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Here, we investigated the ability of IFN-γ to modulate the functions of mouse neutrophils in vitro. Neutrophils
incubated in the presence of IFN-γ showed enhanced phagocytosis in response to zymosan, opsonized zymosan
or precipitated immune complexes of IgG and ovalbumin. The effect of IFN-γwas dose-dependent with an initial
response at 10 U/ml and a maximal response at 150 U/ml; 2 h of incubation were required to reach the optimal
response level. These stimuli can also induce IFN-γ-pretreated neutrophils to release reactive oxygen species
(ROS), such as superoxide anion, hydrogen peroxide and hypochlorous acid, as well as granule lysosomal
enzymes and the pro-inflammatory cytokines TNF-α and IL-6. We found that increased expression of FcγR,
dectin-1 and complement receptors (CRs) correlated with these effects in these cells. The enhancing effect of
IFN-γ on the respiratory burst was found to be associated with up-regulation of the gp91phox and p47phox

subunits of NADPH oxidase, as measured by their mRNA levels. The enhancing effect of IFN-γ on phagocytosis
and ROS release may not only be relevant for the efficient killing of invading microorganisms, but may also
produce oxidative stress on adjacent cells, resulting in a possible inflammatory role that could also be favored
by the liberation of the pro-inflammatory cytokines TNF-α and IL-6.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Neutrophils are the most abundant nucleated cells in the blood and
constitute the first line of defense protecting the host against microbial
pathogens. The antimicrobial function of phagocytes partially depends
on the generation of superoxide anion (O2

−) and other highly reactive
oxidants derived during the respiratory burst [1]. Formation of O2

− is
catalyzed by a membrane-associated enzyme system, NADPH oxidase,
that is dormant in resting cells and becomes activated during phagocy-
tosis or upon interaction of the cells with suitable soluble stimuli [2–4].

Production of O2
− in response to a stimulant is potentiated by prior

treatment of the phagocytes with activating or priming agents, such as
interferon-γ (IFN-γ) [3,5]; lipopolysaccharide (LPS); chemotactic mole-
cules, such as formylated peptides; and cytokines, such as granulocyte-
macrophage colony-stimulating factor [6]. IFN-γ has recently been
produced by recombinant DNA techniques, and its role as a lymphokine
participating in immunological responses is being investigated exten-
sively [7–10]. This recombinant IFN-γ provided a new opportunity to
characterize the immunomodulatory properties of IFN-γ, because it is
free from other lymphokines, including macrophage-activating factor
[11–13]. However, the effects of recombinant IFN-γ on neutrophil func-
tion are only recently becoming appreciated [14–18]. Cruz et al. [19]
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suggested that excessive release of IL-17 during repeatedmycobacterial
exposure leads to neutrophil recruitment and neutrophil-mediated
tissue damage in mice. This response appears to be attenuated by IFN-
gamma production during a normal antimycobacterial immune re-
sponse [20], indicating that neutrophil accumulation and the resulting
tissue damage may be caused by the failure of the immune system to
contain the infectious agents. Schurgers et al. [21] have highlighted
the role of IFN-γ in pathogenesis of human Rheumatoid Arthritis (RA)
and collagen-induced arthritis (CIA) in mice.

Previous work in human neutrophils showed that a few hours
of IFN-γ treatment induces an enhancement of respiratory burst capa-
bility that is dependent on mRNA and protein synthesis; furthermore,
IFN-γ-treated neutrophils exhibited no alterations in the amount of
cytochrome b558 or enhanced expression of receptors [22]. In contrast,
Steinbeck et al. [23] were unable to show an effect of recombinant bo-
vine IFN-γ on the respiratory burst of bovine neutrophils. Lieser et al.
[24] showed that IFN-γ up-regulates human neutrophil oxidative re-
sponses to N-formyl-methionyl-leucyl-phenylalanine (FMLP), but not
to phorbol myristate acetate (PMA).

Despite the large number of studies on the regulatory activity of IFN-
γ on neutrophil functions [25,26], some conflicting results have been re-
ported regarding phagocytosis and the production of oxygen reactive
species when using different stimuli [27–29].

In view of the physiological and pathophysiological importance of
the regulatory activity of recombinant IFN-γ on neutrophil functions
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and the diverse, sometimes conflicting results reported, we decided to
investigate the effects of this human recombinant cytokine on phagocy-
tosis, the production of reactive oxygen species and the release of lyso-
some enzymes mediated by different types of immune receptors in
mouse neutrophils.

2. Experimental procedure

2.1. Chemicals

Superoxide dismutase (SOD), ferricytrochrome C, Percoll, zymo-
san, horseradish peroxidase (HRP), bovine albumin serum (BSA),
sodium pyruvate, penicillin, streptomycin sulfate, RPMI-1640 tissue
culture medium, fluorescein isothiocyanate (FITC) and PKH26
Red Fluorescent Cell Linker were obtained from Sigma Chemical Co.
(St. Louis, MO, USA). Fetal bovine serum was acquired from Life
technologies (New York, NY, USA), sodium bicarbonate and ethanol
from Merck (Darmstadt, Germany) and the gelatin (microbiological
grade) was acquired from Difco Laboratories (Detroit, MN, USA).
Phosphate buffered saline (PBS) containing 0.9% NaCl and 0.007 M
phosphate buffer, pH 7.2 was used. All the other chemicals and solvents
used in thisworkwere of analytical grade and purchased from commer-
cial sources.

2.2. Animals

Male 6- to 8-week-old BALB/c mice were obtained from Ribeirão
Preto Medical School, University of São Paulo animal center and main-
tained under a 12 h light:dark cycle with food and water available ad
libitum. The mice were sacrificed by decapitation, and blood was
collected in heparin tubes. The animal protocol utilized was approved
by the ethics committee of the Faculty of Medicine of Ribeirão-USP
(Protocol No. 053/2009).

2.3. Preparation of mouse neutrophils

Neutrophil isolation was performed as described by Boxio et al. [30].
Mouse blood was collected in heparin tubes and added to HBSS-EDTA
(without calcium, with magnesium, phenol red and sodium bicarbon-
ate, pH 7.2, 15 mM EDTA, 1% bovine serum albumin (BSA)). After cen-
trifugation (400 g, 10 min, 4 °C), cells were resuspended in 1 ml
HBSS-EDTA. Cells were then layered onto a three-layer Percoll gradient
of 78%, 69% and 52% Percoll diluted in HBSS (100% Percoll = nine parts
Percoll and one part 10× HBSS) and centrifuged at 1500 g for 30 min at
room temperature. The density of each Percoll layerwas determined ac-
cording to the manufacturer's instructions (52%, δ = 1.083 g/ml; 69%,
δ = 1.090 g/ml; 78%, δ = 1.110 g/ml). Neutrophils were harvested
from the 69/78% interface and the upper part of the 78% layer into 1%
BSA-coated tubes after careful removal of cells from the upper phases.
After one wash with 2 ml HBSS-EDTA + 1% BSA, the remaining red
blood cells were eliminated by lysis with 0.83% (w/v) NH4Cl at pH 7.2
for 5 min. After a final wash with 2 ml HEPES buffer, the cells were
suspended in 1 ml of HBSS and used within 4 h.

2.4. Priming neutrophils

Mouse neutrophils were activated with 150 U/ml recombinant
human IFN-γ, produced in Escherichia coli (Sigma, St Louis MO, USA)
for 2 h prior to all experiments.

2.5. Phagocytosis assay

Immune complexes (ICs) were produced by staining goat red blood
cells with (GRBCs) PKH26 according to the manufacturer's instructions
and incubating them for 30 min at 37 °C with mouse anti-GRBC anti-
body. The antibody was produced and purified as previously described
by Mantovani [31] and incubated at 37 °C for 15 min with complement
(IC-C) to promote opsonization. Zymosan (Zy) was resuspended in car-
bonate buffer with 25 μg/ml FITC for 30 min at 37 °C and incubated
with complement (Opzy). Neutrophils (2 × 106 cells/ml) were
incubated at 37 °C for 45 min with 500 μl RPMI-1640 (Sigma St Louis
MO, USA) medium containing 10% fetal bovine serum and different
phagocytic stimuli, including an immune complex of IgG bound to red
blood cell-PKH26 (4 × 106), an immune complex of IgG bound to red
blood cell-PKH26 opsonized with complement, Zy-FITC (50 μg), or Zy-
FITC opsonized with complement (Opzy-50 μg). The neutrophils were
incubated with 150 U/ml IFN-γ for 2 h, and the cells were washed
with PBS after incubation. Red blood cells from the immune complex
bound to neutrophils were lysed by hypotonic shock as described by
Mantovani [31]. The fluorescence of internalized particles was mea-
sured byflow cytometry (FACSCanto, BD Biosciences) after fluorescence
quenching with trypan blue (2 μg/ml) of the Zy-FITC particles bound to
the surface of the neutrophils. The results were analyzed using FlowJo®
(Tree Star) software and represented as themeanfluorescence intensity
(MFI) per neutrophil.

2.6. Enzyme-linked immunosorbent assay (ELISA)

Cytokines in culture supernatants were measured by a sandwich
ELISA using DuoSet (R&D Systems, Minneapolis, MN, USA—TNF-α,
DY410 and IL-6, DY406); the procedure was carried out according to
the manufacturer's instructions. The tetramethylbenzidine (TMB) re-
agent set (BD Biosciences) was used as the horseradish peroxidase
(HRP) substrate, and absorbance was measured at 450 nm.

2.7. Liberation of granules assay

The β-glucuronidase assay was performed according to methods
described by Fishman et al. [32]. Neutrophils (2 × 106) were rested or
pre-treated with IFN-γ- (150 U/ml for 2 h) and suspended in RPMI-
1640 medium incubated for 1 h at 37 °C with 500 mM cytochalasin B.
The supernatant was collected after incubation and centrifuged at
730 g for 10 min at 4 °C. This supernatant was kept on ice for
subsequent enzymatic assays. The assays used were β-glucuronidase
and lactate dehydrogenase. For the β-glucuronidase assay, culture su-
pernatants were incubated with sodium acetate buffer (0.12 M;
pH 4.5) and 100 μl of phenolphthalein glucuronate (714 mM). This
mixture was incubated at 39 °C for 17 h, and glycine buffer (0.48 M;
pH 10.4) was subsequently added. This reaction produces a red colored
compound that was measured by a spectrophotometer at 540 nm. The
alkaline phosphatase assay was performed as described by Linhardt
et al. [33]; for this test, culture supernatants were incubated with
0.25 M Ampol solution (2-amino-2-methyl-1-propanol), 100 mM p-
nitrophenylphosphate and 1 M magnesium chloride, pH 10. This mix-
ture was incubated at 37 °C for 30 min with shaking. The reaction was
stopped by adding 0.8 N NaOH andwasmeasured by a spectrophotom-
eter at 410 nm.

2.8. Release of superoxide by neutrophils

Extracellular O2
− release by neutrophils was measured using the

superoxide dismutase (SOD)-inhibitable reduction of ferricytochrome
c assay as previously described by Johnston et al. [34]. Neutrophils,
either rested or pretreated with IFN-γ (150 U/ml at 2 h), were
suspended in Hanks' containing 1% gelatin to prevent the adhesion of
neutrophils to the tubes. A mixture of 800 mM ferricytochrome c and
Hanks 15 mM HEPES medium, with or without SOD (15 mg/ml), were
incubated with 2 × 106 cells/ml for 5 min at 37 °C. An immune com-
plex of IgG and OVA was prepared by incubating 1 mg/ml OVA for 1 h
at 37 °C with anti-OVA antibody, which was prepared and purified as
described by Lucisano and Mantovani [35]. Zy or Zy opsonized with
complement (Opzy) was prepared as described for the phagocytosis
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assay. Stimuli were added at a final concentration of 200 μg/ml. The sus-
pension was incubated for 60 min at 37 °C, and the reaction was
stopped by placing the tubes in an ice bath. The cells were immediately
centrifuged at 730 g for 10 min, and absorbance was measured by
a spectrophotometer at a wavelength of 550 nm (Hitachi Instruments,
Inc., Minato-Ku, Tokyo, Japan). Tubes containing neutrophils incubated
with ferricytochrome c in Hanks HEPES medium plus SOD served
as blanks. Duplicate or triplicate measurements were averaged
and converted to nanomoles of ferricytochrome c reduced using
ΔE550 nm = 2.1 × 104 M−1 cm−1 [36]. Superoxide release was evalu-
ated using rates of oxidant production during stimulation (expressed
in nmol/60 min per 2 × 106 cells).
2.9. Hydrogen peroxide determination

Production of H2O2 was determined by the oxidation of phenol red
by H2O2-mediated horseradish peroxidase type II (HRPO) as described
by Pick and Keisari [37]. Briefly, neutrophils (2 × 106 cells/ml; rested
or pre-treated with IFN-γ- (150 U/ml at 2 h)), were resuspended in
assay solution containing 0.56 mM of phenol red and 20 U/ml HRPO
in HBSS with phenol red and seeded in tissue culture plates at a final
volume of 100 μl per well. The neutrophils were stimulated with the
same stimuli used in the assay for release of superoxide. After a 2-h
incubation, the reaction was stopped by adding 10 μl of 1 N NaOH per
well, and absorbance was measured in a spectrophotometer at a wave-
length of 620 nm. Wells with NaOH were used as blanks. The results
were expressed as nmol H2O2/2 × 106 cells, according to the standard
curve of H2O2 (5–60 μM) established for each experiment.
2.10. Release of hypochlorous acid by neutrophils

The production of HOCl was determined by the oxidation of taurine
for HOCl. This reaction produces taurine chloramine (TauCl), which in
the presence of iodide oxidizes 3,3′,5,5′-tetramethylbenzidine (TMB)
to form a blue compound that is quantified by a spectrophotometer at
a wavelength of 630 nm [38]. Neutrophils (2 × 106 cell/ml) that were
pre-treated with IFN-γ were incubated with an immune complex IgG
and OVA, zymosan or zymosan opsonized with mouse serum and
5 mM taurine for 60 min at 37 °C. The final volume of the reaction
was 1 ml. The plate was transferred after the incubation to an ice
bath, and the reaction was terminated by addition of 2 mg/ml catalase.
The supernatant was collected and centrifuged at 730 g for 10 min at
4 °C. Accumulation of TauCl was measured in a 96-well microplate by
adding 200 μl of culture supernatant to 50 μl of 2 mM TMB [dissolved
in 10% DMF (dimethylformamide), 100 μM NaI and 400 mm acetic
acid]. The results were expressed as mM HOCl/2 × 106 cells according
to the standard curve TauCl (5–120 μM) established in each experi-
ment. This standard curvewas generated by the addition of known con-
centrations of HOCl to a solution of 5 mM taurine.
Table 1
Primers used in PCR reactions.

Target Forward primer Reverse primer

p47phox CGTACCCAGCCAGCACTATGT GCTGCCCGTCAAACCACTT
gp91phox TTAGTGGGAGCAGGGATTGG CCGGCATTGTTCCTTTCCT
β-actin AGGGAAATCGTGCGTGACA GAACCGCTCATTGCCGATA
2.11. Neutrophil receptor expression

The expression of FcγRII/CD32 and FcγRIII/CD16 receptors, CR3 and
dectin-1 was assessed by flow cytometry using the following monoclo-
nal antibodies: anti-CD32/CD16 conjugated with FITC, anti-CD11b con-
jugated with PE (both 2 μg/ml, BD Biosciences) and anti-dectin-1-rat
Alexa Fluor 488 (1:200 dilution, Molecular Probes, Invitrogen, Eugene
OR, USA). Staining was performed according to the manufacturer's in-
structions. Neutrophils (2 × 106 cells/ml) pre-treated with IFN-γ were
fixed with 2% paraformaldehyde for 20 min at room temperature.
Data acquisition was performed with a FACSCanto, and data were ana-
lyzed using FACSDiva software. The results were expressed as the
mean fluorescence intensity (MFI).
2.12. RNA isolation

RNAwas extracted frommouse neutrophils (2 × 106 cells/ml) using
Trizol-LS Reagent according to themanufacturer's protocol (Invitrogen,
Carlsbad, CA, USA). RNA concentrationwas assessedusing a BioPhotom-
eter (Eppendorf, Hamburg, Germany), with the acceptable 260/280 ab-
sorbance ratio set to 2.0. A ratio of 2.0 indicates that the RNA is pure for
all standard molecular biology applications. To ensure that samples
were not contaminated with DNA, samples were treated with DNAse
Amp Grade (1 U/μl – Invitrogen, Carlsbad CA – USA) according to the
manufacturer's protocol.
2.12.1. Analysis of mRNA expression by real time PCR
Total RNA (1.2 mg) from each individual sample was reverse tran-

scribed using the Superscript III Reverse Transcriptase kit (Invitrogen)
to generate first-strand cDNA, and cDNA samples were amplified by
real-time PCR with SYBR Green PCR Master Mix (AB Applied
Biosystems, Warrington, WA, UK). The specific primer sequences are
presented in Table 1. Real-time PCR amplification was performed
using an Applied Biosystems 7500 Sequence Detection system (Applied
Biosystems). The cycling conditions were 95 °C for 5 min followed by
40 cycles of amplification consisting of 95 °C for 12 s, 60 °C for 30 s,
and 72 °C for 30 s. The real-time PCR was performed in triplicate for
each sample. Relative expression levels were calculated by ΔΔCt (=
ΔCt sample − ΔCt of the calibrator) [39]. The data were normalized
to the housekeeping gene β-actin, and the values were compared to
the neutrophils primed with IFN-γ.
3. Results

3.1. Incubation time and concentration dependence of the effects of IFN-γ
on Fc-gamma receptor-mediated phagocytosis

We initially chose an incubation time of 2 h for priming neutrophils
based on previous reports in the literature examining the various effects
of IFN-γ. Using this condition, we tested the effect of increasing concen-
trations of IFN-γ on phagocytosis of red cells coatedwith IgG antibodies
(IC). As shown in Fig. 1A, themaximumstimulation of phagocytosiswas
obtained with 150 U/ml IFN-γ; the threshold concentration for an ap-
preciable effect was 10 U/ml IFN-γ.

Fig. 1B shows the time-course of stimulation with 150 U/ml IFN-γ.
Stimulation of phagocytosis was detectable after 30 min at 37 °C and
peaked at 2 h. The IFN-γ concentrations and incubation times that
give maximum stimulation were used in all subsequent experiments.
3.2. Interferon-γ enhances Fc-γ and dectin-1 receptor-mediated
phagocytosis by mouse neutrophils

To study the effects of IFN-γ on neutrophil function, we first investi-
gated the phagocytic capacity of resting and IFN-γ-activated mouse
neutrophils. We found that IFN-γ (150 U/ml for 2 h) enhanced the
phagocytic capacity of neutrophils when stimulated with IC or IC-C as
well as Zy or Opzy (Fig. 2). These data indicate a stimulatory effect of
IFN-γ on a fundamental function of neutrophils.
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Fig. 1. (A) Effect of increasing concentrations of IFN-γ on phagocytosis of IgG-coated red blood cells bymouse neutrophils. Datawere plotted as percentage phagocytosis, whichmeans the
percent of neutrophils that ingested at least one red blood cell. Control: neutrophils incubatedwith the immune complexwithout IFN-γ treatment. Bars representmedian values (n = 5).
(B) Time-course curves for neutrophils treated without (dotted line) and with (solid line) IFN-γ. Neutrophils were pretreated with medium alone or 150 U/ml IFN-γ for the indicated
times and phagocytosis was subsequently measured. For each data point n = 4. The IFN-γ curve and control curve show a statistically significant dependence on pretreatment time.
*p b 0.01 solid line vs. dotted line; Student's t-test.

231L.F. Marchi et al. / International Immunopharmacology 18 (2014) 228–235
3.3. Effect of IFN-γ pretreatment on the production of reactive oxygen
species (ROS) by mouse neutrophils

We observed that pretreatment of neutrophils with IFN-γ signifi-
cantly increases the release of O2

−, H2O2 and HOCl (Fig. 3A, B and C,
respectively), regardless of the stimuli used. O2

− production by neutro-
phils treated with IFN-γ and stimulated with Zy or Opzy was
significantly higher (p b 0.001 and p b 0.01, respectively) compared
to stimulation with immune complexes of IgG. This result supports
the hypothesis that IFN-γ pretreatment causes changes in the intracel-
lular signaling mechanisms regulating ROS production.

3.4. Interferon-gamma enhances the release of enzymes from granules and
the production cytokines by mouse neutrophils

Fig. 4A and B shows that mouse neutrophils stimulated with four
types of stimuli exhibited enhanced release of β-glucuronidase, a mark-
er for azurophilic granules, and alkaline phosphatase, a marker for
specific granules, after a 2 h incubation with 150 U/ml IFN-γ. Extracel-
lular release of the cytoplasmic marker lactate dehydrogenase (LDH)
was alsomeasured as an indicator of possible cell injury or death during
the process; no extracellular release of LDH was found, confirming that
IFN-γ stimulation was not toxic to the neutrophils (data not shown).
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Fig. 2. Interferon-gamma enhances phagocytosis by mouse neutrophils. Resting neutro-
phils and neutrophils activated by IFN-γwere incubatedwith zymosan (Zy), zymosan op-
sonized with complement (Opzy) or immune complexes of IgG bound to red blood cells
(IC) or red blood cells plus complement (IC-C) for 45 min at 37 °C. The fluorescence pres-
ent in the neutrophils was assessed by flow cytometry, and data were plotted as themean
fluorescence intensity (n = 6–8 per group). *p b 0.05 vs. control (Student's t-test).
In addition, cytokine productionwas also affected by IFN-γ pretreat-
ment. We found increased TNF-α and IL-6 production by IFN-γ-
activated neutrophils (Fig. 4C and D).

3.5. Neutrophil FcγR and CR expression

The expression of FcγRs (CD32 and CD16), CR3 (CD11b) and dectin-
1 was determined in mouse neutrophils after IFN-γ pretreatment.
Dectin-1 is important in the recognition of β-glucans present in zymo-
san; CD32 and CD16 are critical in binding the Fcγ portion of IgG in
immune complexes and CD11b is theα subunit of complement receptor
CR3, which is involved in the internalization of opsonized particles.

As shown in Fig. 5, there is an increase in the expression of all im-
munes receptors (p b 0.05, Student's t-test) after treatment of mouse
neutrophils with IFN-γ. This result suggests that the increased phagocy-
tosis and release of enzymatic content of azurophils in neutrophils
activatedwith IFN-γ for 2 hmay be a consequence of increased receptor
expression.

3.6. Effect of IFN-γ pretreatment onmRNA expression of the NADPHoxidase
subunits p47phox and gp91phox

To investigate whether the increased release of ROS is due to a
change in the assembly of the NADPH oxidase complex, we examined
the mRNA expression of the p47phox and gp91phox subunits of the
NADPH oxidase complex by real-time PCR. Subunit p47phox was
shown to be essential for the assembly and activity of the NADPH com-
plex [40]. We showed that pretreatment of mouse neutrophils with
150 U/ml of IFN-γ for 2 h increased the expression of both the NADPH
oxidase p47phox and gp91phox subunits (Fig. 6).

4. Discussion

Interferon-γ is a 17-kDa glycoprotein produced by activated
T lymphocytes that was initially characterized for its antiviral and T
lymphocyte proliferative activity. Investigation has focused on its proin-
flammatory role, which appears to be mediated via interaction with
two target phagocytic cells: macrophages and neutrophils [7,8,22].
Interferon-γ has been shown to modulate many aspects of in vitro neu-
trophil functions [41–43]. Williams et al. [44] showed that IFN-γ pro-
tects against the development of structural damage in experimental
arthritis by regulating neutrophil influx into diseases joints and
in vitro studies using fibroblast-like synoviocytes, IFN-γ modulated
both IL-1β and TNF-α, resulting in the down-regulation of chemokine
CXCL-8. In another study, de Bruin et al. [45] have demonstrated with
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in vitro experiments that IFN-γ is an important cytokine in directing
myelopoiesis during acute viral infection in mice.

Despite the large number of studies on the regulatory action of IFN-γ
on neutrophil functions [26,41,46,47], some conflicting results have
been reported regarding phagocytosis and the production of oxygen re-
active species in response to different stimuli. Some reports indicated
decreased phagocytic ability and ROS production after IFN-γ pretreat-
ment [47], whereas others have shown an increase [48]. The differences
between these studies could be explained by differences in the time of
exposure to IFN-γ, the ideal concentration of IFN-γ, animal species,
cell type, different stimuli, the types of assay used to measure ROS re-
lease (e.g., extracellular or intracellular), or other conditions employed.
Our goal was to further characterize the ability of recombinant human
IFN-γ to stimulate mouse neutrophil oxidative responses as well as
the release of lysosome enzymes mediated by different types of im-
mune receptors. In this investigation we have assed recombinant
human IFN-γ. We have also tested the effect of recombinant murine
IFN-γ and observed that it was able to stimulated phagocytosis of zymo-
san particles as well as the human cytokine (25–30%, data not shown).
Some studies have also been published using recombinant human
IFN-γ in different species, including canine cells [12], bovine neutrophils
[13] and porcine neutrophils [49].

Some studies have shown that IFN-γ canmodify phagocytosis in im-
mune cells and that thismodification is dependent on the stimulus used
[50–52]. Our results showed that phagocytosis by mouse neutrophils
stimulated with IC or IC-C, as well as Zy or Opzy, was detectable after
30-min incubation with IFN-γ, and peaks at 2 h. Thus, IFN-γ enhances
phagocytosis in neutrophils in response to these different stimuli.

In this study, we showed that IFN-γ stimulates the release of O2
−,

H2O2 and HOCl by mouse neutrophils. This effect was dose-dependent
and peaked at 150 U/ml IFN-γ. This concentrationmay indicate a possi-
ble inflammatory role because it is within the range found in serum and
synovial fluid of rheumatoid arthritis patients [14]. These results are
also in agreement with results from Cassatella [53] who showed that
human neutrophils in the presence of IFN-γ showed enhanced O2

− and
H2O2 production in response to FMLP, PMA or ICs of IgG and ovalbumin.

We also examined the effect of IFN-γ on the release of the enzymatic
content of granules (β-glucuronidase and alkaline phosphatase) using
mouse neutrophils stimulated by Zy, Opzy, IC or IC-C. Our results
show that the release of both enzymes was significantly increased in
the presence of IFN-γ. The effects on degranulation were not due to
cell death because LDH release was the same in the presence or absence
of IFN-γ. These results indicate that IFN-γ stimulates release of the con-
tents of specific and azuriphilic granules. In contrast to our findings,
Kowanko and Ferrante [54] were unable to show β-glucuronidase re-
lease in human neutrophils stimulatedwith opsonized zymosan treated
with 200 U/ml of IFN-γ.

Some studies have shown that neutrophils are able to produce dif-
ferent pro-inflammatory cytokines and chemokines, including IL-8,
IL12, IL1β and TNF-α, after various types of stimulation [55]. Evidence
has been obtained that IL-6 plays a crucial role in the pathogenesis of
many chronic inflammatory and autoimmune diseases ranging from
rheumatoid arthritis [56,57], multiple sclerosis [58], diabetes [59] and
asthma [60]. Furthermore, IL-6 appears to play a predominant role in
linking chronic inflammation and tumor growth [61]. Our results
show that zymosan, opsonized zymosan and immune complexes lead
to enhanced production of TNF-α and IL-6 by IFN-γ treated neutrophils,
in agreement with Gasperini et al. [62]. Their study shows that human
neutrophils also have the ability to produce IL-6, TNF-α, IL-8 and induc-
ible protein of 10 kDa (IP-10) in response to IFN-γ.

Our finding that treatment of murine neutrophils with IFN-γ could
release an inflammatory cytokine (IL-6) is on linewith the observations
of Collota et al. [63] who found that IFN-γ could extend the life span of
human granulocytes after 48 h treatment, and that this might have im-
plications for inflammatory diseases. IL-6 stimulates the production of
neutrophils by bone marrow progenitors, usually acting in concert
with colony stimulating factors. The prolonged survival of neutrophils
engaged in inflammatory responses, while likely to be beneficial in
those circumstances in which the accumulation of effector cells is
required, can, however, be potentially harmful when the prolonged
presence of neutrophilmay contribute to the pathogenesis of certain in-
flammatory diseases.

The activation of neutrophil functions also involves the modulation
of cell surface molecules, a number of which have been well character-
ized. We assessed alterations in the surface expression of FcγRs and CR
receptors in neutrophils in response to stimulation by IFN-γ. Human
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neutrophils express three types of Fc receptors which are involved in
phagocytosis, ROS production and other cellular processes, namely
FcγRI, FcγRII and FcγRIII [64,65]. FcγRI, a high affinity receptor is
expressed only when neutrophils are treated with some cytokines, in-
cluding IFN-γ [26]. Some observations show that IFN-γ is responsible
for the regulation of genes encoding FcγRI (CD 64) and p47phox in
human neutrophils. This gene transcription, however, is undetectable
in untreated cells [66,67]. Also, treatment with IFN-γ had effect on the
expression of FcγRII and FcγRIII. It is possible that the expression of
FcγRI could explain the increased phagocytosis and ROS production
with the different stimuli (immune complexes)we have observed. Nev-
ertheless, one cannot exclude the participation of the other two recep-
tors in these effects. Our results shown that CD16, CD32, CR3 and
dectin-1 receptors are present on the surface of mouse neutrophils
and that, in agreement with other studies [68], expression can be en-
hanced by treatment with IFN-γ.

Because the production of superoxide is a reflection of the activity of
the NADPH oxidase complex, we investigated whether IFN-γ treatment
could alter the gene expression of components of this enzymatic com-
plex in neutrophils. Our results showed that IFN-γ enhanced the
mRNA expression of the gene that encodes for the p47phox and gp91phox

subunits. The p47phox subunit plays a key role in the translocation of
other cytosolic subunits and the assembly of the NADPH oxidase com-
plex, while gp91phox is the central component of this complex responsi-
ble for chain formation of electron transport [69]. This is only suggestive
evidence because it is difficult to estimatewhether a high level ofmRNA
would result in a high level of the encoded protein, and the turnover
rates are not known. It is known that the cytokine IFN-γ can induce
transcription and translation of specific genes and proteins. Newburger
et al. [70], Cassatella et al. [71], Dusi et al. [72], and Casbon et al. [73]
found that enhanced capacity for ROS production in murine macro-
phages is partially a result of increased protein expression of gp91phox

and p22phox, but they also demonstrate that IFN-γ induced a shift in
the predominant localization of gp91phox and p22phox from intracellular
membrane compartments to the plasma membrane. Further investiga-
tion is required to determine the expression of several cytosolic and
membrane-bound components inmouse neutrophils induced by IFN-γ.

Other important function of neutrophils has been reported as regu-
lated by IFN-γ, such as antibody-dependent cell-mediated cytotoxicity
[42,62]. Current research has indicated an important role of neutrophils
in the interplay between the innate and acquired immune response
[26]. It has been suggested that during inflammation or specific immune
responses, mature myeloid cells may respond to humoral factors in a
manner analogous to macrophages [42].

In our experiments we observed the effects of IFN-γ on mouse neu-
trophils using different agents such as complement opsonized zymosan
which is typical occurrence o innate immune response aswell as IgG im-
mune complexes that in vivo would bemost expected in the secondary
immune response. Thus, IFN-γ has been shown to be a pleiotropic cyto-
kine and its effects on neutrophils show the participation of these cells
in the innate and acquired immune response.

5. Conclusion

This study clarified the effect of recombinant human IFN-γ on the
phagocytic capacity of mouse neutrophils, which is accompanied by
the up-regulation of FcγR, CR and dectin-1 receptors. The increase in
ROS production mediated by these receptors with activation of the
NADPH oxidase is correlated with the increased expression of p47phox

and gp91phox mRNA, two important components of this enzyme com-
plex. In addition to enhanced phagocytosis, we also observed the release
of some lysosomal enzymes. The increased production of reactive
oxygen species may be important to the enhanced capacity for killing
phagocytosed microorganisms, but may also favor the induction of
oxidative stress in adjacent cells. In agreement with this potential
inflammatory role, we also demonstrated increased release of the
inflammatory cytokines TNF-α and IL-6 from neutrophils treated with
recombinant IFN-γ.
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