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Abstract Sulfamic acid is widely used in various industrial acid cleaning applications. In the pres-

ent work, the inhibition effect of Tryptophan (Tryp) on the corrosion of low alloy steel in sulfamic

acid solutions at four different temperatures was studied. The investigations involved electrochem-

ical methods (electrochemical impedance spectroscopy; EIS and the new technique electrochemical

frequency modulation; EFM) as well as gravimetric measurements. The inhibition efficiency and the

apparent activation energy have been calculated in the presence and in the absence of Tryp. It is

most probable that the inhibition property of Tryp was due to the electrostatic adsorption of the

protonated form of Tryp on the steel surface. Adsorption of the inhibitor molecule, onto the steel

surface followed the Temkin adsorption isotherm. The thermodynamic parameters of adsorption

were determined and discussed. All of the obtained data from the three techniques were in close

agreement, which confirmed that EFM technique can be used efficiently for monitoring the corro-

sion inhibition under the studied conditions.
ª 2011 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The scaling or deposition on the boiler and heat exchange
tubes is a phenomenon of common occurring. Eventually, re-
moval of scales from the boiler tubes becomes essential if dam-
age to the boiler is to be prevented. The common way of
removing scales is to chemically clean the boiler. The impor-

tant step in the chemical cleaning process involves the use of
acid to dissolve the scales. If proper cleaning or descaling
was not carried out then it would greatly affect the efficiency

of the plant. Therefore, industrial acid cleaning is a very
important procedure applied chiefly to remove scales and other
unwanted deposits from steam generating equipment and from

chemical and petrochemical reaction vessels (Majnouni and
Jaffer, 2003; Natarajan and Sivan, 2003).

Several acid solutions will effectively remove waterside
deposits. Hydrochloric, sulfuric, sulfamic and citric acids are

employed for such purpose (Sathiyanarayanan et al., 2006).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.arabjc.2011.11.012&domain=pdf
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Although, sulfamic acid is widely used in many diversified

industrial acid cleaning applications, for unknown reasons
researchers have not been interested in studying the corrosion
characteristics of different metal materials in sulfamic acid
media. Sulfamic acid is a crystalline solid, and is highly stable.

In addition to its strength as an effective solvent for iron oxides
and variety of water-formed scales it has also many other
advantages such as that it is suitable for use with alloy steels

and austenitic stainless steels. The usual concentration of sul-
famic acid is 5–10 wt.% by weight at a temperature range of
55–65 �C (Majnouni and Jaffer, 2003; McCoy Jemes, 1984;

Morad, 2008).
Because of the general aggressivity of acid solutions, corro-

sion inhibitors are commonly used to reduce corrosive attack

on metallic materials (Ashassi-Sorkhabi et al., 2005; Abdel-
Rehim et al., 2006). The uses of corrosion inhibitors in specific
applications such as the acid cleaning of steam generator com-
ponents have been reviewed briefly (Bhrara et al., 2008).

Amino acids are from a class of organic compounds that
are completely soluble in aqueous media, relatively cheap, easy
to produce with high purity; nontoxic and considered as envi-

ronmentally friendly compounds. These properties enhance
their use as corrosion inhibitors for iron, steel and stainless
steel (Oguzie et al., 2007; Ashassi-Sorkhabi et al., 2005; Kalota

and Silverman, 1994; Madkour and Ghoneim, 1997; Morad
et al., 2002). In the present work, Tryptophan (Tryp) is used
as environmental safe corrosion inhibitor.

The purpose of this study is to determine the inhibition

efficiency of Tryp on the corrosion of low alloy steel (LAS)
in sulfamic acid solutions and to study the reliability of the
EFM technique for monitoring the corrosion inhibition under

the studied conditions.

2. Experimental

Low alloy steel (ASTM A213 grade T12) strips composed of
0.35 wt.% Si, 0.64 wt.% Mn, 2.30 wt.% Cr, 0.86 wt.% Mo

and the remaining 95.85 wt.% Fe were used. Generally, low al-
loy steels are widely employed for manufacturing the steam
generating sections (Dobrzanski, 2004; Ghanem et al., 1996).

All solutions were freshly prepared from analytical grade
chemical reagents using ultrapure water. The experiments were
conducted in stagnant aerated solutions at different tempera-
tures 25, 40, 50 and 60 �C ± 1 �C.

Measurements of weight changes were performed on rect-
angular coupons of size 1.5 cm · 1 cm · 0.2 cm with total ex-
posed area of (4 cm2). The weight loss was determined by

weighing the cleaned samples before and after 24 h immersion
in tested solutions at different temperatures.

The electrochemical experiments were carried out using a

three-electrode glass cell assembly of 150 cm3 volume capacity.
The cell consists of a low alloy steel electrode embedded in
epoxy resin with an exposed area of (1 cm2) as working elec-

trode, a saturated calomel electrode as reference electrode,
and a platinum foil (1 cm2) as counter electrode. The working
electrodes were mechanically abraded with different grades
(240, 400, 600 and 1200) of abrasive papers, degreased with

acetone in an ultrasonic bath, then washed with ultrapure
water and finally dried before use.

The electrochemical impedance spectroscopy (EIS) mea-

surements were carried out using AC signals of amplitude
5 mV peak to peak at the open circuit potential in the fre-

quency range between 15 kHz and 0.3 Hz.
The electrochemical frequency modulation (EFM) is a new

technique that provides a new tool for electrochemical corro-
sion monitoring. The great strength of the EFM is the causal-

ity factor, which serves as an internal check on the validity of
the EFM measurement. The theory and features of EFM tech-
nique was reported previously (Bosch et al., 2001; Abdel-

Rehim et al., 2006; Amin et al., 2009).
All electrochemical experiments were carried out using

Gamry PCI300/4 Potentiostat, EIS300 software, EFM140

software and Echem Analyst 5.21 for results plotting, graph-
ing, data fitting and calculating.

The corrosion behavior was further confirmed by optical

microscope observations.

3. Results and discussion

3.1. Effect of inhibitor concentration and solution temperature

The inhibition property of Tryp on the corrosion of LAS in
sulfamic acid solutions at different temperatures 25, 50, and
60 �C± 1 was examined using the following techniques.

3.1.1. Electrochemical frequency modulation studies
Fig. 1a and b represents the EFM intermodulation spectra of

LAS in stagnant 0.6 M sulfamic acid devoid of and containing
0.04 M Tryp at 60 �C as an example. Similar results were col-
lected for the other concentrations at different temperatures.

The EFM results; corrosion current density (Icorr), Tafel
constants (bc and ba) and the causality factors (CF2 and
CF3) are given in Table 1.

The inhibition efficiency (IE%) of Tryp was calculated
using the following equation:

IE% ¼ 1� Icorr

I0corr

� �� �
� 100 ð1Þ

where I0corr and Icorr are the corrosion current densities for unin-
hibited and inhibited solutions, respectively.

The calculated values of the inhibition efficiency (IE%) at

different concentrations of Tryp and at different temperatures
(25–60 �C) are also included in Table 1. Analysis of the col-
lected data listed in this table indicates the following:

(a)Tryp has good inhibitory property in corrosion of LAS in
0.6 M sulfamic acid solution. The presence of different con-

centrations of Tryp reduces the corrosion current density
(Icorr) values and this suppression in Icorr increases as the
inhibitor concentration increases, indicating that Tryp

inhibits the corrosion of LAS in sulfamic acid solution,
through adsorption on steel surface.

(b)The value of Icorr was directly proportional to temperature
as a result of partial de-sorption of inhibitor species from
the metal surface.

(c) The values of the anodic and cathodic Tafel slopes were
almost unchanged, indicating that the presence of Tryp in
sulfamic acid solution has no effect on the mechanism of

the dissolution process of the metal and the adsorbed mol-



Figure 1 Intermodulation spectrum for LAS in 0.6 M sulfamic at 55 �C (a) in absence and (b) in presence of 0.004 M Tryp.
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ecules screen the covered part of the electrode and therefore

protects it from the action of the corrosion medium (Abd
El-Maksoud and Fouda, 2005).

(d)The values of causality factors (CF2 and CF3) obtained
under different experimental conditions were approximately
equal to the theoretical values 2 and 3 indicating that the

measured data are reliable (Bosch et al., 2001).

(e) The values of inhibition efficiency (IE%) show that the cor-
rosion process depends on the two factors, the inhibitor

concentration and the solution temperature. The IE%
increases by increasing of concentration of Tryp but
decreases with the increase of solution temperature.

In order to evaluate the results of EFM technique as an
effective corrosion monitoring technique, weight loss and

EIS measurements were performed.

3.1.2. Weight loss studies
The weight losses of LAS in static 0.6 M sulfamic acid solu-
tions devoid of and containing 0.04 M of Tryp at different
temperatures were determined for 24 h. The weight losses

(mg cm�2 min�1) were listed in Table 2.
The weight loss and therefore the rate of corrosion were en-

hanced with increasing the solution temperature but decreases

with the increase of inhibitor concentration.
The inhibition efficiency (IE%) of Tryp was calculated un-

der different experimental conditions by using the following

equation:

IE% ¼ 1� CR

CR0

� �� �
� 100 ð2Þ

where CR0 and CR are the corrosion rates obtained from

weight loss measurements in the absence and presence of inhib-
itor, respectively. The calculated values of inhibition efficiency
(IE%) were also listed in Table 2.

The results reveal that the inhibition efficiency (IE%) of
Tryp increases with increasing their concentration as a result
of increasing the surface coverage by inhibitor species. How-

ever, at a given inhibitor concentration, the inhibition effi-
ciency of Tryp decreases with rising the temperature. This
behavior is due to the decrease in the strength of adsorption
process by increasing temperature, suggesting that physical



Table 1 Electrochemical kinetic parameters obtained from EFM technique for LAS in 0.6 M sulfamic acid with various

concentrations of Tryp at different temperatures.

Temp (�C) Tryp conc (M) ba (mV dec�1) bc (mV dec�1) CF2 CF3 Icorr (lA cm�2) IE% h

25 0.00 90.9 195.5 1.825 2.889 652.5 0.00 0.000

0.005 88.3 192.7 1.973 3.140 380.1 41.75 0.417

0.01 84.6 191.2 1.735 2.856 280.4 57.03 0.570

0.02 93.3 199.4 1.953 2.875 140.0 78.54 0.785

0.04 75.7 190.7 1.851 2.851 73.12 88.79 0.888

40 0.00 73.4 122.5 1.958 2.840 902.7 0.00 0.000

0.005 72.5 118.5 2.156 3.281 589.6 34.68 0.347

0.01 79.8 125.4 1.846 2.856 419.2 53.56 0.536

0.02 80.6 123.5 2.264 3.211 261.4 71.04 0.710

0.04 78.9 118.4 1.895 2.886 145.3 83.90 0.839

50 0.00 78.3 132.6 2.125 3.074 1273 0.00 0.000

0.005 85.5 148.3 1.898 2.812 931.5 26.83 0.268

0.01 81.6 136.2 1.962 2.820 675.1 46.97 0.470

0.02 82.7 154.2 2.211 3.259 452.5 64.45 0.645

0.04 80.6 126.3 2.021 3.127 265.3 79.16 0.792

60 0.00 96.3 121.1 1.984 2.790 2171 0.00 0.000

0.005 91.5 115.3 1.894 3.101 1705 21.46 0.215

0.01 86.2 110.2 2.354 2.910 1248 42.51 0.425

0.02 98.4 125.5 2.089 3.128 904.8 58.32 0.583

0.04 111.5 132.2 1.991 2.901 621.2 71.39 0.714

Table 2 Weight loss results for LAS in 0.6 M sulfamic acid at different temperatures.

Temp (�C) Tryp conc. (M) Weight loss (mg) CR (mg cm�2 min�1) IE%

25 0.00 62 0.0108 0.00

0.04 5 0.0009 91.94

40 0.00 76 0.0132 0.00

0.04 15 0.0026 80.26

50 0.00 109 0.0189 0.00

0.04 24 0.0042 77.98

60 0.00 206 0.0358 0.00

0.04 67 0.0116 67.48
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adsorption may be the type of adsorption of the inhibitor on
the sample surfaces (Abd El Rehim et al., 2002).

3.1.3. Electrochemical Impedance studies
Impedance diagrams of LAS in stagnant 0.6 M sulfamic acid
solution free, and containing different concentrations of Tryp
at 50 �C (as an example), are shown in Fig. 2a and b in the

Nyquist and Bode representation, respectively.
All the plots have the same shape where a single depressed

capacitive semicircle was obtained. This frequency dispersion

can be attributed to inhomogeneities and roughness of the
electrode surface (Paskossy, 1994; Growcock and Jasinski,
1989).

The electrochemical response to the impedance measure-
ments was best simulated with the equivalent circuits as shown
in Fig. 3. According to Fig. 3, the polarization resistance (Rp),

which corresponds to the diameter of Nyquist plot, includes
charge transfer resistance (Rct), diffuse layer resistance (Rd),
film resistance (Rf) and all accumulated species at metal/solu-
tion interface (Ra). Therefore, in the present study, the differ-

ence in real impedance at lower and higher frequencies is
considered as the polarization resistance (Rp = Rct + Rd +
Rf + Ra) (Lorenz and Mansfeld, 1986; Solmaz et al., 2008;
Sam et al., 2010).

Table 3 shows the impedance parameters, the polarization
resistance (Rp) and the double layer capacitance (Cdl). Inspec-

tions of these data indicate the following:

(a)The polarization resistance (Rp) increased, while the double
layer capacitance (Cdl) decreased with the increase of inhib-
itor concentration. This may be the result of decreasing film

capacitance due to increase in the surface coverage by the
inhibitor molecules.

(b)The values of Rp decreased, while the Cdl values increased

with increase in the solution temperature.

The above results can be explained on the basis that the

electrostatic adsorption of inhibitor species at the metal
surface leads to the formation of a physical protective film that
retards the charge transfer process and therefore inhibits the

corrosion reactions, leading to the increase of Rp value. More-
over, the adsorbed inhibitor species decreases the electrical



Figure 2 Nyquist (a) and Bode (b) plots for LAS in 0.6 M sulfamic without and with various concentrations of Tryp at 45 �C.

Figure 3 Equivalent electrical circuit diagram for EIS results of

LAS in inhibited solutions, Rct, charge transfer resistance; Cdl,

double layer capacitance; Rs, solution resistance; Rd, diffuse layer

resistance; Cf, film capacitance; Rf, film resistance.
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capacity of the electrical double layer at the electrode/solution

interface and, therefore, decreases the values of Cdl (Mansfield,
1987; McCafferty and Hackerman, 1972).

Since the electrochemical theory assumes that the reciprocal

of polarization resistance (1/Rp) is directly proportional to the
corrosion rate, the inhibition efficiency (IE%) was calculated
from Rp values using the following equation:

IE% ¼ 1�
R0

p

Rp

 !" #
� 100 ð3Þ
where R0
p and Rp are the polarization resistance values in the

absence and presence of inhibitor, respectively.
The calculated values of the inhibition efficiency (IE%) for

different concentrations of Tryp at different temperatures are
also presented in Table 3. The values of IE% increase with

the increase of the inhibitor concentration, but decrease with
the increase of solution temperature.

The produced results from weight loss and EIS measure-

ments were comparable with those obtained from the EFM
method.

3.2. Apparent activation energy

The temperature dependence of low alloy steel dissolution in
sulfamic acid solution and in the presence of Tryp was em-

ployed using the following Arrhenius equation:

logðCorrosion RateÞ ¼ �Ea

2:303RT
þ A ð4Þ

where Ea is the apparent activation energy, R is the universal
gas constant, T is the absolute temperature, and A is the

Arrhenius pre-exponential factor.
A plot of logarithm of the corrosion rate of LAS obtained

from EFM and EIS techniques versus 1/T gives straight lines;
and its slope is the �Ea/2.303R (curves are not attached).



Table 3 Electrochemical kinetic parameters obtained from EIS technique for LAS in 0.6 M sulfamic acid with various concentrations

of Tryp at different temperatures.

Temp (�C) Tryp conc. (M) Cdl (lF cm�2) Rp (O cm2) IE% h

25 0.00 453.1 40.68 0.00 0.000

0.005 335.2 67.38 39.63 0.396

0.01 312.2 93.21 56.36 0.564

0.02 223.4 199.3 79.59 0.796

0.04 70.8 389.5 89.56 0.896

40 0.00 877.5 23.7 0.00 0.000

0.005 684.7 35.16 32.59 0.326

0.01 542.6 52.55 54.90 0.549

0.02 306.4 80.77 70.66 0.707

0.04 187.6 139.8 83.05 0.830

50 0.00 964.3 17.69 0.00 0.000

0.005 715.4 24.7 28.38 0.284

0.01 625.3 34.57 48.83 0.488

0.02 275.6 50.32 64.84 0.648

0.04 238.6 78.41 77.44 0.774

60 0.00 1686.5 11.29 0.00 0.000

0.005 1263.2 14.38 21.49 0.215

0.01 982.8 18.82 40.01 0.400

0.02 738.9 26.08 56.71 0.567

0.04 436.8 41.06 72.50 0.725
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The literature reported that the higher activation energy va-

lue of corrosion process in the presence of inhibitor rather than
the absence of inhibitor is attributed to its physical adsorption,
while it is found to be opposite in the case with chemical

adsorption (Popova et al., 2003; Mora-Mendoza and Tur-
goose, 2001; Jovancicevic et al., 1999; Hirozawa, 1995).

The calculated values of Ea extracted from EFM and EIS
techniques, are given in Table 4. The analysis of Ea values

shows that an increase in corrosion activation energy in the
presence of Tryp compared to its absence with a decrease in
inhibition efficiency with the rise in temperature indicates that

the type of adsorption of Tryp on the steel surface in sulfamic
acid solutions belongs to physical adsorption.

3.3. Adsorption Isotherm

The experimental data for the tested inhibitor have been ap-
plied to different adsorption isotherm equations. The best-fit-

ted straight line was obtained for the plot of surface
coverage (h = IE%/100) versus logarithm of inhibitor concen-
tration (Cinh). This assumes that the adsorption of Tryp at the

steel surface, in sulfamic acid solutions, was found to follow
the Temkin adsorption isotherm according to the following
equaiton (Oguzie et al., 2004; Duong, 1998):
Table 4 Activation energies of Tryp using the obtained data

from the two techniques.

Tryp conc. (M) Ea (kJ mol�1)

EFM EIS

0.00 27.21 29.40

0.005 34.40 35.51

0.01 34.22 36.68

0.02 43.02 47.04

0.04 53.64 52.33
Temkin isotherm : h ¼ 1

2a
lnKads þ

1

2a
lnCinh ð5Þ

where Kads is the equilibrium constant of the adsorption pro-
cess, Cinh is the bulk concentration of inhibitor and h is the de-

gree of surface coverage.
Fig. 4 is an example of Temkin adsorption isotherm for var-

ious concentrations of Tryp at different temperatures; using

the data obtained from EFM measurements.
The values of equilibrium constant (Kads) are listed in

Table 5. These values were calculated from the intercepts

and slopes of the straight lines of Temkin isotherm curves.
Inspection of this table reveals that the values of Kads were rel-
atively small confirming the suggestion that Tryp is physically
adsorbed on the metal surface (Keera and Deyab, 2005). Addi-

tionally, values of Kads decreased with increase in the temper-
ature. This result confirmed the suggestion that the strength
of the adsorption decreased with temperature and the inhibitor

species are easily removable by the solvent molecules from the
steel surface (Keera and Deyab, 2005; Abd El Rehim et al.,
2002; El Azhar et al., 2002).

3.4. Surface examinations

The formation of a protective surface film of inhibitor was fur-

ther confirmed by optical microscopy observations of the elec-
trode surface.

Fig. 5a–c shows an array of optical microscopy images for

low alloy steel samples before and after immersion for 24 h in
stagnant 0.6 M sulfamic acid solution devoid of and contain-
ing 0.04 M Tryp at 25 �C, respectively.

The morphology of specimen surface in Fig. 5b reveals that
in the absence of Tryp, the surface is highly corroded with
areas of localized corrosion. However, in presence of the inhib-

itor (Fig. 5c), the rate of corrosion is suppressed, as can be seen
from the decrease of corroded areas. The electrode surface is
almost free from corrosion due to the formation of an ad-
sorbed protective film of the inhibitor at the electrode surface.



Figure 4 Temkin isotherm plots for LAS in 0.6 M sulfamic in presence of various concentrations of Tryp at different temperatures (data

obtained from EFM technique).

Table 5 The calculated equilibrium constant of adsorption

for Tryp.

Technique Equilibrium constant of adsorption, Kads

25 �C 40 �C 50 �C 60 �C

EIS 1004.32 863.83 728.54 495.60

EFM 1107.35 909.49 611.53 537.34

Figure 5 Optical microscopy images for LAS (a) before immersion, (b

immersion for 24 h in 0.6 M sulfamic solution containing 0.04 M Tryp
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3.5. Mechanism of inhibition

All the obtained results support that Tryp actually inhibits the

corrosion of LAS in sulfamic acid solutions, to an appreciable
extent. The corrosion inhibition is due to its physical adsorp-
tion and formation of protective film of the adsorbate on the
steel surface.

It is known that the ionization state of an amino acid in
aqueous solution depends on the environment pH. In aqueous
acid solution, the amino acids exist either as neutral molecules

or in the form of cations (protonated) (Amin et al., 2009;
Bockris and Yang, 1991; Abdallah and Megahed, 1995).
) after immersion for 24 h in 0.6 M sulfamic acid at 25 �C (c) after

at 25 �C.
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It has been reported previously that, in aqueous acid solu-

tions, the surface of steel samples is positively charged (Lag-
renée et al., 2002; Solmaz et al., 2008; Wahdan et al., 2002).
Therefore, the amino acid may be adsorbed on the positively
charged surface in the form of neutral molecules, involving

the displacement of water molecules from the metal surface
and sharing electrons between nitrogen atoms and the metal
surface (Bentiss et al., 1999). Furthermore, adsorption can oc-

cur via adsorbed sulfamate anions at the positively charged
metal surface. These anions form a negatively charged double
layer and consequently, the adsorption capability of proton-

ated amino acids increases (Wahdan et al., 2002; Larabi
et al., 2004). Therefore, the inhibition efficiency of Tryp may
be ascribed to the presence of a phenylic ring, which provides

some of its electronic density to the inhibitor structure (Oliv-
ares et al., 2006).

4. Conclusions
(a) Tryptophan has shown good inhibiting properties for
LAS in 0.6 M sulfamic acid solutions.

(b) The inhibition efficiency was directly proportional to

inhibitor concentration, while it was inversely propor-
tional to temperature.

(c) Adsorption of the inhibitor molecule, onto the steel sur-

face followed the Temkin adsorption isotherm.
(d) All of the data obtained from the three techniques were in

close agreement and their results followed almost the same
trends. Therefore, the EFM technique is apparently a

promising technique with which to measure corrosion
behaviour under the studied conditions.
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