

Available online at www.sciencedirect.com

SciVerse ScienceDirect

indagationes mathematicae

Indagationes Mathematicae 23 (2012) 113-122

www.elsevier.com/locate/indag

Vector measures and Mackey topologies

Marian Nowak

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. Szafrana 4A, 65–516 Zielona Góra, Poland

Received 15 October 2011; accepted 6 November 2011

Communicated by B. de Pagter

Abstract

Let Σ be a σ -algebra of subsets of a non-empty set Ω . Let $B(\Sigma)$ be the Banach lattice of all bounded Σ -measurable real-valued functions defined on Ω , equipped with the natural Mackey topology $\tau(B(\Sigma), ca(\Sigma))$. We study $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -continuous linear operators from $B(\Sigma)$ to a quasicomplete locally convex space (E, ξ) . A generalized Nikodym convergence theorem and a Vitali–Hahn–Saks type theorem for operators on $B(\Sigma)$ are obtained. It is shown that the space $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ has the strict Dunford–Pettis property. Moreover, a Yosida–Hewitt type decomposition for weakly compact operators on $B(\Sigma)$ is given.

© 2011 Royal Netherlands Academy of Arts and Sciences. Published by Elsevier B.V. All rights reserved.

Keywords: Bounded measurable functions; σ -smooth operators; Mackey topologies; Strongly Mackey space; Weakly compact operators; Countably additive measures; Strict Dunford–Pettis property

1. Introduction and terminology

Properties of bounded linear operators from the space $B(\Sigma)$ to a Banach space E can be expressed in terms of the properties of their representing vector measures (see [6, Theorem 2.2], [7, Theorem 1, p. 148], [11, Corollary 12], [16, Theorem 10], [18, Theorem 2.1]). In this paper we study linear operators from $B(\Sigma)$ to a quasicomplete locally convex space (E, ξ) . In particular, we obtain a Vitali–Hahn–Saks type theorem and a Nikodym convergence type theorem for $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -continuous linear operators $T : B(\Sigma) \to E$. It is shown that the space

E-mail address: M.Nowak@wmie.uz.zgora.pl.

^{0019-3577/\$ -} see front matter © 2011 Royal Netherlands Academy of Arts and Sciences. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.indag.2011.11.001

 $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ has the strict Dunford–Pettis property. Moreover, a Yosida–Hewitt type decomposition for weakly compact operators on $B(\Sigma)$ is given.

For terminology concerning vector lattices we refer the reader to [2,3,1]. We denote by $\sigma(L, K), \tau(L, K)$ and $\beta(L, K)$ the weak topology, the Mackey topology and the strong topology on L with respect to the dual pair $\langle L, K \rangle$. We assume that (E, ξ) is a locally convex Hausdorff space (for short, lcHs). By $(E, \xi)'$ or E'_{ξ} we denote the topological dual of (E, ξ) . Recall that (E, ξ) is a strongly Mackey space if every relatively countably $\sigma(E'_{\xi}, E)$ -compact subset of E'_{ξ} is ξ -equicontinuous. By E''_{ξ} we denote the bidual of (E, ξ) , i.e., $E''_{\xi} = (E'_{\xi}, \beta(E'_{\xi}, E))'$. Let Σ be a σ -algebra of subsets of a non-empty set Ω . By $ca(\Sigma, E)$ we denote the space

Let Σ be a σ -algebra of subsets of a non-empty set Ω . By $ca(\Sigma, E)$ we denote the space of all ξ -countably additive vector measures $m : \Omega \to E$, and we will write $ca(\Sigma)$ if $E = \mathbb{R}$. By $S(\Sigma)$ we denote the space of all real-valued Σ -simple functions defined on Ω . Then $S(\Sigma)$ can be endowed with the (locally convex) universal measure topology τ of Graves [10], that is, τ is the coarsest locally convex topology on $S(\Sigma)$ such that the integration map $T_m : S(\Sigma) \ni$ $s \mapsto \int_{\Omega} s \, dm \in E$ is continuous for every locally convex space (E, ξ) and every $m \in ca(\Sigma, E)$ (see [10, p. 5]). Let $(L(\Sigma), \hat{\tau})$ stand for the completion of $(S(\Sigma), \tau)$. It is known that both $(S(\Sigma), \tau)$ and $(L(\Sigma), \hat{\tau})$ are strongly Mackey spaces (see [10, Corollaries 11.7 and 11.8]). It follows that $\tau = \tau(S(\Sigma), ca(\Sigma))$ and $\hat{\tau} = \tau(L(\Sigma), ca(\Sigma))$ (see [10,11]). Moreover, if (E, ξ) is complete in its Mackey topology, then for each $m \in ca(\Sigma, E)$, the integration map T_m can be uniquely extended to a $(\hat{\tau}, \xi)$ -continuous map $\widetilde{T}_m : L(\Sigma) \to E$ (see [11]).

Let $B(\Sigma)$ denote the Dedekind σ -complete Banach lattice of all bounded Σ -measurable functions $u : \Omega \to \mathbb{R}$, provided with the uniform norm $\|\cdot\|$. Then $B(\Sigma)$ is the $\|\cdot\|$ -closure of $\mathcal{S}(\Sigma)$, so $\mathcal{S}(\Sigma) \subset B(\Sigma) \subset L(\Sigma)$ and the restriction $\hat{\tau}$ from $L(\Sigma)$ to $B(\Sigma)$ coincides with the Mackey topology $\tau(B(\Sigma), ca(\Sigma))$ (see [11, p. 199]). Moreover, $(B(\Sigma), \hat{\tau}|_{B(\Sigma)})$ is a strongly Mackey space (see [10, Corollary 11.8]). Note that the topology γ_1 on $B(\Sigma)$ studied by Khurana [12], coincides with the topology $\hat{\tau}|_{B(\Sigma)}(=\tau(B(\Sigma), ca(\Sigma)))$ (see [12, Theorem 2, Corollary 6]).

Denote by $ba(\Sigma)$ the Banach lattice of all bounded finitely additive measures $\nu : \Sigma \to \mathbb{R}$ with the norm $\|\nu\| = |\nu|(\Omega)$, where $|\nu|(A)$ denotes the variation of ν on $A \in \Sigma$. It is well known that the Banach dual $B(\Sigma)^*$ of $B(\Sigma)$ can be identified with $ba(\Sigma)$ through the mapping $ba(\Sigma) \ni \nu \mapsto \Phi_{\nu} \in B(\Sigma)^*$, where

$$\Phi_{\nu}(u) = \int_{\Omega} u \, d\nu \quad \text{for } u \in B(\Sigma).$$

Then $|| \Phi_{\nu} || = |\nu|(\Omega)$ (see [1, Theorem 13.4]). The σ -order continuous dual $B(\Sigma)_c^*$ of $B(\Sigma)$ is a band of $B(\Sigma)^*$ (separating the points of $B(\Sigma)$) and $B(\Sigma)_c^*$ can be identified with $ca(\Sigma)$ (see [1, Theorem 13.5]). Hence

$$(B(\Sigma), \hat{\tau}|_{B(\Sigma)})' = (B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))' = B(\Sigma)_c^*.$$

Moreover, it is well known that $\tau(B(\Sigma), ca(\Sigma))$ is a locally solid σ -Lebesgue topology on $B(\Sigma)$ (see [3, Ex. 18, p. 178], [12, Theorem 3]).

2. σ -smooth operators on $B(\Sigma)$

In this section we study $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -continuous linear operators from $B(\Sigma)$ to a locally convex Hausdorff space (E, ξ) . Recall that a sequence (u_n) in $B(\Sigma)$ is order convergent to $u \in B(\Sigma)$ (in symbols, $u_n \xrightarrow{(0)} u$) if there is a sequence (v_n) in $B(\Sigma)$ such that $|u_n - u| \le v_n \downarrow 0$ in $B(\Sigma)$ (see [3]).

Definition 2.1. A linear operator $T : B(\Sigma) \to E$ is said to be σ -smooth if $T(u_n) \to 0$ in ξ whenever $u_n \stackrel{(o)}{\longrightarrow} 0$ in $B(\Sigma)$.

Proposition 2.1. For a linear operator $T : B(\Sigma) \to E$ the following statements are equivalent:

(i) $e' \circ T \in B(\Sigma)^*_c$ for each $e' \in E'_{\xi}$.

(ii) T is $(\sigma(B(\Sigma), ca(\Sigma)), \sigma(E, E'_{\xi}))$ -continuous.

(iii) T is $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -continuous.

(iv) T is $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -sequentially continuous.

(v) T is σ -smooth.

Proof. (i) \iff (ii) See [2, Theorem 9.26].

(ii) \implies (iii) Assume that T is $(\sigma(B(\Sigma), ca(\Sigma)), \sigma(E, E'_{\xi}))$ -continuous. Then T is $(\tau(B(\Sigma), ca(\Sigma)), \tau(E, E'_{\xi}))$ -continuous (see [2, Ex. 11, p. 149]). It follows that T is $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -continuous because $\xi \subset \tau(E, E'_{\xi})$. (iii) \implies (iv) It is obvious.

(iv) \Longrightarrow (v) Assume that *T* is $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -sequentially continuous, and let $u_n \stackrel{(o)}{\longrightarrow} 0$ in $B(\Sigma)$. Then $u_n \to 0$ for $\tau(B(\Sigma), ca(\Sigma))$ because $\tau(B(\Sigma), ca(\Sigma))$ is a σ -Lebesgue topology. Hence $T(u_n) \to 0$ for ξ , i.e., *T* is σ -smooth.

 $(v) \Longrightarrow (i)$ It is obvious. \Box

Note that every σ -smooth operator $T : B(\Sigma) \to E$ is $(\|\cdot\|, \xi)$ -continuous because $\tau(B(\Sigma), ca(\Sigma)) \subset \mathcal{T}_{\|\cdot\|}$.

Let $\mathcal{L}_{\tau,\xi}(B(\Sigma), E)$ stand for the space of all $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -continuous linear operators from $B(\Sigma)$ to E, equipped with the topology \mathcal{T}_s of simple convergence. Then $T_{\alpha} \to T$ for \mathcal{T}_s in $\mathcal{L}_{\tau,\xi}(B(\Sigma), E)$ if and only if $T_{\alpha}(u) \to T(u)$ in ξ for all $u \in B(\Sigma)$.

The following result will be of importance (see [16, Theorem 2]).

Theorem 2.2. Let \mathcal{K} be a \mathcal{T}_s -compact subset of $\mathcal{L}_{\tau,\xi}(B(\Sigma), E)$. If C is a $\sigma(E'_{\xi}, E)$ -closed and ξ -equicontinuous subset of E'_{ξ} , then $\{e' \circ T : T \in \mathcal{K}, e' \in C\}$ is a $\sigma(B(\Sigma)^*_c, B(\Sigma))$ -compact subset of $B(\Sigma)^*_c$.

Now using Theorem 2.2 and the property that $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ is a strongly Mackey space, we are ready to prove our main result.

Theorem 2.3. Let \mathcal{K} be a subset of $\mathcal{L}_{\tau,\xi}(B(\Sigma), E)$. Then the following statements are equivalent:

- (i) \mathcal{K} is relatively \mathcal{T}_s -compact.
- (ii) \mathcal{K} is $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -equicontinuous and for each $u \in B(\Sigma)$, the set $\{T(u) : T \in \mathcal{K}\}$ is relatively ξ -compact in E.

Proof. (i) \Longrightarrow (ii) Assume that \mathcal{K} is relatively \mathcal{T}_s -compact. Let W be an absolutely convex and ξ -closed neighbourhood of 0 for ξ in E. Then the polar W^0 of W, with respect to the dual pair $\langle E, E'_{\xi} \rangle$, is a $\sigma(E'_{\xi}, E)$ -closed and ξ -equicontinuous subset of E'_{ξ} (see [2, Theorem 9.21]). Hence in view of Theorem 2.2 the set $H = \{e' \circ T : T \in \mathcal{K}, e' \in W^0\}$ in $B(\Sigma)^*_c$ is relatively $\sigma(B(\Sigma)^*_c, B(\Sigma))$ -compact. Since $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ is a strongly Mackey space, the set H is $\tau(B(\Sigma), ca(\Sigma))$ -equicontinuous. It follows that there exists a $\tau(B(\Sigma), ca(\Sigma))$ -neighbourhood V of 0 in $B(\Sigma)$ such that $H \subset V^0$, where V^0 denotes the polar of *V* with respect to the dual pair $\langle B(\Sigma), B(\Sigma)_c^* \rangle$. It follows that for each $T \in \mathcal{K}$ we have that $\{e' \circ T : e' \in W^0\} \subset V^0$, i.e., if $e' \in W^0$, then $|e'(T(u))| \leq 1$ for all $u \in V$. This means that for each $T \in \mathcal{K}$ we get $W^0 \subset T(V)^0$. Hence $T(V) \subset T(V)^{00} \subset W^{00} = W$ for each $T \in \mathcal{K}$, i.e., \mathcal{K} is $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -equicontinuous. Clearly, for each $u \in B(\Sigma)$, the set $\{T(u) : T \in \mathcal{K}\}$ is relatively ξ -compact in *E*.

(ii) \implies (i) It follows from [5, Chap. 3, Section 3.4, Corollary 1].

Corollary 2.4. Assume that \mathcal{K} is a relatively \mathcal{T}_s -compact subset of $\mathcal{L}_{\tau,\xi}(B(\Sigma), E)$. Then \mathcal{K} is uniformly σ -smooth, i.e., for each ξ -continuous seminorm p on E we have that $\sup_{T \in \mathcal{K}} p(T(u_n)) \to 0$ whenever $u_n \xrightarrow{(o)} 0$ in $B(\Sigma)$.

Proof. In view of Theorem 2.3 \mathcal{K} is $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -equicontinuous. Let p be a ξ continuous seminorm on E, and let $\varepsilon > 0$ be given. Then there exists a $\tau(B(\Sigma), ca(\Sigma))$ neighbourhood V of 0 in $B(\Sigma)$ such that for each $T \in \mathcal{K}$ we have $p(T(u)) \leq \varepsilon$ for all $u \in V$. Assume that (u_n) is a sequence in $B(\Sigma)$ such that $u_n \xrightarrow{(0)} 0$ in $B(\Sigma)$. Then $u_n \longrightarrow 0$ for $\tau(B(\Sigma), ca(\Sigma))$ because $\tau(B(\Sigma), ca(\Sigma))$ is a σ -Lebesgue topology, and hence there exists $n_{\varepsilon} \in \mathbb{N}$ such that $u_n \in V$ for $n \geq n_{\varepsilon}$. Hence $\sup_{T \in \mathcal{K}} p(T(u_n)) \leq \varepsilon$ for $n \geq n_{\varepsilon}$.

3. Integration operators on $B(\Sigma)$

For terminology and basic results concerning the integration with respect to vector measures we refer the reader to [14,15,13]. In this section we study integration operators on $B(\Sigma)$ in terms of their representing vector measures.

Let (E, ξ) be a quasicomplete lcHs and $m : \Sigma \to E$ be a ξ -bounded additive vector measure (i.e., the range of m is ξ -bounded in E). Given $u \in B(\Sigma)$, let (s_n) be a sequence of Σ -simple functions that converges uniformly to u on Ω . Following [14, Definition 1] we say that u is m-integrable and define

$$\int_{\Omega} u \, dm := \xi - \lim \int_{\Omega} s_n \, dm.$$

The $\int_{\Omega} u \, dm$ is well defined (see [14, Lemma 5]) and the map $T_m : B(\Sigma) \to E$ given by $T_m(u) = \int_{\Omega} u \, dm$ is $(\|\cdot\|, \xi)$ -continuous and linear, and for each $e' \in E'_{\xi}$

$$e'\left(\int_{\Omega} u \, dm\right) = \int_{\Omega} u \, d(e' \circ m) \quad \text{for } u \in B(\Sigma)$$

(see [14, Lemma 5]). Conversely, let $T : B(\Sigma) \to E$ be a $(\|\cdot\|, \xi)$ -continuous linear operator, and let $m(A) = T(\mathbb{1}_A)$ for $A \in \Sigma$. Then $m : \Sigma \to E$ is a ξ -bounded vector measure, called the *representing measure* of T and $T_m(u) = T(u)$ for $u \in B(\Sigma)$ (see [14, Definition 2]).

An important example of a quasicomplete locally convex Hausdorff space is the space $\mathcal{L}(X, Y)$ of all bounded linear operators between Banach spaces X and Y, provided with the strong operator topology.

Now we present a characterization of $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -continuous linear operators $T : B(\Sigma) \to E$ in terms of their representing measures.

Proposition 3.1. Assume that (E, ξ) is a quasicomplete lcHs. Let $T : B(\Sigma) \to E$ be a $(\|\cdot\|, \xi)$ continuous linear operator and $m : \Sigma \to E$ be its representing measure. Then the following
statements are equivalent:

- (i) $e' \circ m \in ca(\Sigma)$ for each $e' \in E'_{\xi}$.
- (ii) $e' \circ T \in B(\Sigma)_c^*$ for each $e' \in E'_{\xi}$.
- (iii) T is $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -continuous.
- (iv) T is σ -smooth.
- (v) $T(u_n) \longrightarrow 0$ for ξ whenever $u_n(\omega) \longrightarrow 0$ for each $\omega \in \Omega$ and $\sup_n ||u_n|| < \infty$.
- (vi) *m* is ξ -countably additive.

In particular, if $(E, \|\cdot\|_E)$ is a Banach space, then each of the statements (i)–(vi) is equivalent to the following:

(vii) T is $(\tau(B(\Sigma), ca(\Sigma)), \|\cdot\|_E)$ -weakly compact, i.e., T(V) is relatively weakly compact in E for some $\tau(B(\Sigma), ca(\Sigma))$ -neighbourhood V of 0 in $B(\Sigma)$.

Proof. (i) \iff (ii) For each $e' \in E'_{\varepsilon}$ we have

$$(e' \circ T)(u) = \int_{\Omega} u \, d(e' \circ m) \quad \text{for all } u \in B(\Sigma).$$

Hence, $e' \circ m \in ca(\Sigma)$ if and only if $e' \circ T \in B(\Sigma)^*_c$ (see [1, Theorem 13.5]).

(ii) \iff (iii) \iff (iv) See Proposition 2.1.

(iv) \Longrightarrow (v) Assume that (iv) holds and let (u_n) be a sequence in $B(\Sigma)$ such that $u_n(\omega) \longrightarrow 0$ for each $\omega \in \Omega$ and sup $||u_n|| < \infty$. Let $v_n(\omega) = \sup_{m \ge n} |u_m(\omega)|$ for $\omega \in \Omega$, $n \in \mathbb{N}$. Then $v_n \in B(\Sigma)$ and $|u_n(\omega)| \le v_n(\omega) \downarrow 0$ for all $\omega \in \Omega$ and $n \in \mathbb{N}$. It follows that $u_n \xrightarrow{(0)} 0$ in $B(\Sigma)$ and by (iv) $T(u_n) \to 0$ for ξ .

(v) \Longrightarrow (vi) Assume that (v) holds, and let $A_n \downarrow \emptyset$, $(A_n) \subset \Sigma$. Then $\mathbb{1}_{A_n}(\omega) \downarrow 0$ for $\omega \in \Omega$ and $\sup_n \|\mathbb{1}_{A_n}\| \le 1$. It follows that $m(A_n) = T(\mathbb{1}_{A_n}) \to 0$ for ξ , i.e., *m* is ξ -countably additive. (vi) \Longrightarrow (i) It is obvious.

Assume that $(E, \|\cdot\|_E)$ is a Banach space. Then by [11, Corollary 12] we have (vi) \Leftrightarrow (vii). \Box

Graves and Ruess [11, Theorem 7] characterized relative compactness in $ca(\Sigma, E)$ in the topology \mathcal{T}_s of simple convergence (convergence on each $A \in \Sigma$) in terms of the properties of the integration operators from $\mathcal{S}(\Sigma)$ to E or from $L(\Sigma)$ to E.

For a subset \mathcal{M} of $ca(\Sigma, E)$ let $\mathcal{K}_{\mathcal{M}} = \{T_m \in \mathcal{L}_{\tau,\xi}(B(\Sigma), E) : m \in \mathcal{M}\}$. Now using [11, Theorem 7] and Theorem 2.3 we are ready to state the following generalized Vitali–Hahn–Saks theorem for operators from $B(\Sigma)$ to E (see [16, Theorem 10]).

Theorem 3.2. Assume that (E, ξ) is a quasicomplete lcHs that is complete in its Mackey topology (in particular, E is a Banach space). Then for a set \mathcal{M} in $ca(\Sigma, E)$ the following statements are equivalent:

- (i) $\mathcal{K}_{\mathcal{M}}$ is a relatively \mathcal{T}_s -compact set in $\mathcal{L}_{\tau,\xi}(B(\Sigma), E)$.
- (ii) $\mathcal{K}_{\mathcal{M}}$ is $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -equicontinuous and for each $u \in B(\Sigma)$, the set $\{T_m(u) : m \in \mathcal{M}\}$ is relatively ξ -compact in E.
- (iii) \mathcal{M} is uniformly ξ -countably additive and for each $A \in \Sigma$, the set $\{m(A) : m \in \mathcal{M}\}$ is relatively ξ -compact in E.
- (iv) \mathcal{M} is a relatively \mathcal{T}_s -compact set in $ca(\Sigma, E)$.
- **Proof.** (i) \iff (ii) See Theorem 2.3.

(ii) \Longrightarrow (iii) Assume that (ii) holds and let $A_n \downarrow \emptyset$, $(A_n) \subset \Sigma$. Then $\mathbb{1}_{A_n} \downarrow \emptyset$ in $B(\Sigma)$, and we can apply Proposition 3.1 and Corollary 2.4.

(iii) \Longrightarrow (ii) Assume that (iii) holds. Then in view of [11, Theorem 7] the set $\widetilde{\mathcal{K}}_{\mathcal{M}} = \{\widetilde{T}_m : m \in \mathcal{M}\}$ is $(\hat{\tau}, \xi)$ -equicontinuous and $\widetilde{\mathcal{K}}_{\mathcal{M}}$ is a relatively \mathcal{T}_s -compact set in $\mathcal{L}_{\hat{\tau},\xi}(L(\Sigma), E)$ (=the space of all $(\hat{\tau}, \xi)$ -continuous linear operators from $L(\Sigma)$ to E). It follows that $\mathcal{K}_{\mathcal{M}}$ is $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -equicontinuous and for each $u \in B(\Sigma)$, the set $\{T_m(u) : m \in \mathcal{M}\}$ is relatively ξ -compact in E, i.e., (ii) holds.

(iii) \iff (iv) See [11, Theorem 7]. \Box

Recall that the Nikodym convergence theorem says that if (m_k) is a sequence of measures on a σ -algebra Σ taking values in a locally convex space (E, ξ) and $m(A) := \xi - \lim m_k(A)$ for each $A \in \Sigma$, then $m : \Sigma \to E$ is ξ -countably additive and the family $\{m_k : k \in \mathbb{N}\}$ is uniformly ξ -countably additive (see [8, Theorem 8.6], [11, Theorem 9], [16, Corollary 9]). Now we shall prove a generalized Nikodym convergence type theorem for operators from $B(\Sigma)$ to a quasicomplete lcHs (E, ξ) .

For this purpose we first establish some terminology. For each ξ -continuous seminorm p on E, let $E_p = (E, p)$ be the associated seminormed space. Denote by $(\widetilde{E}_p, \|\cdot\|_p^{\sim})$ the completion of the quotient normed space $E/p^{-1}(0)$. Let $\Pi_p : E_p \to E/p^{-1}(0) \subset \widetilde{E}_p$ be the canonical quotient map (see [14, p. 92]).

Given a vector measure $m : \Sigma \to E$, let $m_p : \Sigma \to \widetilde{E}_p$ be given by

$$m_p(A) := (\prod_p \circ m)(A) \text{ for } A \in \Sigma.$$

Then m_p is a Banach space-valued measure on Σ . We define the *p*-semivariation $||m||_p$ of *m* by

$$||m||_p(A) := ||m_p||(A) \quad \text{for } A \in \Sigma,$$

where $||m_p||$ denotes the semivariation of $m_p : \Sigma \to \widetilde{E}_p$. Note that *m* is ξ -bounded if and only if $||m||_p(\Omega) < \infty$ for each ξ -continuous seminorm *p* on *E*. Moreover, we have (see [14, Lemma 7])

$$\|m\|_{p}(\Omega) = \|T_{m}\|_{p} = \sup\left\{p\left(\int_{\Omega} u\,dm\right) : u \in B(\Sigma), \|u\| \le 1\right\}.$$
(3.1)

Now we can prove our desired theorem.

Theorem 3.3. Assume that (E, ξ) is a quasicomplete lcHs. Let $m_k : \Sigma \to E$ be ξ -countably additive vector measures for $k \in \mathbb{N}$ and assume that $m(A) = \xi - \lim m_k(A)$ exists for each $A \in \Sigma$. Then the following statements hold:

- (i) $m : \Sigma \to E$ is a ξ -countably additive vector measure, and the integration operator $T_m : B(\Sigma) \to E$ is $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -continuous.
- (ii) $T_m(u) = \xi \lim_k T_{m_k}(u)$ for all $u \in B(\Sigma)$.
- (iii) The family $\{T_{m_k} : k \in \mathbb{N}\}$ is $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -equicontinuous.

Proof. In view of the Nikodym convergence theorem (see [8, Theorem 8.6]) the vector measure $m : \Sigma \to E$ is ξ -countably additive, and by Proposition 3.1 $T_m : B(\Sigma) \to E$ is $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -continuous.

Let *p* be a ξ -continuous seminorm on *E*. We show that $p(T_{m_k}(u) - T_m(u)) \to 0$ for each $u \in B(\Sigma)$. Indeed, since $p(m_k(A) - m(A)) \to 0$ for all $A \in \Sigma$, we have $\|\Pi_p(m_k(A) - m(A))\|_p^{\sim} \to 0$, i.e., $\|(m_k)_p(A) - m_p(A)\|_p^{\sim} \to 0$ for all $A \in \Sigma$. It follows that $\sup_k \|(m_k)_p(A)\|_p^{\sim} < \infty$ for

all $A \in \Sigma$, and in view of the Nikodym boundedness theorem (see [7, Theorem 1, p. 14]) and (3.1) we get

$$c = \sup_{k} \|T_{m_k}\|_p = \sup_{k} \|m_k\|_p(\Omega) < \infty.$$

Let $u \in B(\Sigma)$ and $\varepsilon > 0$ be given. Choose $s_0 \in S(\Sigma)$ such that $||u - s_0|| \le \frac{\varepsilon}{3a}$, where $a = \max(c, ||T_m||_p)$. Then there is $k_0 \in \mathbb{N}$ such that $p(T_{m_k}(s_0) - T_m(s_0)) \le \frac{\varepsilon}{3}$ for $k \ge k_0$. Hence for $k \ge k_0$ we have

$$p(T_{m_k}(u) - T_m(u)) \le p(T_m(u - s_0)) + p(T_m(s_0) - T_{m_k}(s_0)) + p(T_{m_k}(s_0) - T_{m_k}(u))$$

$$\le ||T_m||_p \cdot ||u - s_0|| + p(T_m(s_0) - T_{m_k}(s_0)) + ||T_{m_k}||_p \cdot ||s_0 - u||$$

$$\le a \cdot \frac{\varepsilon}{3a} + \frac{\varepsilon}{3} + a \cdot \frac{\varepsilon}{3a} = \varepsilon.$$

It follows that $T_{m_k} \to T_m$ in $\mathcal{L}_{\tau,\xi}(B(\Sigma), E)$ for \mathcal{T}_s . Since $\{T_{m_k} : k \in \mathbb{N}\} \cup \{T_m\}$ is a \mathcal{T}_s compact subset of $\mathcal{L}_{\tau,\xi}(B(\Sigma), E)$, by Theorem 2.3 the set $\{T_{m_k} : k \in \mathbb{N}\}$ is $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ equicontinuous. \Box

Finally, we shall show that every $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -continuous linear operator $T : B(\Sigma) \to E$ is a strict Dunford–Pettis operator.

Theorem 3.4. Assume that (E, ξ) is a quasicomplete lcHs. If $T : B(\Sigma) \to E$ is a $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -continuous linear operator, then T maps $\sigma(B(\Sigma), B(\Sigma)_c^*)$ -Cauchy sequences in $B(\Sigma)$ onto ξ -convergent sequences in E.

Proof. For each $\omega \in \Omega$ let $\Phi_{\omega}(u) = u(\omega)$ for all $u \in B(\Sigma)$. Note that $\Phi_{\omega} \in B(\Sigma)_c^*$ (see Proposition 3.1). Let (u_n) be a $\sigma(B(\Sigma), B(\Sigma)_c^*)$ -Cauchy sequence in $B(\Sigma)$. Then the set $\{u_n : n \in \mathbb{N}\}$ is $\tau(B(\Sigma), ca(\Sigma))$ -bounded, and it follows that $\sup_n ||u_n|| < \infty$ (see [12, Theorem 2]). It follows that for each $\omega \in \Omega$, $\lim u_n(\omega) = \lim \Phi_{\omega}(u_n) = u_0(\omega)$ exists in \mathbb{R} . It follows that $u_0 : \Omega \to \mathbb{R}$ is Σ -measurable, and since $\sup_n ||u_n|| < \infty$, we obtain that u_0 is bounded, i.e., $u_0 \in B(\Sigma)$.

Let $m(A) = T(\mathbb{1}_A)$ for $A \in \Sigma$. Then by Proposition 3.1, *m* is ξ -countably additive. Hence making use of the Lebesgue type convergence theorem (see [15, Proposition 7, p. 4854]), u_0 is *m*-integrable and we have

$$T(u_n) = \int_{\Omega} u_n \, dm \xrightarrow{\xi} \int_{\Omega} u_0 \, dm \in E.$$

Thus the proof is complete. \Box

As a consequence of Theorem 3.4 we have the following result (see [9, Section 9.4]).

Corollary 3.5. The space $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ has the strict Dunford–Pettis property.

4. Yosida–Hewitt decomposition for weakly compact operators on $B(\Sigma)$

In this section we derive a Yosida–Hewitt type decomposition theorem for weakly compact operators on $B(\Sigma)$. In view of the Yosida–Hewitt decomposition theorem (see [17]) we have

 $ba(\Sigma) = ca(\Sigma) \oplus pfa(\Sigma),$

where $pfa(\Sigma) (=ca(\Sigma)^d$ —the disjoint complement of $ca(\Sigma)$ in $ba(\Sigma)$) stands for the band of purely finitely additive members of $ba(\Sigma)$. On the other hand, we have (see [2, Theorem 3.8])

 $B(\Sigma)^* = B(\Sigma)^*_c \oplus (B(\Sigma)^*_c)^d,$

where $(B(\Sigma)_c^*)^d$ stands for the disjoint complement of $B(\Sigma)_c^*$ in $B(\Sigma)^*$. It follows that

$$(B(\Sigma)_c^*)^d = \{ \Phi_{\nu} : \nu \in \mathrm{pfa}(\Sigma) \}.$$

Since $B(\Sigma)$ is an AM-space, $ba(\Sigma)$ is an AL-space (see [1, Theorem 13.2]). This means that $\|v\| = \|v_c\| + \|v_p\|$ and $\|\Phi_v\| = \|\Phi_{v_c}\| + \|\Phi_{v_p}\|$, where $v = v_c + v_p$ with $v_c \in ca(\Sigma)$ and $v_p \in pfa(\Sigma)$.

Definition 4.1. A $(\|\cdot\|, \xi)$ -continuous linear operator $T : B(\Sigma) \to E$ is said to be *purely* non- σ -smooth if $e' \circ T \in (B(\Sigma)_c^*)^d$ for each $e' \in E'_{\xi}$.

Moreover, since $(B(\Sigma)_c^*)^d = \{\Phi_v : v \in pfa(\Sigma)\}$ we have the following result.

Proposition 4.1. Assume that (E, ξ) is a quasicomplete lcHs. Let $T : B(\Sigma) \to E$ be a $(\|\cdot\|, \xi)$ continuous linear operator and $m : \Sigma \to E$ be its representing measure. Then the following
statements are equivalent:

- (i) *T* is purely non- σ -smooth.
- (ii) $e' \circ m \in pfa(\Sigma)$ for each $e' \in E'_{\varepsilon}$.

A vector measure $m : \Sigma \to E$ is said to be ξ -strongly bounded (ξ -exhausting) if $m(A_n) \to 0$ in ξ for each pairwise disjoint sequence (A_n) in Σ . It is well known that each ξ -countably additive measure $m : \Sigma \to E$ is ξ -strongly bounded. The following theorem is of importance (see [14, Lemma 3 and Theorem 1]).

Theorem 4.2. Assume that (E, ξ) is a quasicomplete lcHs. Let $T : B(\Sigma) \to E$ be a $(\|\cdot\|, \xi)$ continuous linear operator and $m : \Sigma \to E$ be its representing measure. Then the following
statements are equivalent:

- (i) T is weakly compact, i.e., T maps bounded sets in $B(\Sigma)$ onto relatively $\sigma(E, E'_{\xi})$ -compact sets in E.
- (ii) *m* is ξ -strongly bounded.

From Theorem 4.2 and Proposition 3.1 it follows that every σ -smooth operator from $B(\Sigma)$ to a quasicomplete lcHs is weakly compact.

Now we are ready to prove the following Yosida–Hewitt type decomposition for weakly compact operators from $B(\Sigma)$ to a quasicomplete lcHs.

Theorem 4.3. Assume that (E, ξ) is a quasicomplete lcHs. Let $T : B(\Sigma) \to E$ be a weakly compact operator and $m : \Sigma \to E$ be its representing measure. Then:

- (i) *m* can be uniquely decomposed as $m = m_c + m_p$, where $m_c : \Sigma \to E$ is ξ -countably additive, $m_p : \Sigma \to E$ is ξ -strongly bounded and $e' \circ m_p \in pfa(\Sigma)$ for each $e' \in E'_{k}$.
- (ii) *T* can be uniquely decomposed as $T = T_1 + T_2$, where T_1 is σ -smooth and T_2 is weakly compact and purely non σ -smooth, and

$$T_1(u) = \int_{\Omega} u \, dm_c \quad and \quad T_2(u) = \int_{\Omega} u \, dm_p \quad for \ all \ u \in B(\Sigma).$$

Proof. For $\Phi \in B(\Sigma)^*$ we have $\Phi = \Phi_1 + \Phi_2$, where $\Phi_1 \in B(\Sigma)^*_c$ and $\Phi_2 \in (B(\Sigma)^*_c)^d$. Then we have two natural projections

$$P_k: B(\Sigma)^* \longrightarrow B(\Sigma)^*,$$

where $P_k(\Phi) = \Phi_k$ and $||P_k|| \le 1$ for k = 1, 2. Now consider the conjugate mappings

$$P'_k: B(\Sigma)^{**} \longrightarrow B(\Sigma)^{**}$$

defined by $P'_k(V)(\Phi) = V(P_k(\Phi))$ for $V \in B(\Sigma)^{**}$ (=the Banach bidual of $B(\Sigma)$).

Since T is $(\sigma(B(\Sigma), B(\Sigma)^*), \sigma(E, E'_{\xi}))$ -continuous (see [9, Corollary 8.6.5]), we can define the conjugate mapping

$$T': E'_{\varepsilon} \longrightarrow B(\Sigma)^*$$

by putting $T'(e') = e' \circ T$ for $e' \in E'_{\xi}$. Then T' is $(\beta(E'_{\xi}, E), \beta(B(\Sigma)^*, B(\Sigma)))$ -continuous (see [9, Proposition 8.7.1]), and hence T' is $(\sigma(E'_{\xi}, E''_{\xi}), \sigma(B(\Sigma)^*, B(\Sigma)^{**}))$ -continuous. It follows that one can define the conjugate mapping (see [2, Theorem 9.2])

$$T'': B(\Sigma)^{**} \longrightarrow E''_{\xi}$$

by putting T''(V)(e') = V(T'(e')) for $V \in B(\Sigma)^{**}$ and $e' \in E'_{\xi}$. Then T'' is $(\sigma(B(\Sigma)^{**}, B(\Sigma)^{*}), \sigma(E''_{\xi}, E'_{\xi}))$ -continuous.

We have a natural isometric embedding $\pi : B(\Sigma) \to B(\Sigma)^{**}$, where $\pi(u)(\Phi) = \Phi(u)$ for all $\Phi \in B(\Sigma)^*$, $u \in B(\Sigma)$. Then $(P'_k \circ \pi)(u) = \pi(u) \circ P_k$ for $u \in B(\Sigma)$.

Let $i : E \to E''_{\xi}$ stand for the canonical mapping, where i(e)(e') = e'(e) for $e' \in E'_{\xi}$ and $e \in E$. Moreover, let $j : i(E) \longrightarrow E$ denote the left inverse of i, i.e., $j \circ i = id_E$. Then $T'' \circ \pi = i \circ T$.

By the Gantmacher type theorem (see [9, Theorem 9.3.2]) we have

 $T''(B(\Sigma)^{**}) \subset i(E).$

Define linear mappings (k = 1, 2)

 $T_k := j \circ T'' \circ P'_k \circ \pi : B(\varSigma) \longrightarrow E.$

To show that $T_k : B(\Sigma) \to E$ are weakly compact, note that for $u \in B_{B(\Sigma)}$ (=the closed unit ball in $B(\Sigma)$) we have

$$\|P'_k(\pi(u))\|_{B(\Sigma)^{**}} = \|\pi(u) \circ P_k\|_{B(\Sigma)^{**}} \le 1.$$

Hence by the Banach-Alaoglou theorem the set $\{P'_k(\pi(u)) : u \in B_{B(\Sigma)}\}$ is relatively $\sigma(B(\Sigma)^{**}, B(\Sigma)^*)$ -compact in $B(\Sigma)^{**}$. Since T'' is $(\sigma(B(\Sigma)^{**}, B(\Sigma)^*), \sigma(E''_{\xi}, E'_{\xi}))$ -continuous and $T''(B(\Sigma)^{**}) \subset i(E)$, the set $\{T''(P'_k(\pi(u))) : u \in B_{B(\Sigma)}\}$ is relatively $\sigma(i(E), E'_{\xi})$ -compact in i(E). But j is $(\sigma(i(E), E'_{\xi}), \sigma(E, E'_{\xi}))$ -continuous, so the set $T_k(B_{B(\Sigma)}) = \{j(T''(P'_k(\pi(u)))) : u \in B_{B(\Sigma)}\}$ is relatively $\sigma(E, E'_{\xi})$ -compact in E, and this means that the T_k are weakly compact.

For $A \in \Sigma$ let us put

$$m_c(A) := T_1(\mathbb{1}_A)$$
 and $m_p(A) := T_2(\mathbb{1}_A).$

In view of Theorem 4.2 the measures $m_c : \Sigma \to E$ and $m_p : \Sigma \to E$ are ξ -strongly bounded, and we have

$$T_1(u) = \int_{\Omega} u \, dm_c$$
 and $T_2(u) = \int_{\Omega} u \, dm_p$ for all $u \in B(\Sigma)$.

Note that for each $e' \in E'_{\xi}$ and $u \in B(\Sigma)$ we have

$$(e' \circ T_k)(u) = e'(j \circ (T'' \circ P'_k \circ \pi)(u)) = ((T'' \circ P'_k \circ \pi)(u))(e') = (T''(\pi(u) \circ P_k))(e') = (\pi(u) \circ P_k)(T'(e')) = \pi(u)(P_k(e' \circ T)) = P_k(e' \circ T)(u).$$

Hence $e' \circ T_1 = P_1(e' \circ T) \in B(\Sigma)_c^*$, and by Proposition 3.1, T_1 is σ -smooth. Moreover, $e' \circ T_2 = P_2(e' \circ T) \in (B(\Sigma)_c^*)^d$, i.e., T_2 is purely non- σ -smooth. For every $e' \in E'_{\xi}$ and $u \in B(\Sigma)$ we have

$$e'(T_1(u) + T_2(u)) = P_1(e' \circ T)(u) + P_2(e' \circ T)(u) = e'(T(u)),$$

so $T_1(u) + T_2(u) = T(u)$. The uniqueness of the decomposition $T = T_1 + T_2$ follows from the uniqueness of the decomposition $e' \circ T = e' \circ T_1 + e' \circ T_2$ for each $e' \in E'_{\xi}$.

Moreover, for each $e' \in E'_{\xi}$ we have

$$(e' \circ T_1)(u) = \int_{\Omega} u \, d(e' \circ m_c) \quad \text{and} \quad (e' \circ T_2)(u) = \int_{\Omega} u \, d(e' \circ m_p) \quad \text{for } u \in B(\Sigma).$$

Hence by Proposition 3.1, m_c is ξ -countably additive, and by Proposition 4.1, $e' \circ m_p \in pfa(\Sigma)$. Clearly, $m = m_c + m_p$. \Box

Remark. A Yosida–Hewitt type decomposition theorem for order-weakly compact operators acting from a vector lattice to a Banach space was derived in [4, Theorem 4].

References

- [1] C.D. Aliprantis, K.C. Border, Infinite Dimensional Analysis, second ed., Springer-Verlag, 1999.
- [2] C.D. Aliprantis, O. Burkinshaw, Positive Operators, Academic Press, New York, 1985.
- [3] C.D. Aliprantis, O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics, second ed., in: Math. Surveys and Monographs, vol. 105, 2003.
- [4] A. Basile, A.V. Bukhvalov, M.Ya. Yakubson, The generalized Yosida–Hewitt theorem, Math. Proc. Cambridge Philos. Soc. 116 (1994) 527–533.
- [5] N. Bourbaki, Elements of Mathematics, Topological Vector Spaces, Springer-Verlag, Berlin, 1987 (Chapter 1–5).
- [6] J. Diestel, Applications of weak compactness and bases to vector measures and vectorial applications, Rev. Roumaine Math. Pures Appl. 28 (2) (1973) 211–224.
- [7] J. Diestel, J.J. Uhl, Vector Measures, in: Math. Surveys, vol. 15, Amer. Math. Soc., Providence, RI, 1977.
- [8] L. Drewnowski, Topological rings of sets, continuous set functions, integration, III, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 20 (6) (1972) 439–445.
- [9] R.E. Edwards, Functional Analysis, Theory and Applications, Holt, Rinehart and Winston, New York, 1965.
- [10] W.H. Graves, On the Theory of Vector Measures, in: Memoirs, vol. 195, Amer. Math. Soc., Providence, RI, 1977.
- [11] W.H. Graves, W. Ruess, Compactness in spaces of vector-valued measures and a natural Mackey topology for spaces of bounded measurable functions, Contemp. Math. 2 (1980) 189–203.
- [12] S.S. Khurana, A topology associated with vector measures, J. Indian Math. Soc. 45 (1981) 167–179.
- [13] D.R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1) (1970) 157–165.
- [14] T.V. Panchapagesan, Applications of a theorem of Grothendieck to vector measures, J. Math. Anal. Appl. 214 (1997) 89–101.
- [15] T.V. Panchapagesan, Characterizations of weakly compact operators on $C_0(T)$, Trans. Amer. Math. Soc. 350 (12) (1998) 4849–4867.
- [16] H. Schaefer, Xiao-Dong Zhang, On the Vitali–Hahn–Saks Theorem, in: Operator Theory: Advances and Applications, vol. 75, Birkhäuser, Basel, 1995, pp. 289–297.
- [17] K. Yosida, E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952) 46-66.
- [18] Xiao-Dong Zhang, On weak compactness in spaces of measures, J. Funct. Anal. 143 (1997) 1-9.