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Abstract

Let X be a o-algebra of subsets of a non-empty set (2. Let B(Y) be the Banach lattice of
all bounded X'-measurable real-valued functions defined on (2, equipped with the natural Mackey
topology t(B(X), ca(X)). We study (t(B(X), ca(X)), &)-continuous linear operators from B(Y) to
a quasicomplete locally convex space (E,&). A generalized Nikodym convergence theorem and a
Vitali-Hahn-Saks type theorem for operators on B(Y) are obtained. It is shown that the space
(B(X), t(B(X),ca(X))) has the strict Dunford—Pettis property. Moreover, a Yosida—Hewitt type
decomposition for weakly compact operators on B(X') is given.
© 2011 Royal Netherlands Academy of Arts and Sciences. Published by Elsevier B.V. All rights reserved.
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1. Introduction and terminology

Properties of bounded linear operators from the space B(JY) to a Banach space E can be
expressed in terms of the properties of their representing vector measures (see [6, Theorem
2.2], [7, Theorem 1, p. 148], [11, Corollary 12], [16, Theorem 10], [18, Theorem 2.1]). In this
paper we study linear operators from B(JY)) to a quasicomplete locally convex space (E, £). In
particular, we obtain a Vitali-Hahn—Saks type theorem and a Nikodym convergence type theorem
for (r(B(Y), ca(X)), &)-continuous linear operators T : B(XY) — E. It is shown that the space
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(B(X), t(B(X), ca(X))) has the strict Dunford—Pettis property. Moreover, a Yosida—Hewitt type
decomposition for weakly compact operators on B(Y) is given.

For terminology concerning vector lattices we refer the reader to [2,3,1]. We denote by
o(L,K), (L, K)and B(L, K) the weak topology, the Mackey topology and the strong topology
on L with respect to the dual pair (L, K). We assume that (E, &) is a locally convex Hausdorff
space (for short, IcHs). By (E, &)’ or Eé we denote the topological dual of (£, &§). Recall that
(E, &) is a strongly Mackey space if every relatively countably o (E., E)-compact subset of E é
is £-equicontinuous. By E; we denote the bidual of (E, §), i.e., Eg = (Eé, ﬂ(Eé, E)).

Let X' be a o-algebra of subsets of a non-empty set {2. By ca(X, E) we denote the space
of all £-countably additive vector measures m : {2 — E, and we will write ca(X) if E = R.
By S(X) we denote the space of all real-valued X'-simple functions defined on 2. Then S(JX)
can be endowed with the (locally convex) universal measure topology t of Graves [10], that is,
7 is the coarsest locally convex topology on S(2X) such that the integration map 7, : S(X) 2
s f o s dm € E is continuous for every locally convex space (E, &) and every m € ca(X, E)
(see [10, p. 5]). Let (L(X), T) stand for the completion of (S(X), t). It is known that both
(S§(X), t) and (L(X), T) are strongly Mackey spaces (see [10, Corollaries 11.7 and 11.8]). It
follows that T = 7(S(X), ca(X)) and T = ©(L(X), ca(X)) (see [10,11]). Moreover, if (E, &)
is complete in its Mackey topology, then for each m € ca(X, E), the integration map 7,, can be
uniquely extended to a (7, £)-continuous map Ty, : L(X) — E (see [11]).

Let B(Y) denote the Dedekind o-complete Banach lattice of all bounded JY'-measurable
functions u : {2 — R, provided with the uniform norm || - ||. Then B(XY) is the || - ||-closure
of S(X), so S(X) C B(Y) C L(Y) and the restriction 7 from L(X) to B(X) coincides
with the Mackey topology t(B(X), ca(X)) (see [11, p. 199]). Moreover, (B(X), T|p(x)) is a
strongly Mackey space (see [10, Corollary 11.8]). Note that the topology y; on B(JY) studied
by Khurana [12], coincides with the topology 7|p(x) (=7 (B(X), ca(X))) (see [12, Theorem 2,
Corollary 6]).

Denote by ba(X') the Banach lattice of all bounded finitely additive measures v : ' — R
with the norm |[v|| = |v|({2), where |v|(A) denotes the variation of v on A € Y. It is well
known that the Banach dual B(X)* of B(JX') can be identified with ba(Y') through the mapping
ba(X) > v &, € B(X)*, where

d,(u) =/ udv foru e B(X).
N

Then || @, || = |v[({2) (see [1, Theorem 13.4]). The o-order continuous dual B(X)} of B(Y)
is a band of B(X)* (separating the points of B(X')) and B(X)} can be identified with ca(X)
(see [1, Theorem 13.5]). Hence

(B(X), Tlp(s)) = (B(X), 1(B(Y), ca(X))) = B(X)}.
Moreover, it is well known that t(B(X), ca(X')) is a locally solid o-Lebesgue topology on
B(X) (see [3, Ex. 18, p. 178], [12, Theorem 3]).
2. o-smooth operators on B(Y)
In this section we study (z(B(XY), ca(})), £)-continuous linear operators from B(Y) to a
locally convex Hausdorff space (E, &). Recall that a sequence (u,) in B(Y) is order convergent to

u € B(X) (in symbols, u, @) u) if there is a sequence (v,) in B(X) such that |u, —u| < v, | 0
in B(XY) (see [3]).
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Definition 2.1. A linear operator 7 : B(Y) — E is said to be o-smooth if T (u,) — 01in &

whenever u,, Q) 0in B(J).

Proposition 2.1. For a linear operator T : B(XY) — E the following statements are equivalent:

(i) € oT € B(X)X foreach e € Eé

(1) T is (c(B(X), ca(X)),o(E, Eé))-continuous.
@iii) T is (t(B(X), ca(X)), &)-continuous.
@1v) T is (r(B(X), ca(X)), &)-sequentially continuous.
(v) T is o-smooth.

Proof. (i) < (ii) See [2, Theorem 9.26].

(i) = (i) Assume that T is (o(B(X),ca(X)),o(E, Eé))—continuous. Then T is
(t(B(X), ca(X)), t(E, Eé))—continuous (see [2, Ex. 11, p. 149]). It follows that T is
(t(B(X), ca(X)), £)-continuous because & C T(E, Eé).

(iii) = (iv) It is obvious.

(iv) = (v) Assume that T is (1 (B(XY), ca(})), &)-sequentially continuous, and let u,, ﬁ) 0
in B(X'). Then u,, — 0 for t(B(Y'), ca())) because t(B(Y'), ca())) is a o-Lebesgue topology.
Hence T (u,) — 0O for &, i.e., T is o-smooth.

(v) = (1) It is obvious. [

Note that every o-smooth operator 7 : B(X) — E is (|| - ||, £)-continuous because
T(B(X), ca(X)) C 1.

Let £, ¢ (B(Y), E) stand for the space of all (z (B(X), ca(Y)), &£)-continuous linear operators
from B(X) to E, equipped with the topology 7 of simple convergence. Then T,, — T for 7y in
L e(B(Y), E)if and only if T, (u) — T (u) in & forallu € B(X).

The following result will be of importance (see [16, Theorem 2]).

Theorem 2.2. Let IC be a T;-compact subset of L (B(X), E). If Cisa O’(Eé, E)-closed and
&-equicontinuous subset of Eé then{e’ oT : T € K, € C}isao(B(X):, B(X))-compact
subset of B(X)}.

Now using Theorem 2.2 and the property that (B(Y'), t(B(X), ca(X))) is a strongly Mackey
space, we are ready to prove our main result.

Theorem 2.3. Let K be a subset of L;g(B(X), E). Then the following statements are
equivalent:

(i) IC is relatively T;-compact.
(i) K is (r(B(X), ca(X)), &)-equicontinuous and for each u € B(X), the set {T (u) : T € K}
is relatively &-compact in E.

Proof. (i) =— (ii) Assume that K is relatively 75-compact. Let W be an absolutely convex
and £-closed neighbourhood of 0 for £ in E. Then the polar W9 of W, with respect to the
dual pair (E, Eé), is a o (E;, E)-closed and &-equicontinuous subset of Eé (see [2, Theorem
9.21]). Hence in view of Theorem 2.2 the set H = {¢ o T : T € K,¢ € W% in
B(X)} is relatively o (B(X)}, B(X))-compact. Since (B(Y), t(B(X), ca(X))) is a strongly
Mackey space, the set H is t(B(Y), ca(X))-equicontinuous. It follows that there exists a
T(B(Y), ca(X))-neighbourhood V of 0 in B(Y) such that H C VO, where VO denotes the
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polar of V with respect to the dual pair (B(X), B(X)}). It follows that for each T € X we have
that {¢' o T : ¢’ € WO ¢ VO ie., ife’ € WO, then |¢/(T («))| < 1 forall u € V. This means that
foreach T € K we get WO  T(V)?. Hence T(V) c T(V)® c W% = W foreach T € K, i.e.,
K is (t(B(Y), ca(X)), &)-equicontinuous. Clearly, for each u € B(X), the set {T'(u) : T € K}
is relatively £-compact in E.

(i) = (i) It follows from [5, Chap. 3, Section 3.4, Corollary 1]. [

Corollary 2.4. Assume that K is a relatively Ts-compact subset of L g(B(X), E). Then
K is uniformly o-smooth, i.e., for each &-continuous seminorm p on E we have that

supreic (T (uy)) — O whenever uy, ﬂ) 0in B(X).

Proof. In view of Theorem 2.3 K is (z(B(Y), ca(X)), §)-equicontinuous. Let p be a &-
continuous seminorm on FE, and let ¢ > 0 be given. Then there exists a T(B(X), ca(}))-
neighbourhood V of 0 in B(JX) such that for each T € K we have p(T(u)) < e for all

u € V. Assume that (u,) is a sequence in B(Y') such that u, (—0)> 0in B(X). Then u, — 0
for T (B(X), ca(X)) because t(B(X), ca(X)) is a o-Lebesgue topology, and hence there exists
ne € Nsuch thatu, € V forn > n,. Hence supycic p(T (u,)) < eforn >n,. 0O

3. Integration operators on B(J))

For terminology and basic results concerning the integration with respect to vector measures
we refer the reader to [14,15,13]. In this section we study integration operators on B(X') in terms
of their representing vector measures.

Let (E, &) be a quasicomplete IcHs and m : X' — E be a £-bounded additive vector measure
(i.e., the range of m is £-bounded in E). Given u € B(Y), let (s,) be a sequence of X'-simple
functions that converges uniformly to u on 2. Following [14, Definition 1] we say that u is
m-integrable and define

/ udm :=§—lim/ Spdm.
N N

The fQ udm is well defined (see [14, Lemma 5]) and the map T, : B(X) — E given by

Tn(u) = [pudmis (|| - ||, §)-continuous and linear, and for each ¢’ € Eé
e'(/ udm) =f ud(e om) foru e B(X)
2 (0}
(see [14, Lemma 5]). Conversely, let T : B(X) — E be a (|| - ||, £)-continuous linear operator,

and let m(A) = T(14) for A € X¥. Thenm : X — E is a £-bounded vector measure, called the
representing measure of T and T,,,(u) = T (u) foru € B(X) (see [14, Definition 2]).

An important example of a quasicomplete locally convex Hausdorff space is the space
L(X,Y) of all bounded linear operators between Banach spaces X and Y, provided with the
strong operator topology.

Now we present a characterization of (t(B(X), ca(X)), §)-continuous linear operators 7 :
B(X) — E interms of their representing measures.

Proposition 3.1. Assume that (E, £) is a quasicomplete IcHs. Let T : B(X) — E bea (|||, &)-
continuous linear operator and m : X — E be its representing measure. Then the following
statements are equivalent:



M. Nowak / Indagationes Mathematicae 23 (2012) 113-122 117

(1) ¢ om € ca(X) for each e’ € Eé

(ii) € o T € B(X)* foreach e € Eé

(i) T is (t(B(X), ca(X)), &)-continuous.

@iv) T is o-smooth.

) T (u,) —> O for & whenever u,(w) —> 0 for each € {2 and sup,, ||u,| < co.

(vi) m is &-countably additive.
In particular, if (E, || - ||g) is a Banach space, then each of the statements (1)—(vi) is
equivalent to the following:

(i) T is (t(B(X), ca(M)), || - |g)-weakly compact, i.e., T(V) is relatively weakly compact in
E for some t(B(Y), ca(X))-neighbourhood V of 0in B(X).

Proof. (i) <= (ii) For each ¢’ € Eé we have
€ oT)(u) = / ud( om) forallu e B(X).
N

Hence, ¢’ om € ca(X) if and only if ¢’ o T € B(X)} (see [1, Theorem 13.5]).

(il) <= (iii) <= (iv) See Proposition 2.1.

(iv) = (v) Assume that (iv) holds and let (u,) be a sequence in B(Y') such that u, (w) — 0
for each w € (2 and sup |lu,|| < oo. Let v,(w) = sup,,~, [um(®)| for € 2, n € N. Then

v, € B(X) and |u,(w)| < v,(w) | O for all w € {2 and n € N. It follows that u,, Q) 0in B(X)
and by (iv) T'(u,) — O for &.

(v) = (vi) Assume that (v) holds, and let A, | @, (A,) C X.Then 14,(w) | O forw € 2
and sup,, || L4, || < 1.1t follows that m(A,) = T(1L4,) — 0for &, i.e., m is &-countably additive.

(vi) = (1) It is obvious.

Assume that (E, || - ||g) is a Banach space. Then by [11, Corollary 12] we have (vi) <
(vii). O

Graves and Ruess [11, Theorem 7] characterized relative compactness in ca(X, E) in the
topology 7, of simple convergence (convergence on each A € X)) in terms of the properties of
the integration operators from S(X) to E or from L(X) to E.

For a subset M of ca(X, E) let Kpq = (T € Lo e(B(XY),E) : m € M). Now using
[11, Theorem 7] and Theorem 2.3 we are ready to state the following generalized
Vitali-Hahn—Saks theorem for operators from B(XY') to E (see [16, Theorem 10]).

Theorem 3.2. Assume that (E, &) is a quasicomplete IcHs that is complete in its Mackey
topology (in particular, E is a Banach space). Then for a set M in ca(X, E) the following
statements are equivalent:

(i) K arm is a relatively Tg-compact set in L g(B(X), E).
(i) Kaq is (r(B(X), ca(X)), &)-equicontinuous and for each u € B(X), the set {T,,(u) : m €
My} is relatively &-compact in E.
(iii) M is uniformly &-countably additive and for each A € X, the set {m(A) : m € M} is
relatively &-compact in E.
(iv) M is a relatively T;-compact set in ca(X, E).

Proof. (i) < (ii) See Theorem 2.3.
(il) = (iii) Assume that (ii) holds and let A, | @, (A;,) C X. Then 14, | @ in B(X), and
we can apply Proposition 3.1 and Corollary 2.4.
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(iii) = (ii) Assume that (iii) holds. "l:vhen in view of [11, Theorem 7] the set K M= {T"m :
m € My} is (7, &)-equicontinuous and K g is a relatively Zg-compact set in Lz ¢(L(X), E)
(=the space of all (7, &)-continuous linear operators from L(X) to E). It follows that K4 is
(z(B(X), ca(X)), &)-equicontinuous and for each u € B(Y), the set {T,,(u) : m € M} is
relatively £€-compact in E, i.e., (ii) holds.

(iii) <= (iv) See [11, Theorem 7]. [

Recall that the Nikodym convergence theorem says that if (m) is a sequence of measures
on a o-algebra X' taking values in a locally convex space (E, &) and m(A) = & — limmy(A)
for each A € XY, then m : ¥ — FE is £-countably additive and the family {m; : k € N} is
uniformly &-countably additive (see [8, Theorem 8.6], [11, Theorem 9], [16, Corollary 9]). Now
we shall prove a generalized Nikodym convergence type theorem for operators from B(X') to a
quasicomplete IcHs (E, &).

For this purpose we first establish some terminology. For each &-continuous seminorm p on
E,let E, = (E, p) be the associated seminormed space. Denote by (E, || - [|,,) the completion
of the quotient normed space E/p~'(0). Let I, . E, - E/ p~10) C E p be the canonical
quotient map (see [14, p. 92]).

Given a vector measure m : X' — E,letm, : X — E p be given by

my(A) == (I, om)(A) for A e X.

Then m , is a Banach space-valued measure on X'. We define the p-semivariation ||m||, of m
by

lmll p(A) :== |lmpl(A) for A e X,

where |m || denotes the semivariation of m, : X — E p- Note that m is &-bounded if and
only if [|m]|,({2) < oo for each &-continuous seminorm p on E. Moreover, we have (see [14,
Lemma 7])

il p(£2) = 1 Tnllp = SuP{P(/Qudm> ‘u € B(Y), |lull < 1}- 3.1

Now we can prove our desired theorem.

Theorem 3.3. Assume that (E, §) is a quasicomplete IcHs. Let my : X — E be &-countably
additive vector measures for k € N and assume that m(A) = & — limmy(A) exists for each
A € Y. Then the following statements hold:

@) m : X — E is a &-countably additive vector measure, and the integration operator
Tn : B(Y) — E is (t(B(X), ca(X)), &)-continuous.
(1) T, (u) =& — limg T,y (u) for all u € B(X).
(iii) The family {T,,, : k € N} is (t(B(X), ca(X)), &)-equicontinuous.

Proof. In view of the Nikodym convergence theorem (see [8, Theorem 8.6]) the vector measure
m : Y — E is &-countably additive, and by Proposition 3.1 7, : B(Y) — E is
(t(B(X), ca(X)), &)-continuous.

Let p be a £-continuous seminorm on E. We show that p(7},, (u) — T, (1)) — O foreach u €
B(XY). Indeed, since p(m;(A) —m(A)) — Oforall A € X, we have || II,, (my(A) — m(A))||; —
0,1ie., [[(mp)p(A) — m[,(A)||[”7 — Oforall A € X It follows that sup, ||(mk)p(A)||; < oo for
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all A € ¥, and in view of the Nikodym boundedness theorem (see [7, Theorem 1, p. 14]) and
(3.1) we get

¢ = sup ”ka”p = sup ”mk”p(\(z) < O0.
k k
Let u € B(X) and ¢ > 0 be given. Choose so € S(X) such that |ju — sg|| < 3%, where

a = max(c, || Tl p)- Then there is kg € N such that p(Ty, (s0) — T (s0)) < % for k > kg. Hence
for k > ko we have

P (T ) = T () = p(Tin(u — 50)) + p(Tn(s0) — Tny (50)) + p(Tiny (s0) — Ty (1))

S N Tullp - lu = soll + p(Tu(50) — Ty (50)) + T Ml p - llso — ull
- £ +8+ £

a-—+-+a-— =¢.
- 3a 3 3a

It follows that T,,, — T, in L ¢(B(Y), E) for T;. Since {T,,, : k € N} U {T,,} is a ;-
compact subset of L ¢ (B(X), E), by Theorem 2.3 the set {T;,, : k € N}is (z(B(X), ca(X)), §)-
equicontinuous. [

Finally, we shall show that every (t(B(Y), ca(X)), &)-continuous linear operator T
B(Y) — E is a strict Dunford—Pettis operator.

Theorem 3.4. Assume that (E,&) is a quasicomplete IcHs. If T : B(YX) — E is
a (t(B(X), ca(X)), &)-continuous linear operator, then T maps o (B(X), B(X)})-Cauchy
sequences in B(X') onto &-convergent sequences in E.

Proof. For each w € 2 let &,(u) = u(w) for all u € B(X). Note that ¢, € B(X)}
(see Proposition 3.1). Let (u,) be a o(B(X), B(X)})-Cauchy sequence in B(X). Then the set
{u, : n € N}is t(B(X), ca(X))-bounded, and it follows that sup,, ||u,|| < oo (see [12, Theorem
2]). It follows that for each w € 2, limu, (w) = lim @,,(u,) = up(w) exists in R. It follows that
uo : {2 — R is Y-measurable, and since sup,, ||u,|| < oo, we obtain that u¢ is bounded, i.e.,
ug € B(X).

Let m(A) = T(1L4) for A € X. Then by Proposition 3.1, m is &-countably additive. Hence
making use of the Lebesgue type convergence theorem (see [15, Proposition 7, p. 4854]), ug is
m-integrable and we have

T(un)=/ undmi/ uopdm € E.
N N

Thus the proof is complete. [

As a consequence of Theorem 3.4 we have the following result (see [9, Section 9.4]).

Corollary 3.5. The space (B(X), t(B(X), ca(X))) has the strict Dunford—Pettis property.
4. Yosida—Hewitt decomposition for weakly compact operators on B()

In this section we derive a Yosida—Hewitt type decomposition theorem for weakly compact
operators on B(X'). In view of the Yosida—Hewitt decomposition theorem (see [17]) we have

ba(X) = ca(X) @ pfa(L),
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where pfa(Y') (=ca(X)?—the disjoint complement of ca(X') in ba(X")) stands for the band of
purely finitely additive members of ba(Y'). On the other hand, we have (see [2, Theorem 3.8])

B(X)" = B(D); & (B(2))",
where (B(E)’:,)d stands for the disjoint complement of B(X)? in B(X)*. It follows that
(B(XDH! = {9, : v € pfa(D)).
Since B(Y') is an AM-space, ba(X') is an AL-space (see [1, Theorem 13.2]). This means that

vl = llvell + llvpll and | Dyl = [[ Py, || + Dy, |l, where v = ve + v, with ve € ca(X) and
v, € pfa(X).
Definition 4.1. A (]| - ||, £)-continuous linear operator 7 : B(Y) — FE is said to be purely

/

non-o-smooth if ¢’ o T € (B(X)¥) for each ¢’ € E;
Moreover, since (B(Z)j)d = {®, : v € pfa(X)} we have the following result.

Proposition 4.1. Assume that (E, ) is a quasicomplete IcHs. Let T : B(X) — E bea (|||, &)-
continuous linear operator and m : X — E be its representing measure. Then the following
statements are equivalent:

(i) T is purely non-o -smooth.
(ii) ¢’ om € pfa(X) for each ¢’ € E

é.

A vector measure m : X' — E is said to be &-strongly bounded (§-exhausting) if m(A,) — 0
in £ for each pairwise disjoint sequence (A,) in X. It is well known that each &-countably
additive measure m : Y — E is &-strongly bounded. The following theorem is of importance
(see [14, Lemma 3 and Theorem 1]).

Theorem 4.2. Assume that (E, £) is a quasicomplete IcHs. Let T : B(X) — E bea (|| - |, &)-
continuous linear operator and m : X — E be its representing measure. Then the following
statements are equivalent:

(i) T is weakly compact, i.e., T maps bounded sets in B(X') onto relatively o (E, E é)-compact
sets in E.
(1) m is &-strongly bounded.

From Theorem 4.2 and Proposition 3.1 it follows that every o -smooth operator from B(X) to
a quasicomplete 1cHs is weakly compact.

Now we are ready to prove the following Yosida—Hewitt type decomposition for weakly
compact operators from B(X) to a quasicomplete IcHs.

Theorem 4.3. Assume that (E, &) is a quasicomplete IcHs. Let T : B(X) — E be a weakly
compact operator and m : ) — E be its representing measure. Then:

(i) m can be uniquely decomposed as m = m¢ + mp, where m¢ : X — E is &-countably
additive, mp, : ¥ — E is &-strongly bounded and ¢’ o m ), € pfa(X) for each ¢’ € Eé

(i1) T can be uniquely decomposed as T = T\ + T», where Ty is o-smooth and T, is weakly
compact and purely non o -smooth, and

Tl(u):/ udm. and Tg(u):/ udm, forallu e B(Y).
[0} 2
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Proof. For @ € B(X)* we have & = & + &, where @ € B(X)} and &, € (B(E)j)d. Then
we have two natural projections

Py : B(X)* — B(X)*,
where Py(®) = & and || Px|| < 1 for k = 1, 2. Now consider the conjugate mappings
P{: B(X)™ — B(X)™

defined by P,é(V)(Qﬁ) = V(P (9)) for V € B(X)** (=the Banach bidual of B(X)).
Since T is (o (B(X), B(2)*), o (E, Eé))-continuous (see [9, Corollary 8.6.5]), we can define
the conjugate mapping

T': E; — B(%)"
by putting 7'(¢') = ¢’ o T for ¢’ € E;. Then T" is (B(E;, E), B(B(X)*, B(X)))-continuous
(see [9, Proposition 8.7.1]), and hence T’ is (o (E}, Eé/),O’(B(E)*, B(X)**))-continuous. It
follows that one can define the conjugate mapping (see [2, Theorem 9.2])
T": B(X)™ — Ef
by puting T"(V)(¢)) = V(T'(¢)) for V. € B(X)™ and ¢ € E,.
(o (B(X)**, B(2)*), a(Eé’, Eé))-continuous.
We have a natural isometric embedding 7w : B(Y) — B(X)*™*, where 7 (u)(®) = ®(u) for
all ® € B(X)*, u € B(X). Then (P, om)(u) = m(u) o P foru € B(X).
Leti : E — E/ stand for the canonical mapping, where i(e)(e’) = €'(e) for ¢’ € Eé and
e € E. Moreover, let j : i(E) —> E denote the left inverse of i, i.e., j oi = idg. Then
T"om =ioT.
By the Gantmacher type theorem (see [9, Theorem 9.3.2]) we have

T"(B(X)™) Ci(E).

Then T is

Define linear mappings (k = 1, 2)
Ty =joT"oPlom:B(X)— E.
To show that T : B(X') — E are weakly compact, note that for u € Bp(s;) (=the closed unit
ball in B(X')) we have
| P (r )| p(zy= = 7w (u) o Pellp(zy+ < 1.
Hence by the Banach—Alaoglou theorem the set {P,é () : u € Bpx)} is relatively
o (B(X)*, B(X)*)-compact in B(X)**. Since T” is (o(B(X)**, B(X)*), U(Eé’, Eé))-
continuous and T"(B(X)**) C i(E), the set {T"(P/(w(u))) : u € Bpx} is relatively
o(i(E), Eé)-compact in i(E). But j is (o(i(E), Eé), o(E, Eé))-continuous, so the set
Ti(Bps)) = {j(T"(P/(wr()))) : u € Bp(x;)} is relatively o (E, Eé)—compact in E, and this
means that the 7} are weakly compact.
For A € X let us put
me(A) :=Ti(1y) and m,(A) = Tr(1a).

In view of Theorem 4.2 the measures m. : 2 — E andm, : X' — E are &-strongly bounded,
and we have

Tl(u)=/ udm, and Tz(u)=/ udm, forallu e B(X).
N N
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Note that for each ¢’ € Eé and u € B(X) we have

(€ oTi)(u) =¢€(jo(T" o Pl om)(u))
((T" o P_om)(u))(e')
= (T" () o Pu))(e)
(7 (u) o P)(T'(e)
= 7 (u)(Pe(e' o T)) = Pi(e o T)(u).

Hence ¢’ o Ty = Pi(¢’ o T) € B(X)}, and by Proposition 3.1, T} is o-smooth. Moreover,
eoT) = Py oT) € (B(E)Zf)d, i.e., T» is purely non-o-smooth. For every ¢’ € Eé and
u € B(X) we have

¢ (Ti(u) + Ta(u)) = Pi(e' o T)(u) 4+ Pa(e’ o T)(u) = €'(T (),

so T1(u) + T»(u) = T (u). The uniqueness of the decomposition T = T; + T» follows from the
uniqueness of the decompositione’ o T = ¢’ o T) + ¢’ o T, foreach ¢’ € E;.
Moreover, for each ¢’ € Eé we have

(e’oTl)(u):/ ud(e om.) and (e/oTz)(u)zf ud( om,) forue B(X).
[0} (0}

Hence by Proposition 3.1, m, is &-countably additive, and by Proposition 4.1, ¢’ o m), €
pfa()). Clearly, m =m¢ +m,. 0O

Remark. A Yosida—Hewitt type decomposition theorem for order-weakly compact operators
acting from a vector lattice to a Banach space was derived in [4, Theorem 4].
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