Vector measures and Mackey topologies

Marian Nowak
Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Góra, Poland

Received 15 October 2011; accepted 6 November 2011

Communicated by B. de Pagter

Abstract

Let Σ be a σ-algebra of subsets of a non-empty set Ω. Let $B(\Sigma)$ be the Banach lattice of all bounded Σ-measurable real-valued functions defined on Ω, equipped with the natural Mackey topology $\tau(B(\Sigma), c a(\Sigma))$. We study $(\tau(B(\Sigma), c a(\Sigma)), \xi)$-continuous linear operators from $B(\Sigma)$ to a quasicomplete locally convex space (E, ξ). A generalized Nikodym convergence theorem and a Vitali-Hahn-Saks type theorem for operators on $B(\Sigma)$ are obtained. It is shown that the space $(B(\Sigma), \tau(B(\Sigma), c a(\Sigma)))$ has the strict Dunford-Pettis property. Moreover, a Yosida-Hewitt type decomposition for weakly compact operators on $B(\Sigma)$ is given. © 2011 Royal Netherlands Academy of Arts and Sciences. Published by Elsevier B.V. All rights reserved.

Keywords: Bounded measurable functions; σ-smooth operators; Mackey topologies; Strongly Mackey space; Weakly compact operators; Countably additive measures; Strict Dunford-Pettis property

1. Introduction and terminology

Properties of bounded linear operators from the space $B(\Sigma)$ to a Banach space E can be expressed in terms of the properties of their representing vector measures (see [6, Theorem 2.2], [7, Theorem 1, p. 148], [11, Corollary 12], [16, Theorem 10], [18, Theorem 2.1]). In this paper we study linear operators from $B(\Sigma)$ to a quasicomplete locally convex space (E, ξ). In particular, we obtain a Vitali-Hahn-Saks type theorem and a Nikodym convergence type theorem for $(\tau(B(\Sigma), c a(\Sigma)), \xi)$-continuous linear operators $T: B(\Sigma) \rightarrow E$. It is shown that the space

[^0]$(B(\Sigma), \tau(B(\Sigma), c a(\Sigma)))$ has the strict Dunford-Pettis property. Moreover, a Yosida-Hewitt type decomposition for weakly compact operators on $B(\Sigma)$ is given.

For terminology concerning vector lattices we refer the reader to [2,3,1]. We denote by $\sigma(L, K), \tau(L, K)$ and $\beta(L, K)$ the weak topology, the Mackey topology and the strong topology on L with respect to the dual pair $\langle L, K\rangle$. We assume that (E, ξ) is a locally convex Hausdorff space (for short, lcHs). By $(E, \xi)^{\prime}$ or E_{ξ}^{\prime} we denote the topological dual of (E, ξ). Recall that (E, ξ) is a strongly Mackey space if every relatively countably $\sigma\left(E_{\xi}^{\prime}, E\right)$-compact subset of E_{ξ}^{\prime} is ξ-equicontinuous. By $E_{\xi}^{\prime \prime}$ we denote the bidual of (E, ξ), i.e., $E_{\xi}^{\prime \prime}=\left(E_{\xi}^{\prime}, \beta\left(E_{\xi}^{\prime}, E\right)\right)^{\prime}$.

Let Σ be a σ-algebra of subsets of a non-empty set Ω. By $c a(\Sigma, E)$ we denote the space of all ξ-countably additive vector measures $m: \Omega \rightarrow E$, and we will write $c a(\Sigma)$ if $E=\mathbb{R}$. By $\mathcal{S}(\Sigma)$ we denote the space of all real-valued Σ-simple functions defined on Ω. Then $\mathcal{S}(\Sigma)$ can be endowed with the (locally convex) universal measure topology τ of Graves [10], that is, τ is the coarsest locally convex topology on $\mathcal{S}(\Sigma)$ such that the integration map $T_{m}: \mathcal{S}(\Sigma) \ni$ $s \mapsto \int_{\Omega} s d m \in E$ is continuous for every locally convex space (E, ξ) and every $m \in c a(\Sigma, E)$ (see [10, p. 5]). Let $(L(\Sigma), \hat{\tau})$ stand for the completion of $(\mathcal{S}(\Sigma), \tau)$. It is known that both $(\mathcal{S}(\Sigma), \tau)$ and $(L(\Sigma), \hat{\tau})$ are strongly Mackey spaces (see [10, Corollaries 11.7 and 11.8]). It follows that $\tau=\tau(\mathcal{S}(\Sigma), c a(\Sigma)$) and $\hat{\tau}=\tau(L(\Sigma), c a(\Sigma))$ (see [10,11]). Moreover, if (E, ξ) is complete in its Mackey topology, then for each $m \in c a(\Sigma, E)$, the integration map T_{m} can be uniquely extended to a $(\hat{\tau}, \xi)$-continuous map $\widetilde{T}_{m}: L(\Sigma) \rightarrow E$ (see [11]).

Let $B(\Sigma)$ denote the Dedekind σ-complete Banach lattice of all bounded Σ-measurable functions $u: \Omega \rightarrow \mathbb{R}$, provided with the uniform norm $\|\cdot\|$. Then $B(\Sigma)$ is the $\|\cdot\|$-closure of $\mathcal{S}(\Sigma)$, so $\mathcal{S}(\Sigma) \subset B(\Sigma) \subset L(\Sigma)$ and the restriction $\hat{\tau}$ from $L(\Sigma)$ to $B(\Sigma)$ coincides with the Mackey topology $\tau(B(\Sigma), c a(\Sigma))$ (see [11, p. 199]). Moreover, $\left(B(\Sigma),\left.\hat{\tau}\right|_{B(\Sigma)}\right)$ is a strongly Mackey space (see [10, Corollary 11.8]). Note that the topology γ_{1} on $B(\Sigma)$ studied by Khurana [12], coincides with the topology $\left.\hat{\tau}\right|_{B(\Sigma)}(=\tau(B(\Sigma), c a(\Sigma))$) (see [12, Theorem 2, Corollary 6]).

Denote by $b a(\Sigma)$ the Banach lattice of all bounded finitely additive measures $v: \Sigma \rightarrow \mathbb{R}$ with the norm $\|\nu\|=|\nu|(\Omega)$, where $|\nu|(A)$ denotes the variation of ν on $A \in \Sigma$. It is well known that the Banach dual $B(\Sigma)^{*}$ of $B(\Sigma)$ can be identified with $b a(\Sigma)$ through the mapping $b a(\Sigma) \ni v \mapsto \Phi_{v} \in B(\Sigma)^{*}$, where

$$
\Phi_{v}(u)=\int_{\Omega} u d v \quad \text { for } u \in B(\Sigma) .
$$

Then $\left\|\Phi_{\nu}\right\|=|\nu|(\Omega)$ (see [1, Theorem 13.4]). The σ-order continuous dual $B(\Sigma)_{c}^{*}$ of $B(\Sigma)$ is a band of $B(\Sigma)^{*}$ (separating the points of $B(\Sigma)$) and $B(\Sigma)_{c}^{*}$ can be identified with $c a(\Sigma)$ (see [1, Theorem 13.5]). Hence

$$
\left(B(\Sigma),\left.\hat{\tau}\right|_{B(\Sigma)}\right)^{\prime}=(B(\Sigma), \tau(B(\Sigma), c a(\Sigma)))^{\prime}=B(\Sigma)_{c}^{*}
$$

Moreover, it is well known that $\tau(B(\Sigma), c a(\Sigma))$ is a locally solid σ-Lebesgue topology on $B(\Sigma)$ (see [3, Ex. 18, p. 178], [12, Theorem 3]).

2. σ-smooth operators on $\boldsymbol{B}(\Sigma)$

In this section we study $(\tau(B(\Sigma), c a(\Sigma)), \xi)$-continuous linear operators from $B(\Sigma)$ to a locally convex Hausdorff space (E, ξ). Recall that a sequence $\left(u_{n}\right)$ in $B(\Sigma)$ is order convergent to $u \in B(\Sigma)$ (in symbols, $u_{n} \xrightarrow{(\mathrm{o})} u$) if there is a sequence $\left(v_{n}\right)$ in $B(\Sigma)$ such that $\left|u_{n}-u\right| \leq v_{n} \downarrow 0$ in $B(\Sigma)$ (see [3]).

Definition 2.1. A linear operator $T: B(\Sigma) \rightarrow E$ is said to be σ-smooth if $T\left(u_{n}\right) \rightarrow 0$ in ξ whenever $u_{n} \xrightarrow{(0)} 0$ in $B(\Sigma)$.

Proposition 2.1. For a linear operator $T: B(\Sigma) \rightarrow E$ the following statements are equivalent:
(i) $e^{\prime} \circ T \in B(\Sigma)_{c}^{*}$ for each $e^{\prime} \in E_{\xi}^{\prime}$.
(ii) T is $\left(\sigma(B(\Sigma), c a(\Sigma)), \sigma\left(E, E_{\xi}^{\prime}\right)\right)$-continuous.
(iii) T is $(\tau(B(\Sigma), c a(\Sigma)), \xi)$-continuous.
(iv) T is $(\tau(B(\Sigma), c a(\Sigma)), \xi)$-sequentially continuous.
(v) T is σ-smooth.

Proof. (i) \Longleftrightarrow (ii) See [2, Theorem 9.26].
(ii) \Longrightarrow (iii) Assume that T is $\left(\sigma(B(\Sigma), c a(\Sigma)), \sigma\left(E, E_{\xi}^{\prime}\right)\right)$-continuous. Then T is $\left(\tau(B(\Sigma), c a(\Sigma)), \tau\left(E, E_{\xi}^{\prime}\right)\right)$-continuous (see [2, Ex. 11, p. 149]). It follows that T is $(\tau(B(\Sigma), c a(\Sigma)), \xi)$-continuous because $\xi \subset \tau\left(E, E_{\xi}^{\prime}\right)$.
(iii) \Longrightarrow (iv) It is obvious.
(iv) $\Longrightarrow(\mathrm{v})$ Assume that T is $(\tau(B(\Sigma), c a(\Sigma)), \xi)$-sequentially continuous, and let $u_{n} \xrightarrow{(\mathrm{o})} 0$ in $B(\Sigma)$. Then $u_{n} \rightarrow 0$ for $\tau(B(\Sigma), c a(\Sigma))$ because $\tau(B(\Sigma), c a(\Sigma))$ is a σ-Lebesgue topology. Hence $T\left(u_{n}\right) \rightarrow 0$ for ξ, i.e., T is σ-smooth.
(v) \Longrightarrow (i) It is obvious.

Note that every σ-smooth operator $T: B(\Sigma) \rightarrow E$ is $(\|\cdot\|, \xi)$-continuous because $\tau(B(\Sigma), c a(\Sigma)) \subset \mathcal{T}_{\|\cdot\|}$.

Let $\mathcal{L}_{\tau, \xi}(B(\Sigma), E)$ stand for the space of all $(\tau(B(\Sigma), c a(\Sigma)), \xi)$-continuous linear operators from $B(\Sigma)$ to E, equipped with the topology \mathcal{T}_{s} of simple convergence. Then $T_{\alpha} \rightarrow T$ for \mathcal{T}_{s} in $\mathcal{L}_{\tau, \xi}(B(\Sigma), E)$ if and only if $T_{\alpha}(u) \rightarrow T(u)$ in ξ for all $u \in B(\Sigma)$.

The following result will be of importance (see [16, Theorem 2]).
Theorem 2.2. Let \mathcal{K} be a \mathcal{T}_{s}-compact subset of $\mathcal{L}_{\tau, \xi}(B(\Sigma), E)$. If C is a $\sigma\left(E_{\xi}^{\prime}, E\right)$-closed and ξ-equicontinuous subset of E_{ξ}^{\prime}, then $\left\{e^{\prime} \circ T: T \in \mathcal{K}, e^{\prime} \in C\right\}$ is a $\sigma\left(B(\Sigma)_{c}^{*}, B(\Sigma)\right)$-compact subset of $B(\Sigma)_{c}^{*}$.

Now using Theorem 2.2 and the property that $(B(\Sigma), \tau(B(\Sigma), c a(\Sigma)))$ is a strongly Mackey space, we are ready to prove our main result.

Theorem 2.3. Let \mathcal{K} be a subset of $\mathcal{L}_{\tau, \xi}(B(\Sigma), E)$. Then the following statements are equivalent:
(i) \mathcal{K} is relatively \mathcal{T}_{s}-compact.
(ii) \mathcal{K} is $(\tau(B(\Sigma), c a(\Sigma)), \xi)$-equicontinuous and for each $u \in B(\Sigma)$, the set $\{T(u): T \in \mathcal{K}\}$ is relatively ξ-compact in E.

Proof. (i) \Longrightarrow (ii) Assume that \mathcal{K} is relatively \mathcal{T}_{s}-compact. Let W be an absolutely convex and ξ-closed neighbourhood of 0 for ξ in E. Then the polar W^{0} of W, with respect to the dual pair $\left\langle E, E_{\xi}^{\prime}\right\rangle$, is a $\sigma\left(E_{\xi}^{\prime}, E\right)$-closed and ξ-equicontinuous subset of E_{ξ}^{\prime} (see [2, Theorem 9.21]). Hence in view of Theorem 2.2 the set $H=\left\{e^{\prime} \circ T: T \in \mathcal{K}, e^{\prime} \in W^{0}\right\}$ in $B(\Sigma)_{c}^{*}$ is relatively $\sigma\left(B(\Sigma)_{c}^{*}, B(\Sigma)\right)$-compact. Since $(B(\Sigma), \tau(B(\Sigma), c a(\Sigma)))$ is a strongly Mackey space, the set H is $\tau(B(\Sigma), c a(\Sigma))$-equicontinuous. It follows that there exists a $\tau(B(\Sigma), c a(\Sigma))$-neighbourhood V of 0 in $B(\Sigma)$ such that $H \subset V^{0}$, where V^{0} denotes the
polar of V with respect to the dual pair $\left\langle B(\Sigma), B(\Sigma)_{c}^{*}\right\rangle$. It follows that for each $T \in \mathcal{K}$ we have that $\left\{e^{\prime} \circ T: e^{\prime} \in W^{0}\right\} \subset V^{0}$, i.e., if $e^{\prime} \in W^{0}$, then $\left|e^{\prime}(T(u))\right| \leq 1$ for all $u \in V$. This means that for each $T \in \mathcal{K}$ we get $W^{0} \subset T(V)^{0}$. Hence $T(V) \subset T(V)^{00} \subset W^{00}=W$ for each $T \in \mathcal{K}$, i.e., \mathcal{K} is $(\tau(B(\Sigma), c a(\Sigma)), \xi)$-equicontinuous. Clearly, for each $u \in B(\Sigma)$, the set $\{T(u): T \in \mathcal{K}\}$ is relatively ξ-compact in E.
(ii) \Longrightarrow (i) It follows from [5, Chap. 3, Section 3.4, Corollary 1].

Corollary 2.4. Assume that \mathcal{K} is a relatively \mathcal{T}_{s}-compact subset of $\mathcal{L}_{\tau, \xi}(B(\Sigma), E)$. Then \mathcal{K} is uniformly σ-smooth, i.e., for each ξ-continuous seminorm p on E we have that $\sup _{T \in \mathcal{K}} p\left(T\left(u_{n}\right)\right) \rightarrow 0$ whenever $u_{n} \xrightarrow{(0)} 0$ in $B(\Sigma)$.

Proof. In view of Theorem $2.3 \mathcal{K}$ is $(\tau(B(\Sigma), c a(\Sigma)), \xi)$-equicontinuous. Let p be a ξ continuous seminorm on E, and let $\varepsilon>0$ be given. Then there exists a $\tau(B(\Sigma), c a(\Sigma)$)neighbourhood V of 0 in $B(\Sigma)$ such that for each $T \in \mathcal{K}$ we have $p(T(u)) \leq \varepsilon$ for all $u \in V$. Assume that $\left(u_{n}\right)$ is a sequence in $B(\Sigma)$ such that $u_{n} \xrightarrow{(\mathrm{o})} 0$ in $B(\Sigma)$. Then $u_{n} \longrightarrow 0$ for $\tau(B(\Sigma), c a(\Sigma))$ because $\tau(B(\Sigma), c a(\Sigma))$ is a σ-Lebesgue topology, and hence there exists $n_{\varepsilon} \in \mathbb{N}$ such that $u_{n} \in V$ for $n \geq n_{\varepsilon}$. Hence $\sup _{T \in \mathcal{K}} p\left(T\left(u_{n}\right)\right) \leq \varepsilon$ for $n \geq n_{\varepsilon}$.

3. Integration operators on $\boldsymbol{B}(\Sigma)$

For terminology and basic results concerning the integration with respect to vector measures we refer the reader to $[14,15,13]$. In this section we study integration operators on $B(\Sigma)$ in terms of their representing vector measures.

Let (E, ξ) be a quasicomplete lcHs and $m: \Sigma \rightarrow E$ be a ξ-bounded additive vector measure (i.e., the range of m is ξ-bounded in E). Given $u \in B(\Sigma)$, let $\left(s_{n}\right)$ be a sequence of Σ-simple functions that converges uniformly to u on Ω. Following [14, Definition 1] we say that u is m-integrable and define

$$
\int_{\Omega} u d m:=\xi-\lim \int_{\Omega} s_{n} d m
$$

The $\int_{\Omega} u d m$ is well defined (see [14, Lemma 5]) and the map $T_{m}: B(\Sigma) \rightarrow E$ given by $T_{m}(u)=\int_{\Omega} u d m$ is $(\|\cdot\|, \xi)$-continuous and linear, and for each $e^{\prime} \in E_{\xi}^{\prime}$

$$
e^{\prime}\left(\int_{\Omega} u d m\right)=\int_{\Omega} u d\left(e^{\prime} \circ m\right) \quad \text { for } u \in B(\Sigma)
$$

(see [14, Lemma 5]). Conversely, let $T: B(\Sigma) \rightarrow E$ be a $(\|\cdot\|, \xi$)-continuous linear operator, and let $m(A)=T\left(\mathbb{1}_{A}\right)$ for $A \in \Sigma$. Then $m: \Sigma \rightarrow E$ is a ξ-bounded vector measure, called the representing measure of T and $T_{m}(u)=T(u)$ for $u \in B(\Sigma)$ (see [14, Definition 2]).

An important example of a quasicomplete locally convex Hausdorff space is the space $\mathcal{L}(X, Y)$ of all bounded linear operators between Banach spaces X and Y, provided with the strong operator topology.

Now we present a characterization of $(\tau(B(\Sigma), c a(\Sigma)), \xi)$-continuous linear operators T : $B(\Sigma) \rightarrow E$ in terms of their representing measures.

Proposition 3.1. Assume that (E, ξ) is a quasicomplete lcHs. Let $T: B(\Sigma) \rightarrow E$ be a $(\|\cdot\|, \xi)$ continuous linear operator and $m: \Sigma \rightarrow E$ be its representing measure. Then the following statements are equivalent:
(i) $e^{\prime} \circ m \in c a(\Sigma)$ for each $e^{\prime} \in E_{\xi}^{\prime}$.
(ii) $e^{\prime} \circ T \in B(\Sigma)_{c}^{*}$ for each $e^{\prime} \in E_{\xi}^{\prime}$.
(iii) T is $(\tau(B(\Sigma), c a(\Sigma)), \xi)$-continuous.
(iv) T is σ-smooth.
(v) $T\left(u_{n}\right) \longrightarrow 0$ for ξ whenever $u_{n}(\omega) \longrightarrow 0$ for each $\omega \in \Omega$ and $\sup _{n}\left\|u_{n}\right\|<\infty$.
(vi) m is ξ-countably additive.

In particular, if $\left(E,\|\cdot\|_{E}\right)$ is a Banach space, then each of the statements (i)-(vi) is equivalent to the following:
(vii) T is $\left(\tau(B(\Sigma), c a(\Sigma)),\|\cdot\|_{E}\right)$-weakly compact, i.e., $T(V)$ is relatively weakly compact in E for some $\tau(B(\Sigma)$, ca($\Sigma)$)-neighbourhood V of 0 in $B(\Sigma)$.

Proof. (i) \Longleftrightarrow (ii) For each $e^{\prime} \in E_{\xi}^{\prime}$ we have

$$
\left(e^{\prime} \circ T\right)(u)=\int_{\Omega} u d\left(e^{\prime} \circ m\right) \quad \text { for all } u \in B(\Sigma) .
$$

Hence, $e^{\prime} \circ m \in c a(\Sigma)$ if and only if $e^{\prime} \circ T \in B(\Sigma)_{c}^{*}$ (see [1, Theorem 13.5]).
(ii) \Longleftrightarrow (iii) \Longleftrightarrow (iv) See Proposition 2.1.
(iv) \Longrightarrow (v) Assume that (iv) holds and let $\left(u_{n}\right)$ be a sequence in $B(\Sigma)$ such that $u_{n}(\omega) \longrightarrow 0$ for each $\omega \in \Omega$ and $\sup \left\|u_{n}\right\|<\infty$. Let $v_{n}(\omega)=\sup _{m \geq n}\left|u_{m}(\omega)\right|$ for $\omega \in \Omega, n \in \mathbb{N}$. Then $v_{n} \in B(\Sigma)$ and $\left|u_{n}(\omega)\right| \leq v_{n}(\omega) \downarrow 0$ for all $\omega \in \Omega$ and $n \in \mathbb{N}$. It follows that $u_{n} \xrightarrow{(0)} 0$ in $B(\Sigma)$ and by (iv) $T\left(u_{n}\right) \rightarrow 0$ for ξ.
(v) \Longrightarrow (vi) Assume that (v) holds, and let $A_{n} \downarrow \emptyset,\left(A_{n}\right) \subset \Sigma$. Then $\mathbb{1}_{A_{n}}(\omega) \downarrow 0$ for $\omega \in \Omega$ and $\sup _{n}\left\|\mathbb{1}_{A_{n}}\right\| \leq 1$. It follows that $m\left(A_{n}\right)=T\left(\mathbb{1}_{A_{n}}\right) \rightarrow 0$ for ξ, i.e., m is ξ-countably additive. (vi) \Longrightarrow (i) It is obvious.

Assume that $\left(E,\|\cdot\|_{E}\right)$ is a Banach space. Then by [11, Corollary 12] we have (vi) \Leftrightarrow (vii).

Graves and Ruess [11, Theorem 7] characterized relative compactness in $c a(\Sigma, E)$ in the topology \mathcal{T}_{s} of simple convergence (convergence on each $A \in \Sigma$) in terms of the properties of the integration operators from $\mathcal{S}(\Sigma)$ to E or from $L(\Sigma)$ to E.

For a subset \mathcal{M} of $c a(\Sigma, E)$ let $\mathcal{K}_{\mathcal{M}}=\left\{T_{m} \in \mathcal{L}_{\tau, \xi}(B(\Sigma), E): m \in \mathcal{M}\right\}$. Now using [11, Theorem 7] and Theorem 2.3 we are ready to state the following generalized Vitali-Hahn-Saks theorem for operators from $B(\Sigma)$ to E (see [16, Theorem 10]).

Theorem 3.2. Assume that (E, ξ) is a quasicomplete lcHs that is complete in its Mackey topology (in particular, E is a Banach space). Then for a set \mathcal{M} in $c a(\Sigma, E)$ the following statements are equivalent:
(i) $\mathcal{K}_{\mathcal{M}}$ is a relatively \mathcal{T}_{s}-compact set in $\mathcal{L}_{\tau, \xi}(B(\Sigma), E)$.
(ii) $\mathcal{K}_{\mathcal{M}}$ is $(\tau(B(\Sigma), c a(\Sigma)), \xi)$-equicontinuous and for each $u \in B(\Sigma)$, the set $\left\{T_{m}(u): m \in\right.$ $\mathcal{M}\}$ is relatively ξ-compact in E.
(iii) \mathcal{M} is uniformly ξ-countably additive and for each $A \in \Sigma$, the set $\{m(A): m \in \mathcal{M}\}$ is relatively ξ-compact in E.
(iv) \mathcal{M} is a relatively \mathcal{T}_{s}-compact set in $\mathrm{ca}(\Sigma, E)$.

Proof. (i) \Longleftrightarrow (ii) See Theorem 2.3.
(ii) \Longrightarrow (iii) Assume that (ii) holds and let $A_{n} \downarrow \emptyset,\left(A_{n}\right) \subset \Sigma$. Then $\mathbb{1}_{A_{n}} \downarrow \emptyset$ in $B(\Sigma)$, and we can apply Proposition 3.1 and Corollary 2.4.
(iii) \Longrightarrow (ii) Assume that (iii) holds. Then in view of [11, Theorem 7] the set $\widetilde{\mathcal{K}}_{\mathcal{M}}=\left\{\widetilde{T}_{m}\right.$: $m \in \mathcal{M}\}$ is $(\hat{\tau}, \xi)$-equicontinuous and $\widetilde{\mathcal{K}}_{\mathcal{M}}$ is a relatively \mathcal{T}_{s}-compact set in $\mathcal{L}_{\hat{\tau}, \xi}(L(\Sigma), E)$ (=the space of all $(\hat{\tau}, \xi)$-continuous linear operators from $L(\Sigma)$ to $E)$. It follows that $\mathcal{K}_{\mathcal{M}}$ is $(\tau(B(\Sigma), c a(\Sigma)), \xi)$-equicontinuous and for each $u \in B(\Sigma)$, the set $\left\{T_{m}(u): m \in \mathcal{M}\right\}$ is relatively ξ-compact in E, i.e., (ii) holds.
(iii) \Longleftrightarrow (iv) See [11, Theorem 7].

Recall that the Nikodym convergence theorem says that if $\left(m_{k}\right)$ is a sequence of measures on a σ-algebra Σ taking values in a locally convex space (E, ξ) and $m(A):=\xi-\lim m_{k}(A)$ for each $A \in \Sigma$, then $m: \Sigma \rightarrow E$ is ξ-countably additive and the family $\left\{m_{k}: k \in \mathbb{N}\right\}$ is uniformly ξ-countably additive (see [8, Theorem 8.6], [11, Theorem 9], [16, Corollary 9]). Now we shall prove a generalized Nikodym convergence type theorem for operators from $B(\Sigma)$ to a quasicomplete lcHs (E, ξ).

For this purpose we first establish some terminology. For each ξ-continuous seminorm p on E, let $E_{p}=(E, p)$ be the associated seminormed space. Denote by $\left(\widetilde{E}_{p},\|\cdot\|_{\sim}^{\sim}\right)$ the completion of the quotient normed space $E / p^{-1}(0)$. Let $\Pi_{p}: E_{p} \rightarrow E / p^{-1}(0) \subset \widetilde{E}_{p}$ be the canonical quotient map (see [14, p. 92]).

Given a vector measure $m: \Sigma \rightarrow E$, let $m_{p}: \Sigma \rightarrow \widetilde{E}_{p}$ be given by

$$
m_{p}(A):=\left(\Pi_{p} \circ m\right)(A) \quad \text { for } A \in \Sigma
$$

Then m_{p} is a Banach space-valued measure on Σ. We define the p-semivariation $\|m\|_{p}$ of m by

$$
\|m\|_{p}(A):=\left\|m_{p}\right\|(A) \quad \text { for } A \in \Sigma
$$

where $\left\|m_{p}\right\|$ denotes the semivariation of $m_{p}: \Sigma \rightarrow \widetilde{E}_{p}$. Note that m is ξ-bounded if and only if $\|m\|_{p}(\Omega)<\infty$ for each ξ-continuous seminorm p on E. Moreover, we have (see [14, Lemma 7])

$$
\begin{equation*}
\|m\|_{p}(\Omega)=\left\|T_{m}\right\|_{p}=\sup \left\{p\left(\int_{\Omega} u d m\right): u \in B(\Sigma),\|u\| \leq 1\right\} \tag{3.1}
\end{equation*}
$$

Now we can prove our desired theorem.
Theorem 3.3. Assume that (E, ξ) is a quasicomplete lcHs. Let $m_{k}: \Sigma \rightarrow E$ be ξ-countably additive vector measures for $k \in \mathbb{N}$ and assume that $m(A)=\xi-\lim m_{k}(A)$ exists for each $A \in \Sigma$. Then the following statements hold:
(i) $m: \Sigma \rightarrow E$ is a ξ-countably additive vector measure, and the integration operator $T_{m}: B(\Sigma) \rightarrow E$ is $(\tau(B(\Sigma)$, ca($\Sigma)$), $\xi)$-continuous.
(ii) $T_{m}(u)=\xi-\lim _{k} T_{m_{k}}(u)$ for all $u \in B(\Sigma)$.
(iii) The family $\left\{T_{m_{k}}: k \in \mathbb{N}\right\}$ is $(\tau(B(\Sigma), c a(\Sigma))$, $\xi)$-equicontinuous.

Proof. In view of the Nikodym convergence theorem (see [8, Theorem 8.6]) the vector measure $m: \Sigma \rightarrow E$ is ξ-countably additive, and by Proposition $3.1 T_{m}: B(\Sigma) \rightarrow E$ is ($\tau(B(\Sigma), c a(\Sigma)), \xi)$-continuous.

Let p be a ξ-continuous seminorm on E. We show that $p\left(T_{m_{k}}(u)-T_{m}(u)\right) \rightarrow 0$ for each $u \in$ $B(\Sigma)$. Indeed, since $p\left(m_{k}(A)-m(A)\right) \rightarrow 0$ for all $A \in \Sigma$, we have $\left\|\Pi_{p}\left(m_{k}(A)-m(A)\right)\right\|_{p}^{\sim} \rightarrow$ 0 , i.e., $\left\|\left(m_{k}\right)_{p}(A)-m_{p}(A)\right\|_{p}^{\sim} \rightarrow 0$ for all $A \in \Sigma$. It follows that $\sup _{k}\left\|\left(m_{k}\right)_{p}(A)\right\|_{p}^{\sim}<\infty$ for
all $A \in \Sigma$, and in view of the Nikodym boundedness theorem (see [7, Theorem 1, p. 14]) and (3.1) we get

$$
c=\sup _{k}\left\|T_{m_{k}}\right\|_{p}=\sup _{k}\left\|m_{k}\right\|_{p}(\Omega)<\infty .
$$

Let $u \in B(\Sigma)$ and $\varepsilon>0$ be given. Choose $s_{0} \in \mathcal{S}(\Sigma)$ such that $\left\|u-s_{0}\right\| \leq \frac{\varepsilon}{3 a}$, where $a=\max \left(c,\left\|T_{m}\right\|_{p}\right)$. Then there is $k_{0} \in \mathbb{N}$ such that $p\left(T_{m_{k}}\left(s_{0}\right)-T_{m}\left(s_{0}\right)\right) \leq \frac{\varepsilon}{3}$ for $k \geq k_{0}$. Hence for $k \geq k_{0}$ we have

$$
\begin{aligned}
p\left(T_{m_{k}}(u)-T_{m}(u)\right) & \leq p\left(T_{m}\left(u-s_{0}\right)\right)+p\left(T_{m}\left(s_{0}\right)-T_{m_{k}}\left(s_{0}\right)\right)+p\left(T_{m_{k}}\left(s_{0}\right)-T_{m_{k}}(u)\right) \\
& \leq\left\|T_{m}\right\|_{p} \cdot\left\|u-s_{0}\right\|+p\left(T_{m}\left(s_{0}\right)-T_{m_{k}}\left(s_{0}\right)\right)+\left\|T_{m_{k}}\right\|_{p} \cdot\left\|s_{0}-u\right\| \\
& \leq a \cdot \frac{\varepsilon}{3 a}+\frac{\varepsilon}{3}+a \cdot \frac{\varepsilon}{3 a}=\varepsilon .
\end{aligned}
$$

It follows that $T_{m_{k}} \rightarrow T_{m}$ in $\mathcal{L}_{\tau, \xi}(B(\Sigma), E)$ for \mathcal{T}_{s}. Since $\left\{T_{m_{k}}: k \in \mathbb{N}\right\} \cup\left\{T_{m}\right\}$ is a $\mathcal{T}_{s}{ }^{-}$ compact subset of $\mathcal{L}_{\tau, \xi}(B(\Sigma), E)$, by Theorem 2.3 the set $\left\{T_{m_{k}}: k \in \mathbb{N}\right\}$ is $(\tau(B(\Sigma), c a(\Sigma)), \xi)$ equicontinuous.

Finally, we shall show that every $(\tau(B(\Sigma), c a(\Sigma)), \xi)$-continuous linear operator T : $B(\Sigma) \rightarrow E$ is a strict Dunford-Pettis operator.

Theorem 3.4. Assume that (E, ξ) is a quasicomplete lcHs. If $T: B(\Sigma) \rightarrow E$ is $a(\tau(B(\Sigma), c a(\Sigma)), \xi)$-continuous linear operator, then T maps $\sigma\left(B(\Sigma), B(\Sigma)_{c}^{*}\right)$-Cauchy sequences in $B(\Sigma)$ onto ξ-convergent sequences in E.

Proof. For each $\omega \in \Omega$ let $\Phi_{\omega}(u)=u(\omega)$ for all $u \in B(\Sigma)$. Note that $\Phi_{\omega} \in B(\Sigma)_{c}^{*}$ (see Proposition 3.1). Let $\left(u_{n}\right)$ be a $\sigma\left(B(\Sigma), B(\Sigma)_{c}^{*}\right)$-Cauchy sequence in $B(\Sigma)$. Then the set $\left\{u_{n}: n \in \mathbb{N}\right\}$ is $\tau\left(B(\Sigma), c a(\Sigma)\right.$)-bounded, and it follows that $\sup _{n}\left\|u_{n}\right\|<\infty$ (see [12, Theorem 2]). It follows that for each $\omega \in \Omega, \lim u_{n}(\omega)=\lim \Phi_{\omega}\left(u_{n}\right)=u_{0}(\omega)$ exists in \mathbb{R}. It follows that $u_{0}: \Omega \rightarrow \mathbb{R}$ is Σ-measurable, and since $\sup _{n}\left\|u_{n}\right\|<\infty$, we obtain that u_{0} is bounded, i.e., $u_{0} \in B(\Sigma)$.

Let $m(A)=T\left(\mathbb{1}_{A}\right)$ for $A \in \Sigma$. Then by Proposition 3.1, m is ξ-countably additive. Hence making use of the Lebesgue type convergence theorem (see [15, Proposition 7, p. 4854]), u_{0} is m-integrable and we have

$$
T\left(u_{n}\right)=\int_{\Omega} u_{n} d m \xrightarrow{\xi} \int_{\Omega} u_{0} d m \in E .
$$

Thus the proof is complete.
As a consequence of Theorem 3.4 we have the following result (see [9, Section 9.4]).
Corollary 3.5. The space $(B(\Sigma), \tau(B(\Sigma), c a(\Sigma)))$ has the strict Dunford-Pettis property.

4. Yosida-Hewitt decomposition for weakly compact operators on $\boldsymbol{B}(\Sigma)$

In this section we derive a Yosida-Hewitt type decomposition theorem for weakly compact operators on $B(\Sigma)$. In view of the Yosida-Hewitt decomposition theorem (see [17]) we have

$$
b a(\Sigma)=c a(\Sigma) \oplus \operatorname{pfa}(\Sigma)
$$

where $\operatorname{pfa}(\Sigma)\left(=c a(\Sigma)^{d}\right.$-the disjoint complement of $c a(\Sigma)$ in $\left.b a(\Sigma)\right)$ stands for the band of purely finitely additive members of $b a(\Sigma)$. On the other hand, we have (see [2, Theorem 3.8])

$$
B(\Sigma)^{*}=B(\Sigma)_{c}^{*} \oplus\left(B(\Sigma)_{c}^{*}\right)^{d}
$$

where $\left(B(\Sigma)_{c}^{*}\right)^{d}$ stands for the disjoint complement of $B(\Sigma)_{c}^{*}$ in $B(\Sigma)^{*}$. It follows that

$$
\left(B(\Sigma)_{c}^{*}\right)^{d}=\left\{\Phi_{\nu}: v \in \operatorname{pfa}(\Sigma)\right\} .
$$

Since $B(\Sigma)$ is an AM-space, $b a(\Sigma)$ is an AL-space (see [1, Theorem 13.2]). This means that $\|\nu\|=\left\|\nu_{c}\right\|+\left\|\nu_{p}\right\|$ and $\left\|\Phi_{\nu}\right\|=\left\|\Phi_{\nu_{c}}\right\|+\left\|\Phi_{\nu_{p}}\right\|$, where $\nu=\nu_{c}+v_{p}$ with $\nu_{c} \in c a(\Sigma)$ and $v_{p} \in \operatorname{pfa}(\Sigma)$.

Definition 4.1. A $(\|\cdot\|, \xi)$-continuous linear operator $T: B(\Sigma) \rightarrow E$ is said to be purely non- σ-smooth if $e^{\prime} \circ T \in\left(B(\Sigma)_{c}^{*}\right)^{d}$ for each $e^{\prime} \in E_{\xi}^{\prime}$.

Moreover, since $\left(B(\Sigma)_{c}^{*}\right)^{d}=\left\{\Phi_{\nu}: v \in \mathrm{pfa}(\Sigma)\right\}$ we have the following result.
Proposition 4.1. Assume that (E, ξ) is a quasicomplete lcHs. Let $T: B(\Sigma) \rightarrow E$ be a $(\|\cdot\|, \xi)$ continuous linear operator and $m: \Sigma \rightarrow E$ be its representing measure. Then the following statements are equivalent:
(i) T is purely non- σ-smooth.
(ii) $e^{\prime} \circ m \in \operatorname{pfa}(\Sigma)$ for each $e^{\prime} \in E_{\xi}^{\prime}$.

A vector measure $m: \Sigma \rightarrow E$ is said to be ξ-strongly bounded (ξ-exhausting) if $m\left(A_{n}\right) \rightarrow 0$ in ξ for each pairwise disjoint sequence $\left(A_{n}\right)$ in Σ. It is well known that each ξ-countably additive measure $m: \Sigma \rightarrow E$ is ξ-strongly bounded. The following theorem is of importance (see [14, Lemma 3 and Theorem 1]).

Theorem 4.2. Assume that (E, ξ) is a quasicomplete lcHs. Let $T: B(\Sigma) \rightarrow E$ be a $(\|\cdot\|, \xi)$ continuous linear operator and $m: \Sigma \rightarrow E$ be its representing measure. Then the following statements are equivalent:
(i) T is weakly compact, i.e., T maps bounded sets in $B(\Sigma)$ onto relatively $\sigma\left(E, E_{\xi}^{\prime}\right)$-compact sets in E.
(ii) m is ξ-strongly bounded.

From Theorem 4.2 and Proposition 3.1 it follows that every σ-smooth operator from $B(\Sigma)$ to a quasicomplete lcHs is weakly compact.

Now we are ready to prove the following Yosida-Hewitt type decomposition for weakly compact operators from $B(\Sigma)$ to a quasicomplete lcHs.

Theorem 4.3. Assume that (E, ξ) is a quasicomplete lcHs. Let $T: B(\Sigma) \rightarrow E$ be a weakly compact operator and $m: \Sigma \rightarrow E$ be its representing measure. Then:
(i) m can be uniquely decomposed as $m=m_{c}+m_{p}$, where $m_{c}: \Sigma \rightarrow E$ is ξ-countably additive, $m_{p}: \Sigma \rightarrow E$ is ξ-strongly bounded and $e^{\prime} \circ m_{p} \in \operatorname{pfa}(\Sigma)$ for each $e^{\prime} \in E_{\xi}^{\prime}$.
(ii) T can be uniquely decomposed as $T=T_{1}+T_{2}$, where T_{1} is σ-smooth and T_{2} is weakly compact and purely non σ-smooth, and

$$
T_{1}(u)=\int_{\Omega} u d m_{c} \quad \text { and } \quad T_{2}(u)=\int_{\Omega} u d m_{p} \quad \text { for all } u \in B(\Sigma) .
$$

Proof. For $\Phi \in B(\Sigma)^{*}$ we have $\Phi=\Phi_{1}+\Phi_{2}$, where $\Phi_{1} \in B(\Sigma)_{c}^{*}$ and $\Phi_{2} \in\left(B(\Sigma)_{c}^{*}\right)^{d}$. Then we have two natural projections

$$
P_{k}: B(\Sigma)^{*} \longrightarrow B(\Sigma)^{*}
$$

where $P_{k}(\Phi)=\Phi_{k}$ and $\left\|P_{k}\right\| \leq 1$ for $k=1,2$. Now consider the conjugate mappings

$$
P_{k}^{\prime}: B(\Sigma)^{* *} \longrightarrow B(\Sigma)^{* *}
$$

defined by $P_{k}^{\prime}(V)(\Phi)=V\left(P_{k}(\Phi)\right)$ for $V \in B(\Sigma)^{* *}$ (=the Banach bidual of $B(\Sigma)$).
Since T is $\left(\sigma\left(B(\Sigma), B(\Sigma)^{*}\right), \sigma\left(E, E_{\xi}^{\prime}\right)\right)$-continuous (see [9, Corollary 8.6.5]), we can define the conjugate mapping

$$
T^{\prime}: E_{\xi}^{\prime} \longrightarrow B(\Sigma)^{*}
$$

by putting $T^{\prime}\left(e^{\prime}\right)=e^{\prime} \circ T$ for $e^{\prime} \in E_{\xi}^{\prime}$. Then T^{\prime} is $\left(\beta\left(E_{\xi}^{\prime}, E\right), \beta\left(B(\Sigma)^{*}, B(\Sigma)\right)\right)$-continuous (see [9, Proposition 8.7.1]), and hence T^{\prime} is ($\sigma\left(E_{\xi}^{\prime}, E_{\xi}^{\prime \prime}\right), \sigma\left(B(\Sigma)^{*}, B(\Sigma)^{* *}\right)$)-continuous. It follows that one can define the conjugate mapping (see [2, Theorem 9.2])

$$
T^{\prime \prime}: B(\Sigma)^{* *} \longrightarrow E_{\xi}^{\prime \prime}
$$

by putting $T^{\prime \prime}(V)\left(e^{\prime}\right)=V\left(T^{\prime}\left(e^{\prime}\right)\right)$ for $V \in B(\Sigma)^{* *}$ and $e^{\prime} \in E_{\xi}^{\prime}$. Then $T^{\prime \prime}$ is $\left(\sigma\left(B(\Sigma)^{* *}, B(\Sigma)^{*}\right), \sigma\left(E_{\xi}^{\prime \prime}, E_{\xi}^{\prime}\right)\right)$-continuous.

We have a natural isometric embedding $\pi: B(\Sigma) \rightarrow B(\Sigma)^{* *}$, where $\pi(u)(\Phi)=\Phi(u)$ for all $\Phi \in B(\Sigma)^{*}, u \in B(\Sigma)$. Then $\left(P_{k}^{\prime} \circ \pi\right)(u)=\pi(u) \circ P_{k}$ for $u \in B(\Sigma)$.

Let $i: E \rightarrow E_{\xi}^{\prime \prime}$ stand for the canonical mapping, where $i(e)\left(e^{\prime}\right)=e^{\prime}(e)$ for $e^{\prime} \in E_{\xi}^{\prime}$ and $e \in E$. Moreover, let $j: i(E) \longrightarrow E$ denote the left inverse of i, i.e., $j \circ i=i d_{E}$. Then $T^{\prime \prime} \circ \pi=i \circ T$.

By the Gantmacher type theorem (see [9, Theorem 9.3.2]) we have

$$
T^{\prime \prime}\left(B(\Sigma)^{* *}\right) \subset i(E)
$$

Define linear mappings ($k=1,2$)

$$
T_{k}:=j \circ T^{\prime \prime} \circ P_{k}^{\prime} \circ \pi: B(\Sigma) \longrightarrow E .
$$

To show that $T_{k}: B(\Sigma) \rightarrow E$ are weakly compact, note that for $u \in B_{B(\Sigma)}$ (=the closed unit ball in $B(\Sigma)$) we have

$$
\left\|P_{k}^{\prime}(\pi(u))\right\|_{B(\Sigma)^{* *}}=\left\|\pi(u) \circ P_{k}\right\|_{B(\Sigma)^{* *}} \leq 1 .
$$

Hence by the Banach-Alaoglou theorem the set $\left\{P_{k}^{\prime}(\pi(u)): u \in B_{B(\Sigma)}\right\}$ is relatively $\sigma\left(B(\Sigma)^{* *}, B(\Sigma)^{*}\right)$-compact in $B(\Sigma)^{* *}$. Since $T^{\prime \prime}$ is $\left(\sigma\left(B(\Sigma)^{* *}, B(\Sigma)^{*}\right), \sigma\left(E_{\xi}^{\prime \prime}, E_{\xi}^{\prime}\right)\right)$ continuous and $T^{\prime \prime}\left(B(\Sigma)^{* *}\right) \subset i(E)$, the set $\left\{T^{\prime \prime}\left(P_{k}^{\prime}(\pi(u))\right): u \in B_{B(\Sigma)}\right\}$ is relatively $\sigma\left(i(E), E_{\xi}^{\prime}\right)$-compact in $i(E)$. But j is $\left(\sigma\left(i(E), E_{\xi}^{\prime}\right), \sigma\left(E, E_{\xi}^{\prime}\right)\right)$-continuous, so the set $T_{k}\left(B_{B(\Sigma)}\right)=\left\{j\left(T^{\prime \prime}\left(P_{k}^{\prime}(\pi(u))\right)\right): u \in B_{B(\Sigma)}\right\}$ is relatively $\sigma\left(E, E_{\xi}^{\prime}\right)$-compact in E, and this means that the T_{k} are weakly compact.

For $A \in \Sigma$ let us put

$$
m_{c}(A):=T_{1}\left(\mathbb{1}_{A}\right) \quad \text { and } \quad m_{p}(A):=T_{2}\left(\mathbb{1}_{A}\right)
$$

In view of Theorem 4.2 the measures $m_{c}: \Sigma \rightarrow E$ and $m_{p}: \Sigma \rightarrow E$ are ξ-strongly bounded, and we have

$$
T_{1}(u)=\int_{\Omega} u d m_{c} \quad \text { and } \quad T_{2}(u)=\int_{\Omega} u d m_{p} \quad \text { for all } u \in B(\Sigma) .
$$

Note that for each $e^{\prime} \in E_{\xi}^{\prime}$ and $u \in B(\Sigma)$ we have

$$
\begin{aligned}
\left(e^{\prime} \circ T_{k}\right)(u) & =e^{\prime}\left(j \circ\left(T^{\prime \prime} \circ P_{k}^{\prime} \circ \pi\right)(u)\right) \\
& =\left(\left(T^{\prime \prime} \circ P_{k}^{\prime} \circ \pi\right)(u)\right)\left(e^{\prime}\right) \\
& =\left(T^{\prime \prime}\left(\pi(u) \circ P_{k}\right)\right)\left(e^{\prime}\right) \\
& =\left(\pi(u) \circ P_{k}\right)\left(T^{\prime}\left(e^{\prime}\right)\right) \\
& =\pi(u)\left(P_{k}\left(e^{\prime} \circ T\right)\right)=P_{k}\left(e^{\prime} \circ T\right)(u) .
\end{aligned}
$$

Hence $e^{\prime} \circ T_{1}=P_{1}\left(e^{\prime} \circ T\right) \in B(\Sigma)_{c}^{*}$, and by Proposition 3.1, T_{1} is σ-smooth. Moreover, $e^{\prime} \circ T_{2}=P_{2}\left(e^{\prime} \circ T\right) \in\left(B(\Sigma)_{c}^{*}\right)^{d}$, i.e., T_{2} is purely non- σ-smooth. For every $e^{\prime} \in E_{\xi}^{\prime}$ and $u \in B(\Sigma)$ we have

$$
e^{\prime}\left(T_{1}(u)+T_{2}(u)\right)=P_{1}\left(e^{\prime} \circ T\right)(u)+P_{2}\left(e^{\prime} \circ T\right)(u)=e^{\prime}(T(u)),
$$

so $T_{1}(u)+T_{2}(u)=T(u)$. The uniqueness of the decomposition $T=T_{1}+T_{2}$ follows from the uniqueness of the decomposition $e^{\prime} \circ T=e^{\prime} \circ T_{1}+e^{\prime} \circ T_{2}$ for each $e^{\prime} \in E_{\xi}^{\prime}$.

Moreover, for each $e^{\prime} \in E_{\xi}^{\prime}$ we have

$$
\left(e^{\prime} \circ T_{1}\right)(u)=\int_{\Omega} u d\left(e^{\prime} \circ m_{c}\right) \quad \text { and } \quad\left(e^{\prime} \circ T_{2}\right)(u)=\int_{\Omega} u d\left(e^{\prime} \circ m_{p}\right) \quad \text { for } u \in B(\Sigma)
$$

Hence by Proposition 3.1, m_{c} is ξ-countably additive, and by Proposition 4.1, $e^{\prime} \circ m_{p} \in$ $\operatorname{pfa}(\Sigma)$. Clearly, $m=m_{c}+m_{p}$.

Remark. A Yosida-Hewitt type decomposition theorem for order-weakly compact operators acting from a vector lattice to a Banach space was derived in [4, Theorem 4].

References

[1] C.D. Aliprantis, K.C. Border, Infinite Dimensional Analysis, second ed., Springer-Verlag, 1999.
[2] C.D. Aliprantis, O. Burkinshaw, Positive Operators, Academic Press, New York, 1985.
[3] C.D. Aliprantis, O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics, second ed., in: Math. Surveys and Monographs, vol. 105, 2003.
[4] A. Basile, A.V. Bukhvalov, M.Ya. Yakubson, The generalized Yosida-Hewitt theorem, Math. Proc. Cambridge Philos. Soc. 116 (1994) 527-533.
[5] N. Bourbaki, Elements of Mathematics, Topological Vector Spaces, Springer-Verlag, Berlin, 1987 (Chapter 1-5).
[6] J. Diestel, Applications of weak compactness and bases to vector measures and vectorial applications, Rev. Roumaine Math. Pures Appl. 28 (2) (1973) 211-224.
[7] J. Diestel, J.J. Uhl, Vector Measures, in: Math. Surveys, vol. 15, Amer. Math. Soc., Providence, RI, 1977.
[8] L. Drewnowski, Topological rings of sets, continuous set functions, integration, III, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 20 (6) (1972) 439-445.
[9] R.E. Edwards, Functional Analysis, Theory and Applications, Holt, Rinehart and Winston, New York, 1965.
[10] W.H. Graves, On the Theory of Vector Measures, in: Memoirs, vol. 195, Amer. Math. Soc., Providence, RI, 1977.
[11] W.H. Graves, W. Ruess, Compactness in spaces of vector-valued measures and a natural Mackey topology for spaces of bounded measurable functions, Contemp. Math. 2 (1980) 189-203.
[12] S.S. Khurana, A topology associated with vector measures, J. Indian Math. Soc. 45 (1981) 167-179.
[13] D.R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1) (1970) 157-165.
[14] T.V. Panchapagesan, Applications of a theorem of Grothendieck to vector measures, J. Math. Anal. Appl. 214 (1997) 89-101.
[15] T.V. Panchapagesan, Characterizations of weakly compact operators on $C_{0}(T)$, Trans. Amer. Math. Soc. 350 (12) (1998) 4849-4867.
[16] H. Schaefer, Xiao-Dong Zhang, On the Vitali-Hahn-Saks Theorem, in: Operator Theory: Advances and Applications, vol. 75, Birkhäuser, Basel, 1995, pp. 289-297.
[17] K. Yosida, E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952) 46-66.
[18] Xiao-Dong Zhang, On weak compactness in spaces of measures, J. Funct. Anal. 143 (1997) 1-9.

[^0]: E-mail address: M.Nowak@wmie.uz.zgora.pl.
 0019-3577/\$ - see front matter © 2011 Royal Netherlands Academy of Arts and Sciences. Published by Elsevier B.V. All rights reserved.
 doi:10.1016/j.indag.2011.11.001

