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Abstract

Let Σ be a σ -algebra of subsets of a non-empty set Ω . Let B(Σ ) be the Banach lattice of
all bounded Σ -measurable real-valued functions defined on Ω , equipped with the natural Mackey
topology τ(B(Σ ), ca(Σ )). We study (τ (B(Σ ), ca(Σ )), ξ)-continuous linear operators from B(Σ ) to
a quasicomplete locally convex space (E, ξ). A generalized Nikodym convergence theorem and a
Vitali–Hahn–Saks type theorem for operators on B(Σ ) are obtained. It is shown that the space
(B(Σ ), τ (B(Σ ), ca(Σ ))) has the strict Dunford–Pettis property. Moreover, a Yosida–Hewitt type
decomposition for weakly compact operators on B(Σ ) is given.
c⃝ 2011 Royal Netherlands Academy of Arts and Sciences. Published by Elsevier B.V. All rights reserved.
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1. Introduction and terminology

Properties of bounded linear operators from the space B(Σ ) to a Banach space E can be
expressed in terms of the properties of their representing vector measures (see [6, Theorem
2.2], [7, Theorem 1, p. 148], [11, Corollary 12], [16, Theorem 10], [18, Theorem 2.1]). In this
paper we study linear operators from B(Σ ) to a quasicomplete locally convex space (E, ξ). In
particular, we obtain a Vitali–Hahn–Saks type theorem and a Nikodym convergence type theorem
for (τ (B(Σ ), ca(Σ )), ξ)-continuous linear operators T : B(Σ ) → E . It is shown that the space
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(B(Σ ), τ (B(Σ ), ca(Σ ))) has the strict Dunford–Pettis property. Moreover, a Yosida–Hewitt type
decomposition for weakly compact operators on B(Σ ) is given.

For terminology concerning vector lattices we refer the reader to [2,3,1]. We denote by
σ(L , K ), τ (L , K ) and β(L , K ) the weak topology, the Mackey topology and the strong topology
on L with respect to the dual pair ⟨L , K ⟩. We assume that (E, ξ) is a locally convex Hausdorff
space (for short, lcHs). By (E, ξ)′ or E ′

ξ we denote the topological dual of (E, ξ). Recall that
(E, ξ) is a strongly Mackey space if every relatively countably σ(E ′

ξ , E)-compact subset of E ′
ξ

is ξ -equicontinuous. By E ′′
ξ we denote the bidual of (E, ξ), i.e., E ′′

ξ = (E ′
ξ , β(E ′

ξ , E))′.
Let Σ be a σ -algebra of subsets of a non-empty set Ω . By ca(Σ , E) we denote the space

of all ξ -countably additive vector measures m : Ω → E , and we will write ca(Σ ) if E = R.
By S(Σ ) we denote the space of all real-valued Σ -simple functions defined on Ω . Then S(Σ )

can be endowed with the (locally convex) universal measure topology τ of Graves [10], that is,
τ is the coarsest locally convex topology on S(Σ ) such that the integration map Tm : S(Σ ) ∋

s →

Ω s dm ∈ E is continuous for every locally convex space (E, ξ) and every m ∈ ca(Σ , E)

(see [10, p. 5]). Let (L(Σ ), τ̂ ) stand for the completion of (S(Σ ), τ ). It is known that both
(S(Σ ), τ ) and (L(Σ ), τ̂ ) are strongly Mackey spaces (see [10, Corollaries 11.7 and 11.8]). It
follows that τ = τ(S(Σ ), ca(Σ )) and τ̂ = τ(L(Σ ), ca(Σ )) (see [10,11]). Moreover, if (E, ξ)

is complete in its Mackey topology, then for each m ∈ ca(Σ , E), the integration map Tm can be
uniquely extended to a (τ̂ , ξ)-continuous map Tm : L(Σ ) → E (see [11]).

Let B(Σ ) denote the Dedekind σ -complete Banach lattice of all bounded Σ -measurable
functions u : Ω → R, provided with the uniform norm ∥ · ∥. Then B(Σ ) is the ∥ · ∥-closure
of S(Σ ), so S(Σ ) ⊂ B(Σ ) ⊂ L(Σ ) and the restriction τ̂ from L(Σ ) to B(Σ ) coincides
with the Mackey topology τ(B(Σ ), ca(Σ )) (see [11, p. 199]). Moreover, (B(Σ ), τ̂ |B(Σ )) is a
strongly Mackey space (see [10, Corollary 11.8]). Note that the topology γ1 on B(Σ ) studied
by Khurana [12], coincides with the topology τ̂ |B(Σ )(=τ(B(Σ ), ca(Σ ))) (see [12, Theorem 2,
Corollary 6]).

Denote by ba(Σ ) the Banach lattice of all bounded finitely additive measures ν : Σ → R
with the norm ∥ν∥ = |ν|(Ω), where |ν|(A) denotes the variation of ν on A ∈ Σ . It is well
known that the Banach dual B(Σ )∗ of B(Σ ) can be identified with ba(Σ ) through the mapping
ba(Σ ) ∋ ν → Φν ∈ B(Σ )∗, where

Φν(u) =


Ω

u dν for u ∈ B(Σ ).

Then ∥Φν∥ = |ν|(Ω) (see [1, Theorem 13.4]). The σ -order continuous dual B(Σ )∗c of B(Σ )

is a band of B(Σ )∗ (separating the points of B(Σ )) and B(Σ )∗c can be identified with ca(Σ )

(see [1, Theorem 13.5]). Hence

(B(Σ ), τ̂ |B(Σ ))
′
= (B(Σ ), τ (B(Σ ), ca(Σ )))′ = B(Σ )∗c .

Moreover, it is well known that τ(B(Σ ), ca(Σ )) is a locally solid σ -Lebesgue topology on
B(Σ ) (see [3, Ex. 18, p. 178], [12, Theorem 3]).

2. σ -smooth operators on B(Σ )

In this section we study (τ (B(Σ ), ca(Σ )), ξ)-continuous linear operators from B(Σ ) to a
locally convex Hausdorff space (E, ξ). Recall that a sequence (un) in B(Σ ) is order convergent to

u ∈ B(Σ ) (in symbols, un
(o)
−→ u) if there is a sequence (vn) in B(Σ ) such that |un −u| ≤ vn ↓ 0

in B(Σ ) (see [3]).
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Definition 2.1. A linear operator T : B(Σ ) → E is said to be σ -smooth if T (un) → 0 in ξ

whenever un
(o)
−→ 0 in B(Σ ).

Proposition 2.1. For a linear operator T : B(Σ ) → E the following statements are equivalent:

(i) e′
◦ T ∈ B(Σ )∗c for each e′

∈ E ′
ξ .

(ii) T is (σ (B(Σ ), ca(Σ )), σ (E, E ′
ξ ))-continuous.

(iii) T is (τ (B(Σ ), ca(Σ )), ξ)-continuous.
(iv) T is (τ (B(Σ ), ca(Σ )), ξ)-sequentially continuous.
(v) T is σ -smooth.

Proof. (i) ⇐⇒ (ii) See [2, Theorem 9.26].
(ii) =⇒ (iii) Assume that T is (σ (B(Σ ), ca(Σ )), σ (E, E ′

ξ ))-continuous. Then T is
(τ (B(Σ ), ca(Σ )), τ (E, E ′

ξ ))-continuous (see [2, Ex. 11, p. 149]). It follows that T is
(τ (B(Σ ), ca(Σ )), ξ)-continuous because ξ ⊂ τ(E, E ′

ξ ).
(iii) =⇒ (iv) It is obvious.

(iv) =⇒ (v) Assume that T is (τ (B(Σ ), ca(Σ )), ξ)-sequentially continuous, and let un
(o)
−→ 0

in B(Σ ). Then un → 0 for τ(B(Σ ), ca(Σ )) because τ(B(Σ ), ca(Σ )) is a σ -Lebesgue topology.
Hence T (un) → 0 for ξ , i.e., T is σ -smooth.

(v) =⇒ (i) It is obvious. �

Note that every σ -smooth operator T : B(Σ ) → E is (∥ · ∥, ξ)-continuous because
τ(B(Σ ), ca(Σ )) ⊂ T∥·∥.

Let Lτ,ξ (B(Σ ), E) stand for the space of all (τ (B(Σ ), ca(Σ )), ξ)-continuous linear operators
from B(Σ ) to E , equipped with the topology Ts of simple convergence. Then Tα → T for Ts in
Lτ,ξ (B(Σ ), E) if and only if Tα(u) → T (u) in ξ for all u ∈ B(Σ ).

The following result will be of importance (see [16, Theorem 2]).

Theorem 2.2. Let K be a Ts-compact subset of Lτ,ξ (B(Σ ), E). If C is a σ(E ′
ξ , E)-closed and

ξ -equicontinuous subset of E ′
ξ , then {e′

◦ T : T ∈ K, e′
∈ C} is a σ(B(Σ )∗c , B(Σ ))-compact

subset of B(Σ )∗c .

Now using Theorem 2.2 and the property that (B(Σ ), τ (B(Σ ), ca(Σ ))) is a strongly Mackey
space, we are ready to prove our main result.

Theorem 2.3. Let K be a subset of Lτ,ξ (B(Σ ), E). Then the following statements are
equivalent:

(i) K is relatively Ts-compact.
(ii) K is (τ (B(Σ ), ca(Σ )), ξ)-equicontinuous and for each u ∈ B(Σ ), the set {T (u) : T ∈ K}

is relatively ξ -compact in E.

Proof. (i) =⇒ (ii) Assume that K is relatively Ts-compact. Let W be an absolutely convex
and ξ -closed neighbourhood of 0 for ξ in E . Then the polar W 0 of W , with respect to the
dual pair ⟨E, E ′

ξ ⟩, is a σ(E ′
ξ , E)-closed and ξ -equicontinuous subset of E ′

ξ (see [2, Theorem

9.21]). Hence in view of Theorem 2.2 the set H = {e′
◦ T : T ∈ K, e′

∈ W 0
} in

B(Σ )∗c is relatively σ(B(Σ )∗c , B(Σ ))-compact. Since (B(Σ ), τ (B(Σ ), ca(Σ ))) is a strongly
Mackey space, the set H is τ(B(Σ ), ca(Σ ))-equicontinuous. It follows that there exists a
τ(B(Σ ), ca(Σ ))-neighbourhood V of 0 in B(Σ ) such that H ⊂ V 0, where V 0 denotes the
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polar of V with respect to the dual pair ⟨B(Σ ), B(Σ )∗c⟩. It follows that for each T ∈ K we have
that {e′

◦ T : e′
∈ W 0

} ⊂ V 0, i.e., if e′
∈ W 0, then |e′(T (u))| ≤ 1 for all u ∈ V . This means that

for each T ∈ K we get W 0
⊂ T (V )0. Hence T (V ) ⊂ T (V )00

⊂ W 00
= W for each T ∈ K, i.e.,

K is (τ (B(Σ ), ca(Σ )), ξ)-equicontinuous. Clearly, for each u ∈ B(Σ ), the set {T (u) : T ∈ K}

is relatively ξ -compact in E .
(ii) =⇒ (i) It follows from [5, Chap. 3, Section 3.4, Corollary 1]. �

Corollary 2.4. Assume that K is a relatively Ts-compact subset of Lτ,ξ (B(Σ ), E). Then
K is uniformly σ -smooth, i.e., for each ξ -continuous seminorm p on E we have that

supT ∈K p(T (un)) → 0 whenever un
(o)
−→ 0 in B(Σ ).

Proof. In view of Theorem 2.3 K is (τ (B(Σ ), ca(Σ )), ξ)-equicontinuous. Let p be a ξ -
continuous seminorm on E , and let ε > 0 be given. Then there exists a τ(B(Σ ), ca(Σ ))-
neighbourhood V of 0 in B(Σ ) such that for each T ∈ K we have p(T (u)) ≤ ε for all

u ∈ V . Assume that (un) is a sequence in B(Σ ) such that un
(o)
−→ 0 in B(Σ ). Then un −→ 0

for τ(B(Σ ), ca(Σ )) because τ(B(Σ ), ca(Σ )) is a σ -Lebesgue topology, and hence there exists
nε ∈ N such that un ∈ V for n ≥ nε. Hence supT ∈K p(T (un)) ≤ ε for n ≥ nε. �

3. Integration operators on B(Σ )

For terminology and basic results concerning the integration with respect to vector measures
we refer the reader to [14,15,13]. In this section we study integration operators on B(Σ ) in terms
of their representing vector measures.

Let (E, ξ) be a quasicomplete lcHs and m : Σ → E be a ξ -bounded additive vector measure
(i.e., the range of m is ξ -bounded in E). Given u ∈ B(Σ ), let (sn) be a sequence of Σ -simple
functions that converges uniformly to u on Ω . Following [14, Definition 1] we say that u is
m-integrable and define

Ω
u dm := ξ − lim


Ω

sn dm.

The

Ω u dm is well defined (see [14, Lemma 5]) and the map Tm : B(Σ ) → E given by

Tm(u) =

Ω u dm is (∥ · ∥, ξ)-continuous and linear, and for each e′

∈ E ′
ξ

e′


Ω

u dm


=


Ω

u d(e′
◦ m) for u ∈ B(Σ )

(see [14, Lemma 5]). Conversely, let T : B(Σ ) → E be a (∥ · ∥, ξ)-continuous linear operator,
and let m(A) = T (1A) for A ∈ Σ . Then m : Σ → E is a ξ -bounded vector measure, called the
representing measure of T and Tm(u) = T (u) for u ∈ B(Σ ) (see [14, Definition 2]).

An important example of a quasicomplete locally convex Hausdorff space is the space
L(X, Y ) of all bounded linear operators between Banach spaces X and Y , provided with the
strong operator topology.

Now we present a characterization of (τ (B(Σ ), ca(Σ )), ξ)-continuous linear operators T :

B(Σ ) → E in terms of their representing measures.

Proposition 3.1. Assume that (E, ξ) is a quasicomplete lcHs. Let T : B(Σ ) → E be a (∥ ·∥, ξ)-
continuous linear operator and m : Σ → E be its representing measure. Then the following
statements are equivalent:
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(i) e′
◦ m ∈ ca(Σ ) for each e′

∈ E ′
ξ .

(ii) e′
◦ T ∈ B(Σ )∗c for each e′

∈ E ′
ξ .

(iii) T is (τ (B(Σ ), ca(Σ )), ξ)-continuous.
(iv) T is σ -smooth.
(v) T (un) −→ 0 for ξ whenever un(ω) −→ 0 for each ω ∈ Ω and supn ∥un∥ < ∞.

(vi) m is ξ -countably additive.
In particular, if (E, ∥ · ∥E ) is a Banach space, then each of the statements (i)–(vi) is
equivalent to the following:

(vii) T is (τ (B(Σ ), ca(Σ )), ∥ · ∥E )-weakly compact, i.e., T (V ) is relatively weakly compact in
E for some τ(B(Σ ), ca(Σ ))-neighbourhood V of 0 in B(Σ ).

Proof. (i) ⇐⇒ (ii) For each e′
∈ E ′

ξ we have

(e′
◦ T )(u) =


Ω

u d(e′
◦ m) for all u ∈ B(Σ ).

Hence, e′
◦ m ∈ ca(Σ ) if and only if e′

◦ T ∈ B(Σ )∗c (see [1, Theorem 13.5]).
(ii) ⇐⇒ (iii) ⇐⇒ (iv) See Proposition 2.1.
(iv) =⇒ (v) Assume that (iv) holds and let (un) be a sequence in B(Σ ) such that un(ω) −→ 0

for each ω ∈ Ω and sup ∥un∥ < ∞. Let vn(ω) = supm≥n |um(ω)| for ω ∈ Ω , n ∈ N. Then

vn ∈ B(Σ ) and |un(ω)| ≤ vn(ω) ↓ 0 for all ω ∈ Ω and n ∈ N. It follows that un
(o)
−→ 0 in B(Σ )

and by (iv) T (un) → 0 for ξ .
(v) =⇒ (vi) Assume that (v) holds, and let An ↓ ∅, (An) ⊂ Σ . Then 1An (ω) ↓ 0 for ω ∈ Ω

and supn ∥1An ∥ ≤ 1. It follows that m(An) = T (1An ) → 0 for ξ , i.e., m is ξ -countably additive.
(vi) =⇒ (i) It is obvious.
Assume that (E, ∥ · ∥E ) is a Banach space. Then by [11, Corollary 12] we have (vi) ⇔

(vii). �

Graves and Ruess [11, Theorem 7] characterized relative compactness in ca(Σ , E) in the
topology Ts of simple convergence (convergence on each A ∈ Σ ) in terms of the properties of
the integration operators from S(Σ ) to E or from L(Σ ) to E .

For a subset M of ca(Σ , E) let KM = {Tm ∈ Lτ,ξ (B(Σ ), E) : m ∈ M}. Now using
[11, Theorem 7] and Theorem 2.3 we are ready to state the following generalized
Vitali–Hahn–Saks theorem for operators from B(Σ ) to E (see [16, Theorem 10]).

Theorem 3.2. Assume that (E, ξ) is a quasicomplete lcHs that is complete in its Mackey
topology (in particular, E is a Banach space). Then for a set M in ca(Σ , E) the following
statements are equivalent:

(i) KM is a relatively Ts-compact set in Lτ,ξ (B(Σ ), E).
(ii) KM is (τ (B(Σ ), ca(Σ )), ξ)-equicontinuous and for each u ∈ B(Σ ), the set {Tm(u) : m ∈

M} is relatively ξ -compact in E.
(iii) M is uniformly ξ -countably additive and for each A ∈ Σ , the set {m(A) : m ∈ M} is

relatively ξ -compact in E.
(iv) M is a relatively Ts-compact set in ca(Σ , E).

Proof. (i) ⇐⇒ (ii) See Theorem 2.3.
(ii) =⇒ (iii) Assume that (ii) holds and let An ↓ ∅, (An) ⊂ Σ . Then 1An ↓ ∅ in B(Σ ), and

we can apply Proposition 3.1 and Corollary 2.4.
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(iii) =⇒ (ii) Assume that (iii) holds. Then in view of [11, Theorem 7] the set KM = {Tm :

m ∈ M} is (τ̂ , ξ)-equicontinuous and KM is a relatively Ts-compact set in Lτ̂ ,ξ (L(Σ ), E)

(=the space of all (τ̂ , ξ)-continuous linear operators from L(Σ ) to E). It follows that KM is
(τ (B(Σ ), ca(Σ )), ξ)-equicontinuous and for each u ∈ B(Σ ), the set {Tm(u) : m ∈ M} is
relatively ξ -compact in E , i.e., (ii) holds.

(iii) ⇐⇒ (iv) See [11, Theorem 7]. �

Recall that the Nikodym convergence theorem says that if (mk) is a sequence of measures
on a σ -algebra Σ taking values in a locally convex space (E, ξ) and m(A) := ξ − lim mk(A)

for each A ∈ Σ , then m : Σ → E is ξ -countably additive and the family {mk : k ∈ N} is
uniformly ξ -countably additive (see [8, Theorem 8.6], [11, Theorem 9], [16, Corollary 9]). Now
we shall prove a generalized Nikodym convergence type theorem for operators from B(Σ ) to a
quasicomplete lcHs (E, ξ).

For this purpose we first establish some terminology. For each ξ -continuous seminorm p on
E , let E p = (E, p) be the associated seminormed space. Denote by (E p, ∥ · ∥

∼
p ) the completion

of the quotient normed space E/p−1(0). Let Πp : E p → E/p−1(0) ⊂ E p be the canonical
quotient map (see [14, p. 92]).

Given a vector measure m : Σ → E , let m p : Σ → E p be given by

m p(A) := (Πp ◦ m)(A) for A ∈ Σ .

Then m p is a Banach space-valued measure on Σ . We define the p-semivariation ∥m∥p of m
by

∥m∥p(A) := ∥m p∥(A) for A ∈ Σ ,

where ∥m p∥ denotes the semivariation of m p : Σ → E p. Note that m is ξ -bounded if and
only if ∥m∥p(Ω) < ∞ for each ξ -continuous seminorm p on E . Moreover, we have (see [14,
Lemma 7])

∥m∥p(Ω) = ∥Tm∥p = sup


p


Ω

u dm


: u ∈ B(Σ ), ∥u∥ ≤ 1


. (3.1)

Now we can prove our desired theorem.

Theorem 3.3. Assume that (E, ξ) is a quasicomplete lcHs. Let mk : Σ → E be ξ -countably
additive vector measures for k ∈ N and assume that m(A) = ξ − lim mk(A) exists for each
A ∈ Σ . Then the following statements hold:

(i) m : Σ → E is a ξ -countably additive vector measure, and the integration operator
Tm : B(Σ ) → E is (τ (B(Σ ), ca(Σ )), ξ)-continuous.

(ii) Tm(u) = ξ − limk Tmk (u) for all u ∈ B(Σ ).
(iii) The family {Tmk : k ∈ N} is (τ (B(Σ ), ca(Σ )), ξ)-equicontinuous.

Proof. In view of the Nikodym convergence theorem (see [8, Theorem 8.6]) the vector measure
m : Σ → E is ξ -countably additive, and by Proposition 3.1 Tm : B(Σ ) → E is
(τ (B(Σ ), ca(Σ )), ξ)-continuous.

Let p be a ξ -continuous seminorm on E . We show that p(Tmk (u)− Tm(u)) → 0 for each u ∈

B(Σ ). Indeed, since p(mk(A)−m(A)) → 0 for all A ∈ Σ , we have ∥Πp(mk(A)−m(A))∥∼
p →

0, i.e., ∥(mk)p(A) − m p(A)∥∼
p → 0 for all A ∈ Σ . It follows that supk ∥(mk)p(A)∥∼

p < ∞ for



M. Nowak / Indagationes Mathematicae 23 (2012) 113–122 119

all A ∈ Σ , and in view of the Nikodym boundedness theorem (see [7, Theorem 1, p. 14]) and
(3.1) we get

c = sup
k

∥Tmk ∥p = sup
k

∥mk∥p(Ω) < ∞.

Let u ∈ B(Σ ) and ε > 0 be given. Choose s0 ∈ S(Σ ) such that ∥u − s0∥ ≤
ε

3a , where
a = max(c, ∥Tm∥p). Then there is k0 ∈ N such that p(Tmk (s0)− Tm(s0)) ≤

ε
3 for k ≥ k0. Hence

for k ≥ k0 we have

p(Tmk (u) − Tm(u)) ≤ p(Tm(u − s0)) + p(Tm(s0) − Tmk (s0)) + p(Tmk (s0) − Tmk (u))

≤ ∥Tm∥p · ∥u − s0∥ + p(Tm(s0) − Tmk (s0)) + ∥Tmk ∥p · ∥s0 − u∥

≤ a ·
ε

3a
+

ε

3
+ a ·

ε

3a
= ε.

It follows that Tmk → Tm in Lτ,ξ (B(Σ ), E) for Ts . Since {Tmk : k ∈ N} ∪ {Tm} is a Ts-
compact subset of Lτ,ξ (B(Σ ), E), by Theorem 2.3 the set {Tmk : k ∈ N} is (τ (B(Σ ), ca(Σ )), ξ)-
equicontinuous. �

Finally, we shall show that every (τ (B(Σ ), ca(Σ )), ξ)-continuous linear operator T :

B(Σ ) → E is a strict Dunford–Pettis operator.

Theorem 3.4. Assume that (E, ξ) is a quasicomplete lcHs. If T : B(Σ ) → E is
a (τ (B(Σ ), ca(Σ )), ξ)-continuous linear operator, then T maps σ(B(Σ ), B(Σ )∗c)-Cauchy
sequences in B(Σ ) onto ξ -convergent sequences in E.

Proof. For each ω ∈ Ω let Φω(u) = u(ω) for all u ∈ B(Σ ). Note that Φω ∈ B(Σ )∗c
(see Proposition 3.1). Let (un) be a σ(B(Σ ), B(Σ )∗c)-Cauchy sequence in B(Σ ). Then the set
{un : n ∈ N} is τ(B(Σ ), ca(Σ ))-bounded, and it follows that supn ∥un∥ < ∞ (see [12, Theorem
2]). It follows that for each ω ∈ Ω , lim un(ω) = lim Φω(un) = u0(ω) exists in R. It follows that
u0 : Ω → R is Σ -measurable, and since supn ∥un∥ < ∞, we obtain that u0 is bounded, i.e.,
u0 ∈ B(Σ ).

Let m(A) = T (1A) for A ∈ Σ . Then by Proposition 3.1, m is ξ -countably additive. Hence
making use of the Lebesgue type convergence theorem (see [15, Proposition 7, p. 4854]), u0 is
m-integrable and we have

T (un) =


Ω

un dm
ξ
−→


Ω

u0 dm ∈ E .

Thus the proof is complete. �

As a consequence of Theorem 3.4 we have the following result (see [9, Section 9.4]).

Corollary 3.5. The space (B(Σ ), τ (B(Σ ), ca(Σ ))) has the strict Dunford–Pettis property.

4. Yosida–Hewitt decomposition for weakly compact operators on B(Σ )

In this section we derive a Yosida–Hewitt type decomposition theorem for weakly compact
operators on B(Σ ). In view of the Yosida–Hewitt decomposition theorem (see [17]) we have

ba(Σ ) = ca(Σ ) ⊕ pfa(Σ ),
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where pfa(Σ ) (=ca(Σ )d—the disjoint complement of ca(Σ ) in ba(Σ )) stands for the band of
purely finitely additive members of ba(Σ ). On the other hand, we have (see [2, Theorem 3.8])

B(Σ )∗ = B(Σ )∗c ⊕ (B(Σ )∗c)
d ,

where (B(Σ )∗c)
d stands for the disjoint complement of B(Σ )∗c in B(Σ )∗. It follows that

(B(Σ )∗c)
d

= {Φν : ν ∈ pfa(Σ )}.

Since B(Σ ) is an AM-space, ba(Σ ) is an AL-space (see [1, Theorem 13.2]). This means that
∥ν∥ = ∥νc∥ + ∥νp∥ and ∥Φν∥ = ∥Φνc∥ + ∥Φνp∥, where ν = νc + νp with νc ∈ ca(Σ ) and
νp ∈ pfa(Σ ).

Definition 4.1. A (∥ · ∥, ξ)-continuous linear operator T : B(Σ ) → E is said to be purely
non-σ -smooth if e′

◦ T ∈ (B(Σ )∗c)
d for each e′

∈ E ′
ξ .

Moreover, since (B(Σ )∗c)
d

= {Φν : ν ∈ pfa(Σ )} we have the following result.

Proposition 4.1. Assume that (E, ξ) is a quasicomplete lcHs. Let T : B(Σ ) → E be a (∥ ·∥, ξ)-
continuous linear operator and m : Σ → E be its representing measure. Then the following
statements are equivalent:

(i) T is purely non-σ -smooth.
(ii) e′

◦ m ∈ pfa(Σ ) for each e′
∈ E ′

ξ .

A vector measure m : Σ → E is said to be ξ -strongly bounded (ξ -exhausting) if m(An) → 0
in ξ for each pairwise disjoint sequence (An) in Σ . It is well known that each ξ -countably
additive measure m : Σ → E is ξ -strongly bounded. The following theorem is of importance
(see [14, Lemma 3 and Theorem 1]).

Theorem 4.2. Assume that (E, ξ) is a quasicomplete lcHs. Let T : B(Σ ) → E be a (∥ · ∥, ξ)-
continuous linear operator and m : Σ → E be its representing measure. Then the following
statements are equivalent:

(i) T is weakly compact, i.e., T maps bounded sets in B(Σ ) onto relatively σ(E, E ′
ξ )-compact

sets in E.
(ii) m is ξ -strongly bounded.

From Theorem 4.2 and Proposition 3.1 it follows that every σ -smooth operator from B(Σ ) to
a quasicomplete lcHs is weakly compact.

Now we are ready to prove the following Yosida–Hewitt type decomposition for weakly
compact operators from B(Σ ) to a quasicomplete lcHs.

Theorem 4.3. Assume that (E, ξ) is a quasicomplete lcHs. Let T : B(Σ ) → E be a weakly
compact operator and m : Σ → E be its representing measure. Then:

(i) m can be uniquely decomposed as m = mc + m p, where mc : Σ → E is ξ -countably
additive, m p : Σ → E is ξ -strongly bounded and e′

◦ m p ∈ pfa(Σ ) for each e′
∈ E ′

ξ .
(ii) T can be uniquely decomposed as T = T1 + T2, where T1 is σ -smooth and T2 is weakly

compact and purely non σ -smooth, and

T1(u) =


Ω

u dmc and T2(u) =


Ω

u dm p for all u ∈ B(Σ ).
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Proof. For Φ ∈ B(Σ )∗ we have Φ = Φ1 + Φ2, where Φ1 ∈ B(Σ )∗c and Φ2 ∈ (B(Σ )∗c)
d . Then

we have two natural projections

Pk : B(Σ )∗ −→ B(Σ )∗,

where Pk(Φ) = Φk and ∥Pk∥ ≤ 1 for k = 1, 2. Now consider the conjugate mappings

P ′

k : B(Σ )∗∗
−→ B(Σ )∗∗

defined by P ′

k(V )(Φ) = V (Pk(Φ)) for V ∈ B(Σ )∗∗ (=the Banach bidual of B(Σ )).
Since T is (σ (B(Σ ), B(Σ )∗), σ (E, E ′

ξ ))-continuous (see [9, Corollary 8.6.5]), we can define
the conjugate mapping

T ′
: E ′

ξ −→ B(Σ )∗

by putting T ′(e′) = e′
◦ T for e′

∈ E ′
ξ . Then T ′ is (β(E ′

ξ , E), β(B(Σ )∗, B(Σ )))-continuous
(see [9, Proposition 8.7.1]), and hence T ′ is (σ (E ′

ξ , E ′′
ξ ), σ (B(Σ )∗, B(Σ )∗∗))-continuous. It

follows that one can define the conjugate mapping (see [2, Theorem 9.2])

T ′′
: B(Σ )∗∗

−→ E ′′
ξ

by putting T ′′(V )(e′) = V (T ′(e′)) for V ∈ B(Σ )∗∗ and e′
∈ E ′

ξ . Then T ′′ is
(σ (B(Σ )∗∗, B(Σ )∗), σ (E ′′

ξ , E ′
ξ ))-continuous.

We have a natural isometric embedding π : B(Σ ) → B(Σ )∗∗, where π(u)(Φ) = Φ(u) for
all Φ ∈ B(Σ )∗, u ∈ B(Σ ). Then (P ′

k ◦ π)(u) = π(u) ◦ Pk for u ∈ B(Σ ).
Let i : E → E ′′

ξ stand for the canonical mapping, where i(e)(e′) = e′(e) for e′
∈ E ′

ξ and
e ∈ E . Moreover, let j : i(E) −→ E denote the left inverse of i , i.e., j ◦ i = idE . Then
T ′′

◦ π = i ◦ T .
By the Gantmacher type theorem (see [9, Theorem 9.3.2]) we have

T ′′(B(Σ )∗∗) ⊂ i(E).

Define linear mappings (k = 1, 2)

Tk := j ◦ T ′′
◦ P ′

k ◦ π : B(Σ ) −→ E .

To show that Tk : B(Σ ) → E are weakly compact, note that for u ∈ BB(Σ ) (=the closed unit
ball in B(Σ )) we have

∥P ′

k(π(u))∥B(Σ )∗∗ = ∥π(u) ◦ Pk∥B(Σ )∗∗ ≤ 1.

Hence by the Banach–Alaoglou theorem the set {P ′

k(π(u)) : u ∈ BB(Σ )} is relatively
σ(B(Σ )∗∗, B(Σ )∗)-compact in B(Σ )∗∗. Since T ′′ is (σ (B(Σ )∗∗, B(Σ )∗), σ (E ′′

ξ , E ′
ξ ))-

continuous and T ′′(B(Σ )∗∗) ⊂ i(E), the set {T ′′(P ′

k(π(u))) : u ∈ BB(Σ )} is relatively
σ(i(E), E ′

ξ )-compact in i(E). But j is (σ (i(E), E ′
ξ ), σ (E, E ′

ξ ))-continuous, so the set
Tk(BB(Σ )) = { j (T ′′(P ′

k(π(u)))) : u ∈ BB(Σ )} is relatively σ(E, E ′
ξ )-compact in E , and this

means that the Tk are weakly compact.
For A ∈ Σ let us put

mc(A) := T1(1A) and m p(A) := T2(1A).

In view of Theorem 4.2 the measures mc : Σ → E and m p : Σ → E are ξ -strongly bounded,
and we have

T1(u) =


Ω

u dmc and T2(u) =


Ω

u dm p for all u ∈ B(Σ ).
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Note that for each e′
∈ E ′

ξ and u ∈ B(Σ ) we have

(e′
◦ Tk)(u) = e′( j ◦ (T ′′

◦ P ′

k ◦ π)(u))

= ((T ′′
◦ P ′

k ◦ π)(u))(e′)

= (T ′′(π(u) ◦ Pk))(e
′)

= (π(u) ◦ Pk)(T ′(e′))

= π(u)(Pk(e
′
◦ T )) = Pk(e

′
◦ T )(u).

Hence e′
◦ T1 = P1(e′

◦ T ) ∈ B(Σ )∗c , and by Proposition 3.1, T1 is σ -smooth. Moreover,
e′

◦ T2 = P2(e′
◦ T ) ∈ (B(Σ )∗c)

d , i.e., T2 is purely non-σ -smooth. For every e′
∈ E ′

ξ and
u ∈ B(Σ ) we have

e′(T1(u) + T2(u)) = P1(e
′
◦ T )(u) + P2(e

′
◦ T )(u) = e′(T (u)),

so T1(u) + T2(u) = T (u). The uniqueness of the decomposition T = T1 + T2 follows from the
uniqueness of the decomposition e′

◦ T = e′
◦ T1 + e′

◦ T2 for each e′
∈ E ′

ξ .
Moreover, for each e′

∈ E ′
ξ we have

(e′
◦ T1)(u) =


Ω

u d(e′
◦ mc) and (e′

◦ T2)(u) =


Ω

u d(e′
◦ m p) for u ∈ B(Σ ).

Hence by Proposition 3.1, mc is ξ -countably additive, and by Proposition 4.1, e′
◦ m p ∈

pfa(Σ ). Clearly, m = mc + m p. �

Remark. A Yosida–Hewitt type decomposition theorem for order-weakly compact operators
acting from a vector lattice to a Banach space was derived in [4, Theorem 4].
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