a key region
of cognitive control, as demonstrated by meta-analyses of fMRI
studies of motor, interference inhibition, and switching (43–46),
transcranial magnetic stimulation (47–49), and lesion studies (50).
However, right IFC is also a key region mediating time estimation
(51,52) and part of the ventral attention system mediating
selective and sustained attention (53,54). It has therefore been
argued that right IFC/insula have a generic role of updating
information (55) and cognitive control (56), including attention
allocation to behaviorally relevant salient stimuli (53,54,56,57).
The functions mediated by IFC/insula are also most consistently
impaired in ADHD, such as cognitive control (58,59), sustained
attention, saliency detection, and timing (4,5,58), in line with
consistently reduced activation in this region in ADHD during
cognitive control (37,60), attention (16,61), and timing tasks
(6,24,62).

This meta-analysis therefore demonstrates that stimulants/
methylphenidate most consistently increase activation of a key
region of cognitive control/saliency detection that has consis-
tently been found to be underactivated in ADHD patients in the
context of disorder-relevant functions of inhibition, attention, and
timing (4,6,16,24,37,60,63–65) and that may be a disorder-specific
neurofunctional biomarker of ADHD relative to other childhood
disorders (61,63,66–68).

The increase of IFG/insula activation with methylphenidate is
likely mediated by both noradrenergic and dopaminergic mech-
anisms, given that in frontal regions both in humans (15,69,70)
and in animals (69,70) methylphenidate increases noradrenaline
equally or more than dopamine via reuptake inhibition of
noradrenaline transporters, which clear both catecholamines.
The explorative analysis at a more lenient threshold revealed an
additional increase in right putamen activation, in line with the
key mechanism of action of methylphenidate of the blockade of
over 50% of striatal DAT, leading to increased striatal dopamine
release (13). Caudate and putamen are dysfunctional in ADHD,



Table 4. Whole-Brain Analysis Based fMRI Studies Examining the Acute Effects of Stimulant Medication on Brain Function of ADHD Children and Adolescents

Study Task and Contrast

Sample n
(% Male
Subjects)

Mean Age
(Years,
Months)
(SD) Comorbidity

Performance
Effects

Medication Dose/
Time Taken Before

ON Scan
Control

Condition
On Medication � Placebo/Off

Medication

Off Medication/
Placebo � On
Medication

Placebo-Controlled fMRI Studies in Medication-Naïve ADHD Patients
Rubia et al. 2009 (16) CPT: attention

contrast (target –
non-target)

13 (100) 12, 6 (1, 4) CD ¼ 1 No MPH .3 mg/kg/
1 hour

Placebo R IFC/premotor/parietal –
L and R cuneus/precuneus/
cingulate/cerebellum

Rubia et al. 2009 (16) CPT: reward contrast
(reward-non-
reward)

13 (100) 12, 6 (1, 4) CD ¼ 1 No MPH .3 mg/kg/
1 hour

Placebo R vmPFC/rACC/caudate R occipital/
medial
temporal

Rubia et al. 2009 (4) Time discrimination
vs. order judgment

12 (100) 13 (1) CD ¼ 1 No MPH .3 mg/kg/
1 hour

Placebo L IFC/insula R superior
frontal

R dACC R medial
temporal

R cerebellum R hippocampus
R putamen/
globus
pallidus

Rubia et al. 2011 (17) Simon task
(incongruent –
oddball)

12 (100) 13 (1) CD ¼ 1 No MPH .3 mg/kg/
1 hour

Placebo R IFC/premotor/superior
temporal/inferior parietal

–

L cerebellum/fusiform/middle/
inferior temporal

Rubia et al. 2011 (18) Stop task: (stop–go) 12 (100) 13 (1) CD ¼ 1 Trend (MRT go
trials, MRT
post-error go
trials)

MPH .3 mg/kg/
1 hour

Placebo – –

Rubia 2011 (18) Stop task: failed
stop–go

12 (100) 13 (1) CD ¼ 1 Trend (MRT go
trials, MRT
post-error go
trials)

MPH .3 mg/kg/
1 hour

Placebo L and R IFC insula/putamen/
caudate; L DLPFC

–

R inferior parietal/precuneus; R
occipital cortex

New analysis of
Cubillo et al. 2013
(23) (Table 3)a

Stop task: stop–go 19 (100) 13,1 (2, 6) CD ¼ 2 No MPH .3 mg/kg,
range 5–20 mg/
1.5 hours

Placebo R IFC, caudate/thalamus R ACC/SMA/
premotor

L cerebellum/inferior and
medial temporal/inferior
superior parietal/precuneus/
posterior cingulate

R precuneus/inferior and
superior parietal

New analysis of
Cubillo et al. 2013
(23) (Table 3)a

Stop task: failed
stop–go

19 (100) 13,1 (2, 6) CD ¼ 2 No MPH .3 mg/kg,
range 5–20 mg/
1.5 hours

Placebo R IFC/superior temporal/
posterior cingulate/thalamus/
L � R inferior/superior
parietal/L medial temporal/Cb

R ACC/SMA

New analysis of Smith
et al. 2013 (24)
(Table 3)a

Time discrimination
vs. order
judgment

20 (100) 12, 11 (1, 7) CD ¼ 2 Trend (errors) MPH .3 mg/kg,
range 5�20 mg/
1.5 hours

Placebo R IFC/insula –
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Table 4. (continued)

Study Task and Contrast

Sample n
(% Male
Subjects)

Mean Age
(Years,
Months)
(SD) Comorbidity

Performance
Effects

Medication Dose/
Time Taken Before

ON Scan
Control

Condition
On Medication � Placebo/Off

Medication

Off Medication/
Placebo � On
Medication

New analysis of
Cubillo et al. 2013
(22) (Table 3)a

WM; Verbal n-back
(1/2/3-back versus
0-back)

20 (100) 13 (1, 7) CD ¼ 2 No MPH .3 mg/kg,
range 5�20 mg/
1.5 hours

Placebo – –

fMRI Studies in Chronically Medicated Medication Responders with ADHD On and Off Their Usual Single Clinical Dose
Kobel et al. 2009 (21) WM: 2 & 3-back

versus 0-back
14 (100) 10.43 (1.34) ODD/CD ¼ 3,

GAD ¼ 2,
ODD/CD �
GAD ¼ 2

Yes (3-back) IR MPH: 2 ¼ 10 mg,
1¼15 mg, 6 ¼
20 mg; ER MPH:
5 ¼ 36–40 mg/?

Off medication/
24 hours

– –
Trend (2-back)

Peterson et al. 2009
(20)

Stroop: incongruent
versus congruent

16 (81) 14.1 (2.5) None No Effective clinical
dose of
stimulants/45–
60 min

Off medication/
72 hours

– Ventral ACC/
PCC

Posner 2011 (19) Stroop: positive
valenced
incongruent -
neutral

15 (87) 13.5 (1.2) ODD/CD ¼
allowed but
none
reported

No Effective clinical
dose of
stimulant/?

Off medication/
48 hours

– –

Posner 2011 (19) Stroop: negative
valenced
incongruent -
neutral

15 (87) 13.5 (1.2) ODD/CD ¼
allowed but
none
reported

No Effective clinical
dose of
stimulant/?

Off medication/
48 hours

R and L MFC –

ACC, anterior cingulate cortex; ADHD, attention-deficit/hyperactivity disorder; Cb, cerebellum; CD, conduct disorder; CPT, continuous performance task; dACC, dorsal anterior cingulate cortex;
DLPFC, dorsolateral prefrontal cortex; ER, extended release; fMRI, functional magnetic resonance imaging; GAD, generalized anxiety disorder; IFC, inferior prefrontal cortex; IR, immediate release; L,
left; MFC, medial prefrontal cortex; MPH, methylphenidate; MRT, mean reaction time; ODD, oppositional defiant disorder; PCC, posterior cingulate cortex; R, right; rACC, rostral anterior cingulate
cortex; ROI, region of interest; SD, standard deviation; SMA, supplementary motor area; vmPFC, ventromedial prefrontal cortex; WM, working memory.

aData of these studies were newly analyzed using whole-brain image analyses and comparing methylphenidate with placebo only, as opposed to the original publications that used ROI analyses
comparing three drugs, i.e., methylphenidate, placebo, and atomoxetine (see Table 3, Methods, and Results sections).
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Figure 2. (A) Meta-analysis results in three-dimension at p � .005
showing brain regions of increased (red/orange) and decreased (blue)
activation after a single dose of stimulant medication in children and
adolescents with attention-deficit/hyperactivity disorder compared with
placebo/off-medication. Relative to placebo, increased activation is shown
with acute stimulant medication in right inferior prefrontal cortex
extending deep into the insula and bordering superior temporal lobe
and decreased activation in anterior cingulate cortex and supplementary
motor area. (B) Meta-analysis results in two-dimension at peak Montreal
Neurological Institute coordinates: 38, 18, �4 (corresponding to Talairach
coordinates: 42, 20, �12) at p � .005, showing right inferior frontal cortex
reaching into insula and anterior cingulate cortex/supplementary motor
area. (C) Meta-analysis results in two-dimension at peak Montreal
Neurological Institute coordinates: 38, 18, �4 (corresponding to Talairach
coordinates: 42, 20, �12) at a more lenient p � .05, showing in addition
a cluster in right putamen and rostral anterior cingulate.
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together with prefrontal regions (2,3,7,37), suggesting that stimu-
lants increase underfunctioning frontostriatal mechanisms in
ADHD (71).

Furthermore, acute methylphenidate normalized the under-
activation in right IFC that was observed in ADHD patients under
placebo compared with healthy control subjects during inhibition
www.sobp.org/journal



Table 6. ROI-Based Studies Examining the Acute Effects of Stimulant Medication on Brain Function of ADHD Children/Adolescents and Adults

Study ROIs
Task (Design;
Contrast)

Sample n
(% Male
Subjects)

Mean Age
Years (SD) Comorbidity

Performance
Effects

Medication/
Dose

Control
Condition/

Withdrawal-Time
Off Medication

On Medication �
Placebo/Off
Medication

Placebo/Off
Medication �
On Medication

Placebo-Controlled ROI Studies in Medication-Naïve ADHD Patients
Cubillo et al.
2013 (23)

R � L IFC, temporo-
parietal,
cerebellum

Stop task (ER;
successful stop-go)

19 (100) 13 (3) CD ¼ 2 No MPH/.3 g/kg Placebo,
Atomoxetine

R IFC –

Smith et al.
2013 (24)

Frontal lobes ACC/
SMA, cerebellum
striatum

Time discrimination
versus order
judgment (BD)

20 (100) 12 (2) CD ¼ 2 Trend (errors) MPH/.3 mg/kg Placebo,
Atomoxetine

R IFC –

Cubillo et al.
2013 (22)

DLPFC n-back working
memory: (BD; 1/2/
3-back–0-back)

20 (100) 13 (2) CD ¼ 2 No MPH/.3 mg/kg Placebo,
Atomoxetine

– –

Placebo-Controlled ROI Studies in Chronically Medicated Medication Responders with ADHD
Epstein et al.
2007 (26)

Striatum, prefrontal,
posterior parietal,
cerebellum

go/no-go (ER; no-go
– go)

13 (69) 17 (1) MD ¼ 1, Specific
phobia ¼ 1,
ODD/CD ¼ 2,
AUD ¼ 1

Yes (SD of MRT,
d-prime)

MPH/.3 mg/kg Placebo/washout
period of 5
multiplied by
the half-life of
the medication

ACC, R IFC/OFC, L IFC,
L MFC, R � L
caudate, R globus
pallidus, R inferior
parietal, L
cerebellum

–

Epstein et al.
2007 (26)

Striatum, prefrontal,
posterior parietal,
cerebellum

Go/no-go (ER; no-go
– go)

15 (33) 50 (8) Eating disorder ¼
1, MD ¼ 7,
OCD ¼ 2, PTSD
¼ 1, Social
phobia ¼ 1

Yes (SD of MRT,
d-prime)

MPH/.3 mg/kg Placebo/washout
period of 5
multiplied by
the half-life of
the medication

L caudate, L
hippocampus, L
cerebellum

L MFC, R
inferior
parietal

Liddle et al.
2011 (74)

DMN (medial frontal,
precuneus, PCC,
angular gyrus;
middle temporal)

Go/no-go (ER;
deactivation
during go and no-
go trials versus
rest)

18 (94) Not reported
(9- to 15-
year-old
range)

AD ¼ 3, ODD/CD
¼ 13

Yes (omissions,
d-prime)

MPH/.3 g/kg Placebo/36 hours – –

On-Off ROI Medication Studies in Chronically Medicated Medication Responders with ADHD
Vaidya et al.
1998 (25)

Frontal lobe, ACC,
caudate, putamen

Go/no-go (BD;
contrasts: no-go –
go; stimulus
controlled or
response
controlled)

10 (100) 10.5 (1) NA Yes
(commissions)

MPH/Regular
dose (i.e.,
7.5–30 mg)

Off medication/
36 hours

Stimulus controlled:
Caudate and
putamen

Stimulus
controlled: –

Response
controlled: –

Response
controlled: –
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and timing processes [see also (23,24)], which has also been
observed previously during interference inhibition (17), motor
inhibition (18,23), WM (72), and TD (4) (Table S2 in Supplement 1).
Other areas were also normalized, most prominently basal ganglia
underfunction during inhibitory control (17,25,73) and timing (4)
(Table S2 in Supplement 1).

While most fMRI studies found methylphenidate to have a
positive effect on brain activation, only some studies observed
performance improvement (18,21,24–26,74,75), likely reflecting
the superior sensitivity of fMRI relative to behavior to detect
pharmacologic effects or the relatively small subject numbers of
fMRI studies, underpowered for performance effects.

A cluster in ACC/SMA was significantly reduced under stimu-
lants relative to placebo/off-medication. However, a similar cluster
in our stop task analysis (Table 3) was partly due to increased
deactivation with methylphenidate (i.e., more activation during
the go condition) (Figure S4 in Supplement 1), which was also
observed in the ROI analysis (23) and other studies (19,20,74). This
could suggest an impact of methylphenidate on reducing the
default mode network or of enhancing activation related to the
contrast condition rather than a placebo effect. Alternatively, it is
also possible that methylphenidate has differential effects on the
saliency network, reducing ACC/SMA and enhancing IFC/insula.

This meta-analysis could only test acute stimulant effects
on brain function, given the sparsity of fMRI studies that tested
longer term effects. One fMRI study found a trend for ACC
reduction to be more pronounced in five nonmedicated versus
nine medicated children with ADHD after 1 year methylpheni-
date treatment, suggesting amelioration but not normalization
of activation deficits in ADHD (76). In 10 adults with
ADHD, amelioration of dACC underactivation was found, which
was associated with treatment response, as well as in right
DLPFC and bilateral parietal cortices after 6 weeks OROS
methylphenidate (Concerta, Addison, Texas) relative to placebo
(77). Meta-regression analyses on fMRI studies found that long-
term stimulant medication was linearly associated with more
normal basal ganglia function during attention but not inhib-
ition tasks (37).

No prospective studies are published on long-term effects of
stimulant treatment on brain structure. Meta-regression analyses
show that long-term stimulant medication is associated with
more normal basal ganglia structure (8,78), parallel to the meta-
regression findings of an association with more normal striatal
function during attention tasks (37). Retrospective structural
magnetic resonance imaging (MRI) comparisons found that
medicated relative to unmedicated ADHD patients had more
normal white matter (79) and cortical thinning development in
left IFG, premotor, and parietal regions (80); basal ganglia
morphology (81); and sizes of thalamus (82), anterior cingulate
(83), cerebellum (84), and corpus callosum (85), suggesting a
neuroprotective effect of stimulant medication on ADHD brain
development. However, while the experimental within-patient
fMRI studies are more likely to reflect causal medication effects,
the retrospective structural MRI analyses could be confounded by
other discriminating factors than medication status and need
corroboration in prospective longitudinal within-patient MRI
studies. Our meta-regression analysis of positron emission tomog-
raphy studies, on the other hand, showed that long-term
stimulant medication was associated with abnormally elevated
striatal DAT levels (14), which was also found in a prospective 1-
year positron emission tomography study (86,87), suggesting
brain adaptation and tolerance to long-term stimulants. Future
longitudinal studies using several imaging modalities will need to
www.sobp.org/journal
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assess the fundamental question of the impact of stimulant
medication on the development of brain structure, function,
and biochemistry of ADHD children.

A key relevant clinical question is whether brain structure or
function patterns in ADHD patients can predict stimulant response.
A recent fMRI study found an association between clinical improve-
ment after 6 to 8 weeks of methylphenidate and brain activation
reduction over this time in motor, IFC, and ACC cortices (88).
Another study found that methylphenidate response in seven
ADHD adolescents was associated with acute stimulant reduction
effects in parietal regional homogeneity during rest (89). Future
larger powered studies using multivariate pattern recognition
analyses are necessary to test whether baseline brain function or
structure abnormalities in ADHD can predict stimulant response (90).

A limitation of the re-analyzed fMRI dataset is that clinical
ratings from teachers were not obtained. Also, it cannot be
ascertained whether stimulant effects on brain activation in
ADHD have disorder or diagnostic specificity, as only one fMRI
study has tested healthy control subjects under methylphenidate
(25) and none in other childhood disorders. The meta-analysis has
several limitations inherent to all meta-analyses. Peak-based
meta-analyses are based on coordinates from published studies
rather than raw statistical brain maps (42). Also, different studies
used different statistical thresholds. Third, while voxel-wise meta-
analytical methods provide excellent control for false-positive
results, false-negative results are more difficult to avoid (42). Last,
while most included fMRI studies measured cognitive control
functions, there was heterogeneity, with some studies assessing
motivational effects within cognitive control tasks and two
studies measuring time estimation. Once more studies are
available, future meta-analytic studies should subcategorize
stimulant effects on homogenous cognitive domains.

In conclusion, our meta-analysis of 14 fMRI datasets in
pediatric ADHD shows that the most consistent effect of acute
stimulant medication, and of methylphenidate specifically, is the
increased activation of right IFC, a key region of cognitive control
and the most replicated neurocognitive dysfunction area of
ADHD (2–7,16–18,37,60). It is likely that increased right IFC
activation and its normalization relative to healthy control
subjects (4,16–18,23,24,72) is underlying the clinical effectiveness
of stimulant response on ADHD behaviors.
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