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Abstract--A family of iterative methods for sim-ltaneously approximating simple zeros of p-n,dytic 
functions (inside a simple smooth dosed contour in the complex plane) is presented. The order of 
c(mvergence of the considered methods is m + 2 (m = 1,2 . . . .  ), where m is the order of the highest 
derivative of Analytic function ,,ppearing in the iterative formula. A special attentlml is paid to 
the totsl-atep and slngle-step methods with Newton's and Halley's correcti(ms because of their high 
computational efficiency. Numerical examples are also included. 

1. I N T R O D U C T I O N  

In the recent papers [1] and [2] the two classes of iterative methods for the simultaneous determi- 
nation of simple zeros of analytic functions have been proposed. These methods can be regarded 
as generalizations of the methods for polynomial zeros presented in [3] and [4, Section 5.5]. Re- 
cently, Sakurai, Torii and Sugiura have derived in [5] a class of algorithms for simultaneously 
approximating simple complex zeros of a polynomial using the Padd approximation. In this 
paper we will show that  these algorithms can be adapted for the determination of the zeros of 
analytic functions. To construct a family of zero-finding methods with arbitrary high order of 
convergence we use a quite different and, at the same time, much simpler procedure based a 
specific fixed-point relations (Section 2). The order of convergence of the presented methods is 
m + 2  (m = 1, 2 , . . .  ), where m is the order of the highest derivative of analytic function appearing 
in the iterative formula. 

The price to be paid in order to attain very high convergence consists of the requirement for 
great number of numerical operations. Practically, the iterative methods from the considered 
class with the order of convergence greater than four need too much computational effort. For 
this reason, in Section 3 we concentrate our attention to the fourth order method obtained for 
m = 2. We also construct several modified methods in parallel and serial fashion with the 
R-order of convergence between 4 and 7. The acceleration of convergence is attained by only a 
few additional operations in reference to the basic fourth order method, which points to the great 
computational efficiency of the modified methods. 

2. FAMILY OF I T E R A T I V E  M E T H O D S  

Let z ~-, @(z) be an analytic function inside and on the simple smooth closed contour r ,  without 
zeros on r and with a known number n of simple zeros inside r .  Then following Srnirnov [6] 
will be of the form 

n 

¢(z) = @(z) I I ( z  - ~j) (i) 
j=l 

inside I', where ~i,... ,~n are the zeros of ¢ (inside F) and @ is an analytic function such that 
• (z) # 0 for z E int F. The number of zeros n of ¢ inside F is determined by the argument 
principle [7] 

1 r ~'(w) 1 
n = ~ ~ d w  2~ri Jr ,x,(,,,) = ~ [arg@(W)]r. (2) 

CN4~ 22:10-F 
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Let ( be an arbitrary point inside r such that @(0 ¢ 0. 
expressed as 

q/(z) -- exp(Y(z)) 

inside r, where Y is also an analytic function inside r given by 

The analytic function • can be 

(3) 

Y ( z ) =  ~ w--- (4) 

(see [1]). 
Let Amf denote the mta derivative of a function f, that is 

d ~ f  with A0f-= f(z). Amf = d z  m 

o 

It is understood that  Ar.f(zi) is the r th derivative of a considered function f(z) at zi. 
By virtue of the factorization (1) we find 

n 
1 1 

z - ~i -- @(z) exp(Y(z)) H ( z  - ~j) - Gi(z). (5) 

From the obvious identity 

(m= 1 , 2 , . . . )  

and (5) it follows 

Am-I(G'(z)) (m--1,2,...). (6) 
~, = z + m ~ m ( G , ( O )  

Applying the differentiation operators to the function Gi(z) (given by (5)), we obtain from (6) 
the whole set of fixed-point relations depending on m. For illustration, let us consider the eases 
m - 1 and m - 2. We will use the notation 

" eO)(z)  

j = ~ l  

(k -" I, 2). 

Using the logarithmic derivative of Gi(z) we get from (5) 

d G~(z) 
los Gi(z) = G--~ 

" ~"(z) 
= Y ' 0 )  + ~ ( ~  - ~1-~ 'I '(0 " 

j f f i l  

(7) 

Then relation (6) for m - 1 yields 

1 ( i  - 1 , . . .  n).  (8) 
~' = ~ - " ~ 0 )  - r ' 0 )  - q~,~O) 

Formula (8) provides a construction of iterative methods for finding the zeros of analytic functions, 
as presented in [1]. 

Prom (6) it follows 

lz)[q2, z)- 
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Using (7) and (9) we obtain from (6) for m = 2 

2G}(z) 
~, = z + G f ( z )  

= z - 2[ql,i(z) + Y ' ( z )  - ¢1(z)] (i = 1 , . . . ,  n). (10) 

¢2(z)  - ¢~(z)  - Y " ( z )  + q2,,(z) - [ql,i(z) + Y ' ( z )  - ~rl(z)] ~ 

Assume that z l , . . . ,  zn are reasonably good approximations to the zeros ~1, . . . ,~ ,  of • and 
consider the function 

1 
g, (z )  = ~---~ exp(Y(z)) 1-I(z - zj), (11) 

j= l  
j# i  

which is obtained from (5) substituting the zeros ~j by their approximations zj (j  ~ i). Let 
z = zi be sufficiently close to the zero ~i. Then, obviously, gi(zi)  is an approximation to 
Gi(z i )  (= (zi - ~ ) -1)  so that we can expect that the complex number zi given by 

mr ' ' ' ' - '  (12) 
- "  + L a.(g,(,)) , : , ,  

is an approximation to the zero ~i (according to (6)). This assumption will be proved in the 
sequel. In passing, we note that for m = 1 we obtain from (11) and (12) the iterative formula 

1 
~.i = z ,  - . ( i  = 1 , . . . ,  n )  

~ ' ( z i )  Y ' ( z i )  - E ( z i  - z j )  -1 
~ ( z i )  

of the third order considered in [1]. 
Let us introduce the abbrevations 

3 1 

• . = m a x  le, I. e , = ~ i - z i ,  leM,il--maxlcil ( i =  1, . ,n),  I~1 a<,<. j~i _ _ 

THEOREM 1. A s s u m e  that  approximat ions  zl  , . . . , z ,  are suff iciently close to the zeros ~1, . . . ,~ ,  
o f  ~ .  Then  for the approximat ions  zi (i = 1 , . . . ,  n)  given by (12) we h a w  

I "~' - '~,1 = O ( l cM , i l  I~,l"+x). 

The proof of Theorem 1 follows according to Lemma 3 and Theorem 1 from [5] and will be 
omitted. 

Suppose that all the errors leil are of the same order of magnitude, that is 

le, I = O(lel) ( i = 1  . . . .  ,n). 

Then Theorem 1 implies that the order of convergence of the iterative method (12) is m + 2 
( , ,  = 1 , 2 , . . . ) .  

3. ON SOME EFFICIENT ALGORITHMS 

As mentioned in the Introduction, the iterative methods of the form (12) have the high compu- 
tational cost for m > 2. For this reason, in this section we will consider some efficient algorithms 
which follow from the fixed-point relation (10) taking m = 2. 

Let z E C and let 

i--1 n 

E ' , '  ( r ' s )  = E ( z l - r j ) - '  + E ( z l - s J )  - k  ( k =  1,2), 
j = l  j=i+l 
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where r - ( r l , . . . ,  r , )  E C" and s = (sx, . . . ,  s , )  E C" are some vectors. By means of ¢1(z) and 
a2(z), we define 

1 
N ( z )  - a l (z )  (Newton's correction) 

and 
H(,) = [~1(,) ~:(z) ] -1 

20"1 (Z) J (Halley's correction). 

We recall that the correction terms N ( z )  and H(z)  appear in the iterative formulas 

- z - N ( z )  

and 
= z - It(z), 

with the order of convergence two and three, respectively. 
Let z(t) = (z~k),..., z (t)) (k = 1, 2, 3) be the vectors of approximations whose components are 

given by 
z} 1) = zi (the current appregimations), 

z~ ~) = zi - N(zO (the Newton approximations), 

z~ 3) = zi - H( z  0 (the Halley approximations). 

We emphasize that the superscript index indicates the type of approximation and it should be 
strongly distinguished from the iteration index. The vector of new appraximations will be denoted 
by ~. = (~1,. . . ,  ~,). 

Suppose that we have found sufficiently good approximations xx, . . . ,  z,  of the zeros f l , . . . ,  f ,  
of@. Setting z = zi and ~i := ~i in (10), and taking certain approximations of~j in the sums ql,i 
and q2,i on the right-hand side of (10), we can construct total-step (shorter TS) and single-step 
(SS) methods for the simultaneous determination of the zeros of an analytic function. 

Let (TS)1,  (TS)~ and (TS)s denote the total-step methods obtained by the substitution of the 
zeros ~j (j ~ i) in (10) by z~ 1), z~ 2) and z~ a), respectively. The notations (SS)I ,  (SS)2 and (SS)s 
have the same meaning in the case of the single-step methods where we take ~j := ~j (j < i) and 
~i := z~ k) (J > i) (k E {1,2,3}). Therefore, the subscript indices k = 2 and k = 3 point to the 
use of Newton's and Halley's correction, respectively. The above notation makes it pc~ible for 
us to represent the new methods by the unique formulas as follows: 

Total-step methods (TS)k  : 

2 [~1,, (-.c~),-.c~))+ Y'(,,) - ~1(~,)] 
~.i = zi -- 

¢ , ( z i ) -  o '~(z i ) -  Y"Czd)+ E2,i (z(k), z (k)) - [EI,i  (z(k)," (k)) + Y ' ( z l ) -  ~lCzi)J "~' 

( i =  1 , . . . , ,  ; k e {1,2,3}). (13) 

Si,gle-step methods ( SS)k  : 

Z/  " - - Z  i - -  

~-.~(,.,) - ~-~(,.,) - Y,,(~,)  + E~, ,  (~.,,c'~)) - [~1, ,  ( i , ,c ' , ) )  + Y , (z , )  - o.1 Cz,)] ~ 

(i = 1 , . . . ,n ;  k e {1,2,31). (14) 

The order of convergence of the total--step methods (13) is given in the following theorem: 

THEOREM 2. Auume that Zl, . . . , zn are reasonably good approx/mat/o~ to the zexos E l , . . . ,  ~n. 
/t' lei] = O([cD for each i = 1 , . . . ,  n, then the iterat/ve method (T$)h,  d ~  by (13), has the 
order of conver~nce equa/to h + 2, k E {1, 2, 3}. 
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The proof of Theorem 2 is very similar to the proof of Theorem 1 presented in [2] and will be 
omitted. 

The convergence analysis of single-step methods is most frequently based on the notion of the 
R-order of convergence (see the book [8]). For the R-order of the single-step method (SS)k with 
the limit point ~ - (41, . . . ,  ~a) (the vector of exact zeros) we will use the notation OR ((SS)k,~). 
Using the procedure applied in the papers [9] and [10] (see, also [11,12]) and the result from [13] 
it is easy to prove the following assertion: 

THEOREM 3. The R-order of convergence of the single-step method (SS)k, defined by (14), is 
~ven by 

OR((SS)k,¢) > 3 + ,-.(k), 

where ra(k) is the unique positive root of the equation 

r"  - rk"-1 - 3k"-I = 0 (k e {1,2,3}). 

The values of the lower bounds of the R-order of convergence of the considered single-step 
methods are shown in Table 1. 

Table 1. The  lower hounds  of the R-order  of convergence. 

m e t h o d  n 3 4 5 6 7 8 9 10 15 

(SS)1 4:672 4.453 4.341 4.274 4.229 4.196 4.172 4.153 4.098 

(SS)2 5.862 5.585 5.443 5.357 5.299 5.257 5.225 5.200 5.130 

(SS)3 6.974 6.662 6.502 6.404 6.338 6.291 6.255 6.227 6.147 

The improved iterative methods (SS)2, (SS)a, (TS)2 and (TS)a with Newton's and Halley's 
corrections require only few additional operations compared to the basic methods (TS)I and 
(SS)I because these corrections are calculated using already found values ~1 (zj) and er2(zj). For 
this reason and the fact that the increase of the order of convergence is considerable we conclude 
that the computational efficiency of the methods mentioned above is remarkably high. 

4. NUMERICAL RESULTS 

The iterative formulas (13) and (14) requir e the calculation of the derivatives Y'(z) and Y"(z) 
at the points zl (i = 1 , . . . ,  n). From (4) it follows that 

1 
Y'(z) = dw, (15) 

and then 
1 ~ log[(w - ¢~)-n O(w)] 

Y"(z) = -~, ~,, -~-~-~)~ dw. (16) 

In (15) and (16) it can be taken that ( = 0. Applying an integration by parts we find that, 
from (15), 

1 [_ ct(w) 
Y'(z) = ~ Jv ~(w) w -  z (17) 

(see [6]). Then the second derivative is given by 

1 dw 
Y"(z) = (w (18) 

As it was advised in [1], the number of zeros n, given by (2), and Y'(z) and Y't(z), given 
by (17) and (18), should be computed by applying a suitable sufficiently accurate quadrature 
rule for contours of the form 

2~ri f(w) dw ~- akmf(Wkm), 
k=l 
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where ahm are the wei§h@ and whm the corresponding nodes of the quadrature rule. As recom- 
mended in [1], it is convenient to apply the trapezoidal quadrature rule along the c i r c ~ c e  
r = {w : [w[ -- R} with nodes 

Wkrn = R exp(iOhm), O~m "- (2k - I) a/m (k = I,... ,m) 

(see, also, the book [14]). We observe that the same values g(wh,,,) and O'(wkm) may be used 
in the quadrature formulas for the computation of n, Y'(zi) and Y'(zl) because of the similar 
structure of the formulas (2), (17) and (18). 

Furthermore, to avoid poor results of the numerical integration it is desirable to eliminate the 
singularities of the integrands. Formulas (17) and (18) are slightly simpler compared to (15) 
and (16) but the singularities in (17) and (18) (except z = zi) are just the sought zeros of 4'; 
on the other side, such a problem does not appear in dealing with (15) and (16). Finally, the 
result of the numerical integration applied to the contour integral (2) could be verified using some 
computational procedure for the argument principle 

1 (19) n = n(~(r ) ,  o) = ~ [arg~(w)]~ 

(see, for instance, the book [7] and [15]). More details about the mentioned problems may be 
found in [14], [16] and, particularly, in [1, Sections 3 and 4] and the references cited therein. 

The influence of the error of numerical integration on the accuracy of the produced approxims- 
tious to the zeros of • was discussed extensively in [1]. It was remarked there that this influence is 
very sinAI! for increasing values of the number of iterative steps. Numerical results from [1] have 
shown that even very rough approximations to Y ' ( z i )  and Y " ( z i )  can provide significantly good 
approximations to the wanted zeros of ,I~. The same conclusion may be drawn for the iterative 
methods presented in the previous section. For illustration, let us consider the basic fourth order 
method (TS)I. With the abbrevations 

~(~,) 
h, = ~,(~,). s~., = ~ - ~ ( , , - ~ j ) - ~  ( k =  1,2), 

j f f i |  
j # i  

~"(z , )  
R~ = Sl,, + Y ' ( z , ) ,  A, = 2~'(z,-------) + R~, 

B, = S2,, - Y " ( z d  - P~ 
2 

formula (13) for k = 1 may he rewritten in the form 

h, - R~h,  2 (20 )  
~ = zi - 1 - A ih i  - Bih~" 

In the sequel, for two complex numbers z and w we will write z = O M ( w )  if Izl = o(Iwl)  (the 
same order of their modulii). 

Let us assume that Ih, I is sufficiently small (which is the case if zi is a considerably good 
approximation to the zero ~i). Then, taking advantage of Taylor's expanRion 

1 
1 - A , h , -  B,h~ = 1 -I- Aihi  .4- (A~ + Bi)h~ 4- (A~ 4- 2A, Bi)h~ -I-. . . ,  

we obtain from (20) 

~, = z ,  - h, + h~(P~ - A,) + h~(A,R, - A~ - B,) + OA,(hD, 

that k, 

~, = - hi - h~ g'i,(, zi) + 1 

lr®"(")]= s=,}+ 
- 2 L ~ J  + Y"(z,) - OM(hD. 

(21) 
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Table 2. The improved approxh~t~ons obtained by the total-step methods (13) and 
t h e  single-step methods (14). The underlined digit indicates the first incorrect digit, 
the symbol * denotes that all digits are correct. 

85 

i 

1 

(rS h 2 
3 

1 

(SS h 2 
3 

1 
(TS)2 2 

3 

1 

(SS)2 2 
3 

1 

(TS)3 2 
3 

1 
(SS)3 2 

3 

--1.229709152729003615292560624452258 
-0.821931317332681611134196811240404 

0.56406436774__3854859159865289348227 

- 1.2297088..78965880515906631548819407 
--0.8219322065732_80813170468816427490 

0.5640643677390563179268591__95058748 

-1.229708718116.704389262850741788402 
--0.82193220657_0888236976792723780922 

0.56406436773905631_8300745354670170 

--I .229708TI 8U _4884201880036356908862 
-0.82193220657381 I152412_2789545026~ 

0.5640643677390563179268592060_73319 

--1.229708718114768972454194610221481 
--0.8219322065737_53211172970980131917 

0.56406436773905631797_4770549691611 

--1.22970871811471_4476995170273322641 
--0.8219322065738111524111003_13833764 

0.5640643677390563179268592060678..01 

-- 1 .229708718114713729321759_293128968  

- -0 .821932206573811152411_099805830177  

0 . 5 6 4 0 6 4 3 6 7 7 3 9 0 5 6 3 1 7 9 2 6 8 5 9 2 0 6 0 6 7 7 9 9  

--1.2297087181147137293217582165085_64 
--0.821932206573811152411104312884845 * 

0.564064367739056317926859206067799 * 

--1.229708718114713729321758216,508531 * 
--0.821932206573811152411104312884845 * 

0.564064367739056317926859206067799 * 

--1.229708718114713729321758216508531 * 
--0.821932206573811152411104312884845 * 

0.5640643677390563179268,59206067799 * 

--1.229708718114713729321758216508531 * 
--0.821932206573811152411104312884845 * 

0.564064367739056317926859206067799 * 

-1.229708718114713729321758216508531 * 
-0.821932206573811152411104312884845 * 

0.564064367739056317926859206067799 * 

From the last relation we note that  the quantities Y ' ( z i )  and Y " ( z i )  are multiplied by h i .  There- 
fore, the influence of the quadrature errors in the iterative formula (13) (for k = 1) is neutralized 
due to the very small (in magnitude) factor h i.  The same is valid for the remaining methods 
given by (13) and (14). 

By the way, we observe that  the main part 

¢"cz,) ¢(z') r ¢"(') ¢(')1 = - h i  - - . 1  2 V , ( z l ) 2  j 

in (21) is the well-known Chebyshev's method of the third order. 
To demonstrate the efficiency of the iterative methods presented in the previous section, we 

give numerical results for the zeros of the analytic function 

¢(z) = exp(z) - 2 cos(3z) - 2 (22) 

inside the circle S = {z : [z[ < 1.5}. The number of zeros o f (  in the circle S was computed by the 
argument principle. As mentioned in [15], to make formula (19) of any computational interest, 
the contour r : Izl = 1.5 of the circle S was first replaced by a polygon of vertices V1, V2, . . . ,  VM, 
belonging to r .  Then the variation of the argument was stepwise calculated from Irk to Vk+l 
(where k = 1 , . . . , M  and VM+I = V1) and it was found that  the number of zeros in S is n = 3. 

For the iterative improvement of the initial approximations z~ °) = -1.5,  z~ °) = -0 .5  and 

z (°) = 0.8 (found by a search algorithm including a proximity test for the detection of the 
presence of a zero) we have applied the total-step and single-step methods (13) and (14) (for 
k = 1,2,3) as well as the Newton method (for comparison purpose). Because of very fast 
convergence of these methods, quad precision arithmetic (about 34 significant decimal digits) 
was employed on the Micro VAX II computer. The improved approximations z} 'n) (i = 1, 2, 3) 
obtained by (13) and (14), where m is the iteration index, are shown in Table 2. We emphasize 
that  the implemented algorithms possess a great power, so that  they could be produced in the 
third iterative step to even more than 33 correct decimal digits, if a computer with arithmetic of 
higher precision were used. 
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For the sake of comparison, the Newton method 

Z~m-}-l) _. Z~m)(X)(gem) ) 
(I), (zC,n)) (m = 0 ,1 , . . . )  

was also applied for the determination of zeros of the analytic function • given by (22). The 
same initial approximations as in the case of the simultaneous methods (13) and (14) were used. 
The obtained numerical results are given in Table 3. 

Table 3. The improved approximations obtained by the Newton method. The un- 
derlined digit indicates the first incorrect digit. 

1 -1.277 
2 -1.234 
3 -1.229742 
4 -1.229708721 
5 --1.229708718114713742 
8 33 correct digits 

-O._785 
-o.8!9 
-0.8219_22 
-0.82193220636_ 
-0.8216322065738111523_2 
33 correct digits 

0.5_29 
0.5~41!3 
0.5640643~7.63 

0.564064367739056317926_55 
33 correct digits 

Let eCru) = maxl<_i<_s [z~ 'n) -~d[ be the maximal error corresponding the produced approxima- 
tions. These errors are displayed in Table 4 for all the applied methods. 

Table 4. The maximal errors of approximations. A ( - h )  means A × 10 -~*. 

e(~) 

e(~) 

e(a) 

Newton's method (TS)I (SS)I (TS)~ (SS)2 (TS)a 

4.77(-2) 1.79(-2) 1.23(-2) 2.8(-3) 2.05(-3) 3.01(-3) 

3.91(-3) 8.89(-7) 1.61(-7) 2.92(-12) 1.7(-13) 5.79(-14) 

3.31(-5) 4.51(-24) 3.25(-32) 1.(-34) 1.(-34) 1.(-34) 

(SS)3 

2.s~(-~) 

7.4s(-18) 

1.(-34) 
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