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In the absence of efficient preventive vaccines, topical microbicides offer an attractive alternative in the
prevention of Herpes simplex type 1 (HSV-1) and type 2 (HSV-2) infections. Because of their recognized
anti-adhesive activity against bacterial pathogens, cranberry (Vaccinium macrocarpon Ait.) extracts may
represent a natural source of new antiviral microbicides. However, few studies have addressed the ap-
plications of cranberry extract as a direct-acting antiviral agent. Here, we report on the ability of the
novel cranberry extract Oximacro® and its purified A-type proanthocyanidins (PACs-A), to inhibit HSV-1
and HSV-2 replication in vitro. Analysis of the mode of action revealed that Oximacro® prevents
adsorption of HSV-1 and HSV-2 to target cells. Further mechanistic studies confirmed that Oximacro®

and its PACs-A target the viral envelope glycoproteins gD and gB, thus resulting in the loss of infectivity of
HSV particles. Moreover, Oximacro® completely retained its anti-HSV activity even at acidic pHs (3.0 and
4.0) and in the presence of 10% human serum proteins; conditions that mimic the physiological prop-
erties of the vagina - a potential therapeutic location for Oximacro®.

Taken together, these findings indicate Oximacro® as an attractive candidate for the development of
novel microbicides of natural origin for the prevention of HSV infections.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Herpes simplex virus (HSV) infection is lifelong and its spectrum
of clinical manifestations is wide, ranging from asymptomatic
infection or mild mucocutaneous lesions on the lips, cornea, geni-
tals, or skin, up to more severe, and even life-threatening, in-
fections, including encephalitis, neonatal infections, and
progressive or visceral disease in immunocompromised hosts
(Roizman et al., 2013). Following primary infection, HSV establishes
latent infections in the neurons of the sensory ganglia from where
they may, or may not, reactivate, causing recurrent lesions at the
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site of primary infection. There are two serotypes of HSV, HSV-1
and HSV-2, which can infect either oral or genital sites. HSV-1 is
traditionally associated with orofacial lesions and encephalitis,
while HSV-2 is associated with genital diseases, although both oral
HSV-2 infections and genital herpes caused by HSV-1 are recog-
nized with increasing frequency. Even if HSV infections are often
subclinical, their incidence and severity have increased over the
past decades due to the increasing number of immunocompro-
mised patients (Roizman et al., 2013); with genital herpes infection
becoming one of the world’s most prevalent sexually transmitted
infections (STIs). Moreover, the impact of genital herpes as a public
health threat is amplified because of its association with an
increased risk of HIV acquisition (Freeman et al., 2006; Van de Perre
et al., 2008; Celum et al., 2010).

Standard treatment of symptomatic HSV infections relies on
nucleoside analogues, such as acyclovir (ACV), famciclovir (FAM),
and valacyclovir (VCV), which target viral DNA polymerase
(Whitley, 2006; Roizman et al., 2013). These drugs can be used to
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treat primary or recurrent infections. However, to date, none of
them can eliminate an established latent infection, and their pro-
longed clinical use in immunocompromised patients may lead to
the incidence of treatment failures due to the development of
antiviral-resistant virus strains (Whitley, 2006). Owing to these
limitations and the absence of efficacious vaccines, the prevention
of HSV infections, in particular genital herpes, thus remains a high
priority. These facts highlight need for the development of new
anti-HSV agents that may prevent the establishment of infection by
inhibiting virus attachment and/or entry (Greco et al., 2007).
Molecules with this mode of action could thus provide the starting
point for the development of topical microbicides that block
transmission at the mucosal surface, thereby providing a realistic
method of prophylactic intervention (Keller et al., 2005; Nikolic and
Piguet, 2010).

Natural products continue to provide and abundant and suc-
cessful source of new antimicrobial substances. Among them,
products extracted from the fruit of American cranberry (Vaccinium
macrocarpon Ait., Ericaceae), in different formulations, are rich in
compounds that have been implicated to exert numerous health
benefits, like the prevention of microbial infections and beneficial
activity against inflammation (Howell, 2007; Howell et al., 2010;
Shmuely et al., 2012; Rane et al., 2014). Indeed, it is well estab-
lished that cranberry-derived polyphenols are able to prevent uri-
nary tract infections (UTI) by inhibiting the adhesion of P-
fimbriated Escherichia coli to uroepithelial cells, thus impairing
tissue colonization and subsequent infection (Zafriri et al., 1989;
Howell et al., 2005; Gupta et al., 2007; Jepson and Craig, 2008;
Blumberg et al., 2013; Krueger et al., 2013). This effect appears to
be related to the specific phytochemical profile of bioactive com-
pounds from cranberries, that is different from that of other berry
fruits; in particular, cranberries are rich in A-type proanthocyani-
dins (PACs), whereas B-type PACs are present in most of other fruits
(Blumberg et al., 2013). Indeed A-type PACs have been observed to
mask P-fimbriae during E. coli adhesion to uroepithelial cells, and
are therefore considered potent antiadhesion agents (Howell et al.,
2005; Gupta et al., 2007; Krueger et al., 2013).

To date, very few studies have addressed the suitability of
cranberry extracts as antiviral agents (Shmuely et al., 2012), despite
the existence of in vitro evidence demonstrating their inhibitory
activity against influenza virus (Weiss et al., 2005; Oiknine-Djian
et al., 2012), reovirus (Lipson et al., 2007a, 2007b), and entero-
virus (Su et al., 2010). It is clear that identification of the active
antiviral component(s) in cranberry extracts and the determination
of their mechanism(s) of action against a specific virus are required
in order to propose this fruit extract as a candidate antiviral agent.
However, isolation of the cranberry component(s) exerting antiviral
activity, in particular on a large scale, is a daunting task, considering
the hundreds of compounds found in the fruit. Thus, once the
mechanism(s) of action against a virus is determined on an
analytical scale and assigned to a specific cranberry component(s),
an alternative strategy would be to improve the extraction pro-
cedures such that products endowed with high concentrations of
the active antiviral component(s) are obtained; this would avoid
the cost of further purification procedures, making the large-scale
production of extracts more feasible.

Oximacro®, a cranberry extract produced by Biosfered (Turin,
Italy), possesses a high content of PACs and a high percentage of A-
type PAC dimers and trimers. In a recent pre-clinical double-blind
controlled study, Oximacro® was effective in preventing UTIs when
administered as capsules (Occhipinti et al., 2016).

The aim of this study was to investigate the anti-HSV activity of
Oximacro®. Here we show the ability of Oximacro® to prevent
in vitro HSV-1 and HSV-2 replication via a mechanism that involves
inhibition of virion attachment due to functional alteration of
envelope glycoproteins. The A-type PACs purified from Oximacro®

were identified as the active anti-HSV constituents of the extract.
These results indicate Oximacro® as a promising natural candidate
for the development of novel topical microbicides for the preven-
tion of HSV-1 and HSV-2 infections.

2. Materials and methods

2.1. Characterization of the cranberry extract and fractionation of
PACs-A

Oximacro®, a cranberry (Vaccinium macrocarpon Aiton) extract,
produced by Biosfered S.r.l. (Turin, Italy), is a reddish powder with a
total PAC content > 360 mg/g (Lot # CR0105-PD04). The CoA of the
lot can be provided upon request. The PAC-A2 standard was ob-
tained from Extrasynthese (France) and dissolved in 96% v/v
ethanol (Sigma-Aldrich, USA) to generate a final concentration of
100 mg/ml. Aliquots of stock solutions were stored in 1.5 ml HPLC
vials at �80 �C until use. The chemical purity and integrity of
standard compound was assessed prior to use (see below).

To determine the total PAC content, the BL-DMAC assay was
performed according to the method described by Prior et al. (2010).
Total proanthocyanidins were quantified using an external cali-
bration curve generated using the pure PAC-A2 standard. The
quantificationwas performed in triplicatewithin the linear range of
the calibration curve (5e30 mg/ml). Oximacro® was then assayed
exactly at 20 min, which was demonstrated to be the optimal
timing for PAC-A quantification (Occhipinti et al., 2016).

PAC-A and PAC-B content of Oximacro® was determined by
HPLC-ESI-MS/MS as previously described (Occhipinti et al., 2016).
The identification of PACs (dimers and trimers) was performed via
multiple reaction monitoring (MRM) mass spectrometry of the
following molecular ions [M-H]-: 575 m/z for A-type dimers and
577m/z for B-type dimers; 861 and 863m/z for A-type trimers; and
865 m/z for B- type trimers.

To fractionate Oximacro® by gel filtration chromatography, 1 ml
of Oximacro® solution in 70% v/v ethanol (0.2 g/ml) was loaded
onto a Sephadex LH-20 (25 g) glass column (2.0 cm I.D. x 31 cm
length) and fractionationwas performed as described by Prior et al.
(2001, 2010). The collected fractions were concentrated at 30 �C
using a Centrifugal Vacuum Concentrator combined with the
CentriVap Cold Trap (Labconco, USA) and freeze-dried before
further analyses. Total recoveries were calculated based on the
weight of the extract applied onto the column and the total weight
in each of the freeze-dried fractions from the Sephadex LH-20
column. Evaluation of PAC-A content of purified fractions was
performed as above.

2.2. Cells, culture conditions and viruses

African green monkey kidney cells (Vero) (ATCC CCL-81) and
low-passage primary human foreskin fibroblasts (HFFs; passages 10
to 15) were cultured in Dulbecco’s Modified Eagle Medium (DMEM;
Biowest) supplemented with 10% fetal bovine serum (FBS; Bio-
west), 2 mM L-glutamine, 1 mM sodium pyruvate, 100 U/ml peni-
cillin, and 100 mg/ml streptomycin sulfate. Clinical isolates of HSV-1
and HSV-2 sensitive to ACV, and a clinical isolate of Adenovirus
(ADV) were kindly provided by Dr. V. Ghisetti, from Amedeo di
Savoia Hospital, Turin, Italy. HSV-1 and HSV-2 were propagated and
titrated by plaque reduction assay on Vero cells. ADV was propa-
gated and titrated on HFFs as previously described (Luganini et al.,
2010). To obtain highly concentrated virus suspensions, extracel-
lular HSV particles were partially purified by ultracentrifugation
through a sorbitol cushion as previously described (Bronzini et al.,
2012).
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2.3. Antiviral assays

To determine cell viability, Vero or HFF cells were exposed to
increasing concentrations of Oximacro® or its purified fractions
(1e5; obtained as described in 2.1). After 3 days of incubation, the
number of viable cells was determined using the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
method, as previously described (Pauwels et al., 1988).

To evaluate the anti-HSV activity of Oximacro® and its purified
fractions, Vero cells were seeded in 96-well plates at a density of
25 � 103 cells. After 24 h, cells were treated with different con-
centrations of either Oximacro® or its fractions 1 h prior to infec-
tion, and then infected with HSV-1 or HSV-2 (30 PFU/well).
Following virus adsorption (2 h at 37 �C), cultures were maintained
in medium-containing 0.8% methylcellulose (Sigma) plus Oxima-
cro® or its fractions. At 48 h postinfection (h.p.i.), cells were fixed
and stained by using 10% methanol and 1% crystal violet. Plaques
weremicroscopically counted, and themean plaque counts for each
concentration expressed as a percentage of the mean plaque count
for the control virus. The number of plaques was plotted as a
function of drug concentration; concentrations producing 50% and
90% reductions in plaque formation (IC50 and IC90) were
determined.

ADV viral yield assay was performed as described previously
(Luganini et al., 2010).

Viral attachment and entry assays were performed as previously
described (Shogan et al., 2006; Luganini et al., 2011). The effect of
Oximacro® on viral infectivity, its stability at different pHs and the
effect of human serum proteins on Oximacro® antiviral activity
were performed according to the procedures described in Luganini
et al. (2011).

2.4. Immunoblotting

Whole-cell extracts were prepared as previously described
(Luganini et al., 2008, 2011). Proteins were separated by 8% SDS-
PAGE and then transferred to PVDF membranes (BioRad). Filters
were blocked for 2 h at 37 �C in 5% non-fat dry milk in 10 mM Tris-
HCl (pH 7.5), 100 mM NaCl, and 0.05% Tween 20 and then immu-
nostained with the mouse anti-HSV-1/2 ICP27 mAb (clone H1113;
Virusys), anti-HSV-2 ICP8 mAb (clone 4E6; Virusys), anti-HSV-1
ICP8 mAb (clone 10A3; Abcam), anti-HSV-1/2 gD mAb (clone
2C10; Virusys), anti-HSV-1/2 gB mAb (clone 10B7; Virusys Corpo-
ration), or with anti-tubulin mAb (Chemicon International) as a
control for protein loading. Immunocomplexes were detected with
a goat anti-mouse Ig Ab conjugated to horseradish peroxidase (Life
Technologies) and visualized by enhanced chemiluminescence
(Western Blotting Luminol Reagent, Santa Cruz).

To study the interaction of Oximacro® with HSV envelope pro-
teins, aliquots of partially purified HSV-1 and HSV-2 particles or
purified recombinant HSV-1 and HSV-2 gD ectodomain (1-306 aa)
produced in the insect cell-baculovirus expression system (a
generous gift of G. Cohen and R. Eisenberg) (Sisk et al., 1994) were
incubated at 37 �C with Oximacro®. Then, mixtures were sus-
pended in SDS sample buffer, separated by SDS-PAGE, and analyzed
by Coomassie blu staining or immunoblotting using the mouse
anti-HSV-1/2 gB and anti-HSV-1/2 gD mAbs, or the goat anti-VP16
antibody (sc-17547, Santa Cruz).

2.5. Immunofluorescence

Immunofluorescence analysis of viral antigens was performed
as previously described (Cavaletto et al., 2015) using the mouse
mAbs raised against the ectodomains of both HSV-1/2 gD and HSV-
1/2 gB. The binding of primary antibodies was detected with
CF594-conjugated rabbit anti-mouse IgG antibodies (Sigma) Sam-
ples were examined using an Olympus IX70 inverted laser scanning
confocal microscope, and images were captured using FluoView
300 software (Olympus Biosystems).

2.6. Statistical analysis

Chemical analyses were performed in triplicate. All other data
were generated in duplicate in at least three independent experi-
ments. PRISM software version 5.0 (GraphPad Software, Inc.) was
used for statistical analysis (one-way ANOVA test) and to calculate
IC50, IC90, and CC50 parameters.

3. Results

3.1. Chemical analysis of Oximacro® confirms a high content of A-
type proanthocyanidins

The presence of A-type PACs in cranberry extract is central to its
bioactivity. Analysis using the BL-DMAC method by showed a total
PAC content of 366.06 mg/g (±4.96) PACs. Although the BL-DMAC
method is generally recognized as the most accurate (Prior et al.,
2010), it detects both PACs-A and PACs-B. Thus, we also subjected
Oximacro® to HPLC followed by electrospray ionization and tandem
mass spectrometry (ESI-MS/MS) to assess the relative content of
the two PAC types. The percentage content of PAC-A in Oximacro®

was 86.72% (±1.65); mainly composed of PAC-A dimers and small
amounts of PAC-A trimers. The percentage of PAC-B dimers was
13.99% (±1.03), whereas no PAC-B trimers were detected
(Supplementary Fig. S1). The percentage content of PAC polymers
was below the threshold of detection.

Gel filtration chromatography allowed us to fractionate Oxi-
macro® into five major fractions which were chemically charac-
terized and showed to contain anthocyanins, flavonoids, and PACs
dimers and trimers. In particular, fraction 1 was mainly composed
of delphinidin-3-sambubioside, cyanidin.3.sambubioside, and
rutin; fraction 2 contained quercetin and isorhamnetin; fractions 3
and 4 were dominated by several isomers of PAC-A dimers and
trimers, whereas fraction 5 did not contain any detectable com-
pound (see Supplementary Fig. S1 and Table S1). The Oximacro®

whole extract and its purified fractions were then used to investi-
gate their antiviral activity.

3.2. Inhibition of HSV-1 and HSV-2 replication by Oximacro®

Pretreatment of Vero cells with Oximacro® 1 h before infection
produced a significant concentration-dependent inhibition of both
clinical isolates, HSV-1 and HSV-2 (Fig. 1). The IC50 and IC90 of
Oximacro® against HSV-1 replication were 14.2 ± 0.5 mg/ml and
27.1 ± 1.0 mg/ml, respectively, whereas against HSV-2, they were
9.6 ± 0.2 mg/ml and 21.7 ± 0.1 mg/ml. For comparison, in the same
assay, the IC50 of the reference drug ACV were 0.01 mg/ml against
HSV-1 and 0.02 against HSV-2, respectively. Then, to exclude the
possibility that the antiviral activity of Oximacro® might be due to
cytotoxicity, its effects on the viability of uninfected Vero cells were
assessed usingMTTassays. As seen in Fig. 1, its antiviral activity was
not due to cytotoxicity of the target cells themselves since a sig-
nificant toxic effect was only observed at concentrations higher
than 50 mg/ml (CC50 92.3 ± 2.2 mg/ml). The Selectively Index (SI) of
Oximacro® was thus 6.5 for HSV-1 and 9.6 for HSV-2. In contrast,
the replication of a clinical isolate of adenovirus in HFFs cells was
not significantly affected by Oximacro®, with its IC50 > 75 mg/ml,
thus supporting its specificity against herpesviruses.

Analysis of the anti-HSV activity of Oximacro®-derived purified
fractions identified fractions 3 and 4 as responsible for the
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inhibitory activity of the whole extract (Table 1). The IC50 for both
fractions against HSV-2 were 2.5-fold lower than those against
HSV-1, thus suggesting a higher sensitivity of HSV-2 to the antiviral
activity of Oximacro® compared with that of HSV-1. Considering
that A-type PACs were separated in fractions 3 and 4 of Oximacro®

(fraction 3 ¼ 400 mg/g; fraction 4 ¼ 420 mg/g) (also see
Supplementary Fig. S1 and Table S1), these results indicate that the
anti-HSV activity of Oximacro® indeed is due to its A-type PAC
content.
3.3. Oximacro® inhibits an immediate-early event in the HSV
replication cycle

To obtain more insight into the nature of the anti-HSV activity of
Oximacro®, we investigated its effects on the gene expression
program in both HSV-1 and HSV-2. To this end, total protein cell
extracts were prepared from HSV-1- and HSV-2-infected Vero cells
treated with Oximacro® for various lengths of time post-infection.
The expression levels of ICP27, ICP8, and gDwere then examined by
immunoblotting with specific antibodies to assess the levels of
immediate-early, early and late HSV protein expression, respec-
tively. As depicted in Fig. 2, Oximacro® inhibited the expression of
all representative HSV proteins at all of the time points analyzed,
thus indicating that it affects a very early stage in the HSV repli-
cation cycle, i.e. a stage prior to the onset of IE gene expression.
Consistent with this observation, the addition of Oximacro® after
2 h of virus adsorption did not significantly reduce HSV-1 and HSV-
2 replication, in stark contrast with the antiviral activity observed
when it was applied up to 1 h prior to or at the time of infection
(data not shown). These results support the view that Oximacro®

targets a very early phase of the HSV cycle, such as virus adsorption
and/or entry.
Fig. 1. Antiviral activity of Oximacro® on HSV-1 and HSV-2 replication. Vero cell
monolayers were infected with clinical isolates of either HSV-1 or HSV-2 (30 PFU/well),
and, where indicated, the cells were treated with increasing concentrations of Oxi-
macro® 1 h before as well as during virus adsorption, and which remained in the
culture media throughout the experiment. At 48 h p.i., viral plaques were micro-
scopically counted and the mean plaque counts for each drug concentration were
expressed as a percent of the mean count of the control. The number of plaques was
plotted as a function of Oximacro® concentration, and the concentrations producing 50
and 90% reductions in plaque formation (IC50 and IC90, respectively) were determined.
The data shown represent means ± SD (error bars) of three independent experiments
performed in duplicate. To determine cell viability, Vero cells were exposed to
increasing concentrations of Oximacro®. After 3 days of incubation, the number of
viable cells was determined by means of the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) method.
3.4. Oximacro® inhibits HSV attachment to target cells

To investigate whether the inhibitory activity of Oximacro® is
due to interference with HSV entry into cells, prechilled Vero
monolayers were infected with the clinical isolates of HSV-1 or of
HSV-2 for 3 h at 4 �C. Oximacro® or heparin (as a positive control for
inhibition of virus attachment) was then added and the cells were
incubated at 37 �C to allow viral entry. These experimental condi-
tions allow for the synchronization of virus penetration following
attachment at low temperature (Shogan et al., 2006; Luganini et al.,
2011). After 3 h at 37 �C, any HSV virion still attached to the cell
surface was inactivated by acidic glycine treatment. The cells were
then overlaid with 0.8% methylcellulose to measure the infectivity
of HSV that had successfully entered into cells. As shown in Fig. 3A,
Oximacro® did not affect HSV-1 or HSV-2 entry of already adsorbed
virions at any of examined concentrations.

Then, to test the effects of Oximacro® on HSV attachment, pre-
chilled Vero cell monolayers were infected with HSV-1 or HSV-2 in
the presence of Oximacro® or heparin for 2 h at 4 �C (a condition
that is known to allow virus adsorption only). Cells were washed to
remove the compounds and any unattached virus and covered with
a solution of 0.8% methylcellulose in order to measure the infec-
tivity of HSV that had successfully attached onto the cells. As shown
in Fig. 3B, Oximacro® clearly impaired the attachment of HSV in a
concentration-dependent manner and to a similar degree as
observed in the virus yield reduction assay (Fig. 1). As expected,
heparin blocked the ability of HSV-1 to attach to Vero cells by
preventing the virus from interacting with cell surface heparan
sulfate proteoglycans (Shieh et al., 1992).

Altogether, these findings indicate that Oximacro® was able to
inhibit the initial step of HSV attachment to target cells.
3.5. Virucidal activity of Oximacro® against HSV

Since inhibition of HSV attachment might result from an irre-
versible Oximacro®-induced inactivation of the virions, we inves-
tigated whether Oximacro® was able to interact with HSV particles
and thus to inactivate their infectivity prior to their adsorption onto
target cells. To this end, HSV-1 and HSV-2 aliquots were incubated
with Oximacro® at 37 �C for various lengths of time. After incuba-
tion, the samples were diluted to reduce the Oximacro® concen-
trations well below those that inhibit HSV replication (0.025 mg/
ml), and the residual infectivity of pre-incubated virions was
titrated on Vero cells. As seen in Fig. 4, the pre-incubation of virions
with Oximacro® brought about a complete loss of HSV infectivity
within 120 min for HSV-2, and 180 min for HSV-1, respectively.
Similar results were also obtained with fraction 4, the richest in A-
type PACs (data not shown). Thus, these results demonstrate that
Oximacro® inhibits HSV infection by preventing the ability of viral
particles to attach to target cells.
Table 1
Antiviral activity of Oximacro® fractions.

Fraction Cytotoxicity activity (CC50 mg/ml) Antiviral activitya

(IC50 mg/ml)

HSV-1 HSV-2

1 >200 >75 >75
2 >200 >75 >75
3 188.2 ± 2.3 19.8 ± 3.1 6.8 ± 3.2
4 106.9 ± 1.1 19.2 ± 3.7 7.6 ± 2.2
5 >200 >75 >75

a Oximacro® concentration that inhibits 50% HSV replication as determined by a
plaque reduction assay. The values are means ± SD of three independent experi-
ments performed in duplicate.



Fig. 2. Oximacro® inhibits accumulation of representative HSV proteins. Vero cells were infected with HSV-1 or HSV-2 at an MOI of 1, or mock infected and, where indicated, the
cells were pretreated and treated with 25 mg/ml Oximacro® 1 h prior to and during infection. Total cell extracts were prepared at different times p.i., fractionated by 8% SDS-PAGE
(50 mg protein/lane), and analyzed by immunoblotting with anti-HSV-1/2 ICP27, anti-HSV-1/2 ICP8, and anti-HSV-1/2 gD. Tubulin immunodetection served as internal control for
protein loading.

Fig. 3. HSV attachment to target cells is prevented by Oximacro®. (A) Oximacro® does not affect viral entry after virus adsorption. Prechilled Vero cells were infected with
precooled HSV-1 or HSV-2 at an MOI of 0.002 for 3 h at 4 �C to allow virion attachment to cells. Unattached virus was removed by washing and cells were treated with various
concentrations of Oximacro® or heparin for 3 h at 37 �C prior to inactivation of extracellular virus with acidic glycine for 2 min at RT. After further washing, cells were covered with
0.8% methylcellulose containing medium. At 48 h p.i., viral plaques were stained and counted. The results shown are means ± SD (error bars) from three independent experiments
performed in duplicate. (B) Oximacro® inhibits HSV adsorption to target cells. Prechilled Vero cells were treated with various concentrations of Oximacro®, or heparin at 4 �C for
30 min and then infection was carried out with precooled HSV-1 or HSV-2 at a MOI of 0.002 for 3 h at 4 �C in the presence of the compounds indicated. After virus adsorption, cells
were overlaid with 0.8% methylcellulose and incubated at 37 �C. At 48 h p.i., viral plaques were stained and counted. The results shown are means ± SD (error bars) of three
independent experiments performed in duplicate. ** (p < 0.01) and * (p < 0.05) compared to the 100% infection of untreated cells; C (p < 0.05) compared to the higher dose of
Oximacro® (25 mg/ml).
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3.6. Oximacro® affects HSV glycoproteins required for binding to
cell receptors and entry

The entry process of HSV begins with the binding of gD
glycoprotein to specific cell surface receptors and concludes with
the fusion of the viral envelope with cell membranes and delivery
of nucleocapsids into target cells upon gB activation and fusion
execution. gD and gB, together with gH and gL, thus constitute



Fig. 4. Preincubation of HSV with Oximacro® inhibits virus infectivity. HSV-1 and
HSV-2 aliquots (105 PFU) were incubated at 37 �C for various lengths of time with no
Oximacro® (closed circle) or 25 mg/ml Oximacro® (closed squares). After incubation,
the samples were diluted to reduce Oximacro® concentration below that which in-
hibits HSV replication (0.025 mg/ml) and the resulting infectivity was evaluated by
titration on Vero cells. Plaques were microscopically counted, and the mean plaque
counts for each Oximacro® concentration expressed as PFU/ml on a log10 scale. The
data shown represent means ± SD (error bars) of three independent experiments
performed in duplicate.
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essential components of the multipartite system that mediates HSV
entry (Campadelli-Fiume et al., 2012; Einsenberg et al., 2012). Since
we observed an inhibition of HSV virions infectivity after their in-
cubation with Oximacro® (Fig. 4), we proceeded by investigating
whether Oximacro® affects gD and gB, thereby inhibiting their
functions in attachment and entry. As shown in Fig. 5, the gD and gB
of untreated HSV virions migrated with molecular weights of about
55e60 and 130 kDa, respectively. However, incubation at 37 �C of
both HSV-1 and HSV-2 with Oximacro® for different times deter-
mined alterations of the electrophorectic mobility of both gD and
gB (Fig. 5). In particular, after 30 min incubation with Oximacro®,
HSV-1 gBwas detected as a smear consisting of gBmolecules with a
lower electrophoretic mobility compared with the untreated con-
trol, while at longer incubation times the gB band completely dis-
appeared. The smearing pattern of gB was even more visible when
HSV-2 virions were incubated with Oximacro® for up to 2 h, fol-
lowed by the complete disappearance of the gB band at 3 h (Fig. 5).
A similar patternwas observed for gD of both HSV types. Alteration
of the electrophoretic mobility and the subsequent disappearance
of HSV gD and gB bands were also observed following incubation of
purified virions with fraction 4 (data not shown). Moreover,
immunodetection of the tegument protein VP16 used as a control
for an inner virion protein was not significantly affected by the
exposure of viral particles to Oximacro®.

The reduction of the major gD and gB bands and their disap-
pearance at longer incubation times likely resulted from virion-
bound Oximacro® interfering with the recognition of their ecto-
domains by mAbs during immunoblotting. A similar masking effect
has been observed for pomegranate extracts rich in polyphenols
that reduced the binding of HA- and NA-specific mAbs to influenza
virus particles incubated with the extracts prior to the addition of
antibodies (Sundararajana et al., 2010).

Immunofluorescence experiments were thus performed to
verify that Oximacro® interferes with the immunodetection of gD
and gB ectodomains expressed on the surface of infected cells. Fig. 6
shows that incubation of HSV-infected Vero cells with either Oxi-
macro® or fraction 4 almost completely inhibited the immuno-
staining of gD and gB on their surface.

Then, to further sustain the ability of Oximacro® to interact with
the ectodomain of HSV envelope glycoproteins, aliquots of purified
recombinant HSV-1 and HSV-2 gD protein’s ectodomains (1-306
aa) produced in baculovirus expression system (Sisk et al., 1994)
(Fig. 7A) were incubated at 37 �C with increasing concentration of
Oximacro®. As shown in Fig. 7B, exposure of purified gD to the
extract led to a reduction of the major protein band and to its
disappearance at the highest Oximacro® concentrations. Moreover,
as seen in Fig. 7C, incubation of recombinant gDwith Oximacro® for
different times produced the disappearance of the gD band at
longer incubation times similar to that observed with HSV viral
particles (Fig. 5), thus indicating that Oximacro® interacts with the
ectodomain of HSV gD in a concentration- and time-dependent
manner.

Together the results of this section indicate the ability of Oxi-
macro® to interact with HSV envelope gD and gB glycoproteins,
thus inhibiting their functions in virus attachment and entry.

3.7. Activity of Oximacro® at different pH or in the presence of
human serum proteins

The results of the above experiments addressing themechanism
of action of Oximacro® pointed to its ability to prevent HSV
adsorption. However, to evaluate Oximacro® as possible candidate
for the development of topical microbicides for preventing the
sexual transmission of HSV-1 and HSV-2, it is fundamental that the
influence of specific physiological properties of the vagina, such as
the pH and the presence of proteins, on their antiviral efficacy is
also considered.

To examine the stability of Oximacro® at different pHs (ranging
between 3.0 and 9.0), the extract was incubated in different pH
buffers for 2 h at 37 �C and its IC50 was then determined using
plaque reduction assays at neutral pH. As reported in Table 2, acidic
treatment (pH 3.0 and 4.0) for 2 h did not affect the stability of
Oximacro® since its activity against HSV-1 or HSV-2 was similar to
that observed for the extract incubated at neutral pH. This confirms
that the low pH of the vagina (normal values range from 3.5 to 4.5)
would not interfere with the anti-HSV action of Oximacro®.

To evaluate the influence of the presence of human proteins on
Oximacro® antiviral activity, the extract was incubated at 37 �C
with 10% human serum from HSV negative donors for 1 or 18 h
prior to using it to pretreat and treat cells in the virus yield
reduction assay in the presence of 10% human serum protein. As



Fig. 5. Oximacro® affects the electrophoretic mobility of HSV glycoproteins gD and gB. 107 purified HSV-1 or HSV-2 PFU were incubated at 37 �C for various lengths of time with
medium or 25 mg/ml Oximacro®. At 30 min, 1, 2, and 3 h of incubation, virion suspensions were lysed and their protein content analyzed by immunoblotting, using anti-HSV-1/2 gB
and anti-HSV-1/2 gD mAbs, or the anti-VP16 antibody. Sizes are indicated in kilodaltons.

Fig. 6. Oximacro® and its partially purified A-type PACs block antibody recognition of the gD and gB ectodomains exposed on the surface of HSV-infected cells. Vero cells
were infected with HSV-1 or HSV-2 at a MOI of 0.5, and at 15 h p.i. cells were left untreated or treated with either Oximacro® (25 mg/ml) or fraction 4 (50 mg/ml) for 3 h. Cells were
then fixed, left not permeabilized, and then immunostained with mAbs against ectodomains of gD and gB. Results are representative of three independent experiments.
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seen in Table 3, Oximacro® retained its activity against HSV-1 and
HSV-2 in the presence of 10% human serum even after an overnight
incubation at 37 �C (Table 2).

Altogether, these findings indicate that the stability of Oxima-
cro® was not affected by parameters which characterize the vaginal
environment.
4. Discussion

This report adds to the growing body of knowledge on the
antiviral activity of polyphenol-enriched extracts derived from
plants. We show for the first time that a cranberry extract highly
enriched in A-type PACs exerts potent dose-dependent antiviral
activity against clinical isolates of HSV-1 and HSV-2, the
mechanism for which involves the inhibition of the initial virus
attachment to the surface of target cells.

Many small molecule phytochemicals, like phenolics, poly-
phenols, terpenes, and flavonoids from a range of plant species
have been reported to exert inhibitory activities on HSV replication
(Khan et al., 2005; Son et al., 2013; Hassan et al., 2015). In particular,
polyphenols have been found to interfere with the early phases of
the HSV replicative cycle and/or with viral particles directly (Khan
et al., 2005; Yang et al., 2007; Schnitzer et al., 2008; Xiang et al.,
2011). To this regard, it has been reported that polyphenol-
enriched extracts from Rumex acetosa and Myrothamnus flabellifo-
lia exert antiviral activity against HSV-1 through the inhibition of
virus attachment (Gescher et al., 2011a, 2011b). The anti-adhesive
effect of the R. acetosa extract was mainly due to its B-type PAC,



Fig. 7. Oximacro® interacts with the purified ectodomain of HSV-1 and HSV-2 gD. (A) SDS-PAGE and immunoblot analysis of recombinant HSV-1 and HSV-2 gD ectodomains.
Purified proteins were analyzed on 12% SDS-polyacrylamide gels. Gels were stained with Coomassie blue, or the proteins analyzed by immunoblotting with an anti-HSV-1/2 gD
mAb. Left panel: Coomassie blue-stained gel of 2 mg of purified recombinant HSV gD. Right panel: Immunoblot analysis with of 200 ng of the same samples as in the left panel. (B)
(C) Oximacro® interacts with recombinant HSV-1 and HSV-2 gD proteins in a concentration- (B) and time-dependent (C) manner. (B) Aliquots of purified recombinant HSV-1
and HSV-2 gD (2 mg) were incubated at 37 �C with medium or increasing amounts of Oximacro® for 3 h, and then mixtures were analyzed by SDS-PAGE. (C) Aliquots of recombinant
gD (2 mg) were incubated at 37 �C for various lengths of time with medium or 6 mg of Oximacro®. At 30 min, 1, 2, and 3 h of incubation, mixtures were analyzed by SDS-PAGE. Gels
were then stained with Coomassie blue. Sizes are indicated in kilodaltons. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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epicatechin-3-O-gallate-(4b / 8)-epicatechin-3-O-gallate, which
was shown to produce gD oligodimerization; thus demonstrating
Table 2
Stability of Oximacro® at different pHs.

Virus and pHs Antiviral activitya

(IC50 mg/ml)

HSV-1
3.0 12.4 ± 0.2
4.0 18.4 ± 1.5
5.0 8.8 ± 1.2
6.0 18.9 ± 1.1
7.0 11.4 ± 1.4
8.0 20.5 ± 1.5
9.0 22.9 ± 1.1
HSV-2
3.0 9.7 ± 0.5
4.0 5.9 ± 1.2
5.0 7.7 ± 0.7
6.0 6.7 ± 1.3
7.0 5.1 ± 1.5
8.0 5.1 ± 2.0
9.0 7.1 ± 1.2

a Oximacro® concentration able to inhibit 50% HSV replication
as determined by a plaque reduction assay in Vero cells. The
values are means ± SD of data derived from three independent
experiments performed in duplicate.
an association between the loss of HSV-1 infectivity and envelope
glycoprotein alterations, consistent with B-type PAC interaction
with the virion surface (Gescher et al., 2011a). It was thus concluded
that the R. acetosa-derived PAC-B dimer blocks HSV-1 adsorption by
directly interacting with viral particles and causing alterations of
the envelope glycoproteins, such as gD, that mediate binding of
viral particles to cell receptors.

This view is further sustained by the observation that epi-
gallocatechin-3-gallate (EGCG), a major polyphenol component of
green tea extract, is able to inhibit the entry of hepatitis C virus
(HCV) by altering the viral particle structure in a way that impairs
Table 3
Stability of Oximacro® in the presence of human serum.

Incubation timea and virus Antiviral activityb

(IC50 mg/ml)

1h
HSV-1 15.9 ± 2.8
HSV-2 9.2 ± 0.9
18h
HSV-1 14.7 ± 1.2
HSV-2 13.8 ± 3.2

a Treatment with 10% human serum at different incubation time.
b Oximacro® concentration able to inhibit 50% HSV replication as deter-

mined by a plaque reduction assay. The values are means ± SD of data derived
from three independent experiments performed in duplicate.



M.E. Terlizzi et al. / Antiviral Research 132 (2016) 154e164162
its attachment to the cell surface (Calland et al., 2015); while its
derivative palmitoyl-EGCG (p-EGCG) prevents HSV-1 adsorption to
Vero cells, most likely by binding to virion glycoproteins (de
Oliveira et al., 2013).

Similarly, in the present study, we have observed that the A-type
PACs-enriched Oximacro® extract prevents HSV-1 and HSV-2
infection via a mechanism associated to alterations of envelope
glycoproteins required for entry, such as gB and gD. The anti-
adhesive effect of Oximacro® on HSV is thus likely due to direct
interactions with the virion surface as suggested by the results of
interaction experiments between Oximacro® and either HSV par-
ticles (Fig. 5) or purified gD protein’s ectodomain (Fig. 7).

The reported ability of polyphenols to bind and aggregate pro-
teins (Charlton et al., 2002; Ebraihimnejad et al., 2014) may explain
the effect of PACs isolated from R. acetosa (Gescher et al., 2011a) or
V. macrocarpon (this study) to bind and alter HSV envelope proteins.
The formation of protein-PACs complexes is thought to be mainly
due to hydrogen bonding, van der Waals and electrostatic in-
teractions, as well as covalent bond formation (Ebraihimnejad et al.,
2014). To this regard, we observed that the alterations issued by
Oximacro® on virion gD and gB and as well as on purified gD
ectodomain were resistant to boiling of protein samples in SDS
sample buffer (Figs. 5 and 7). Therefore, it is likely that exposure of
virions and purified gD ectodomain to Oximacro® results in the
formation of covalent linkages between the A-type PACs and viral
proteins. These covalent interactions may then ultimately result in
protein-protein crosslinking as most PACs have two or more reac-
tive quinone moieties (Ebraihimnejad et al., 2014), thus explaining
the smearing and disappearance of glycoprotein bands observed in
interactions experiments with virions or purified gD (Figs. 5 and 7).
However, at present, it remains still unclear whether the
Fig. 8. Schematic representation of the interaction between the A-type PACs present i
shown in the lower right corner.
interactions between A-type PACs of Oximacro® and HSV envelope
glycoproteins result in binding to specific protein domains, or
whether the A-type PACs simply “coat” the whole glycoproteins
(Fig. 8), thus preventing access to their normal binding partners on
target cells.

The specificity of Oximacro® against HSV and its inactivity
against an adenovirus strain, as shown here, is consistent with the
observation that extracts from both R. acetosa and M. flabellifolia
have no effect on adenovirus replication (Gescher et al., 2011a,
2011b). The differential activity of these plants extracts against
the two different viruses might be ascribed to the different amino
acid sequences of adenoviral capsid proteins versus those of HSV
envelope glycoproteins. Indeed, glycosylation may also affect the
binding, affinity, and specificity of PACs to proteins (Ebraihimnejad
et al., 2014). To this regard, the reported ability of pomegranate
polyphenols to damage the integrity of influenza virions by inter-
acting with surface HA and NA glycoproteins (Sundararajana et al.,
2010), may suggest a certain degree of preference for PACs to bind
to glycoproteins that are abundant on HSV particles, as well as on
the influenza virus envelope.

Considering the significant global incidence, morbidity, and
mortality rates of viral sexually transmitted infections (STIs), the
development of new, safe, topically applied microbicides for their
prevention is of high priority (Obiero et al., 2012). Therefore,
attachment/entry inhibitors that block virus shedding and trans-
mission by close personal contact may provide a realistic method of
microbicide intervention. Furthermore, given the ability of HSV to
establish latency and frequently reactivate, to prevent its trans-
mission the ideal microbicide should prevent the establishment of
infection. From this perspective, natural extracts like Oximacro®

that impede HSV attachment to target cells may be most
n Oximacro® and HSV envelope glycoproteins. A typical Oximacro® PAC-A dimer is
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advantageous. Moreover, several negatively-charged polyanions
and dendrimers that, in recent years, have been selected for
development as candidate microbicides due to their ability to block
virion attachment and entry into target cells provides testimony to
the suitability of this strategy for tackling HSV infections (Rupp
et al., 2007; Nikolic and Piguet, 2010; Luganini et al., 2011).

Based on their mechanism of action, microbicides against HSV
can be categorized into three groups. The first group includes
compounds such as surfactants and detergents that directly inac-
tivate the virus, while the second group consists of compounds that
enhance the natural defense mechanisms of mucosal surfaces;
compounds of both these groups are quite nonspecific and may
exert a broad spectrum of antiviral activity. The third group con-
tains molecules that impair viral attachment and/or entry into host
cells and that may display a certain degree of specificity (Keller
et al., 2005; Nikolic and Piguet, 2010). Oximacro®, as a candidate
microbicide, clearly belongs to this last category. Nevertheless,
regardless of their mechanism of action, microbicides directed
against HSV need to address fundamental requirements, such as
safety, efficacy, and low cost (Friend, 2010). Thus, while the wide-
spread use of cranberry juice, juice concentrate, and different for-
mulations of dried extracts to prevent UTIs bears witness to the
high safety profile of these products, it also calls for an in-depth
assessment of their efficacy in both in vitro and in vivo models of
HSV infection in order that such products can be proposed for the
prevention of herpesvirus infections in the near future.

Topical microbicides against genital herpes infection should be
applied directly to the genital tract in order to protect against the
acquisition of STIs; thus it remains possible that the unique phys-
iological properties of the vagina could affect their activity. For this
reason, we tested the stability of Oximacro® at various pH and in
the presence of human serum proteins. The results showed that
these treatments did not reduce the stability of Oximacro® to any
significant degree, thus suggesting that Oximacro® is suitable for
vaginal application without incurring any significant loss of anti-
viral activity. Finally, besides its anti-HSV activity, Oximacro® was
also recently observed to be active also against HIV-1 infections (C.
Parolin, M.E. Maffei, G. Gribaudo, unpublished results). Therefore,
this extract has the potential for further development as the active
ingredient of broad-spectrum microbicides with the goal of pre-
venting transmission of the major viral sexually transmitted
infections.

5. Conclusion

In conclusion, the results of this study indicate that the ability of
the cranberry extract Oximacro® to target HSV-1 and HSV-2
attachment could be exploited to prevent the establishment of
herpesvirus infections. The in vitro anti-HSV activity of Oximacro®

thus calls for further studies to be performed to evaluate its efficacy
and safety in murine models of acute infection, in order to validate
its development as a novel candidate microbicide of natural origin
for the prevention of HSV infections.
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